
Model-Based Self-Managing Systems Engineering

A. Taleb-

Bendiab

School of Computing,

Liverpool

John Moores Univer-

sity,

UK

cmsatale@livjm.ac.uk

D.W. Bustard

School of Computing,

University of Ulster,

UK

dw.bustard@ulster.ac.uk

R. Sterritt

School of Computing,

University of Ulster,

UK

r.sterritt@ulster.ac.uk

A.G. Laws

School of Computing,

Liverpool

John Moores

University,

UK

cmsalaws@livjm.ac.uk

F. Keenan

Dept. of Maths & Comp

Dundalk Institute of

Technology,

Ireland

Frank.keenan@dkit.ie

Abstract

For many years, the vision of smart computing where

systems can function and/or manage themselves independ-

ently from human intervention has provided numerous theo-

retical challenges to research communities ranging from

intelligent systems and cybernetics to AI communities. These

research trends have now been further fuelled by the IBM

autonomic computing initiative, where biologically inspired

concepts inform the development of systems that can adapt

autonomously to their users’ requirements and environ-

ments. This paper considers the extent to which well-

established general systems concepts might be valuable in

the design of autonomic systems. The main two approaches

considered are Checkland’s Soft Systems Methodology

(SSM) and Beer’s Viable Systems Model (VSM). The paper

summarizes the relevant aspects of each approach and dem-

onstrates their potential through the provision of an

illustrative case study. Moreover, the paper illustrates how

SSM and VSM approaches facilitate autonomic systems

engineering by the capture of functional and non-functional

application requirements such as lifetime self-management

policies and operational tolerances.

1. Introduction

Recent developments in software design involve the

concept of autonomic computing capable of self-

organization, adaptation, control and management [1]. Here,

complex computer systems, offering users intuitive interac-

tion with the system, without any involvement in the sys-

tems running, can effectively manage themselves. Thus, as

the complexity of systems outstrip the human ability to

manage them, so systems themselves can automatically take

care of the majority of associated mundane management

tasks. Previous work has focused on the design of auto-

nomic elements in a reductionist manner. Here, autonomic

components are analyzed as separate communicating sys-

tems within the overall system. The intention here is to con-

sider autonomic concepts as integral to the whole system. A

systemic view is taken to produce a procedure for the mod-

elling and development of an autonomic computing system.

Soft Systems Methodology [2] is a well-established

process to elicit user requirements and system functionality.

Likewise, the Viable System Model [3] has been widely

used and credited with providing basic robustness to a sys-

tem structure. Although both methods are concerned with

human systems, it is thought that software systems, with

autonomic capabilities, are susceptible to the analysis af-

forded by these system models.

A range of notable research work related to autonomic

computing has adopted control theory [4, 5], AI-based plan-

ning [6] and/or software reflection techniques [7] to provide

application-level self-adaptive mechanisms and/or heuris-

tics. Here the focus is on software engineering concerns

including; a generative programming model and/or software

engineering support for finer-grained dynamic and predict-

able software adaptation. Using an architecture-driven ap-

proach incorporating probes and gauges enables the soft-

ware to interact with the executing system and collect raw

measurement data for translation into suitable metrics for

system performance tuning and/or error recovery through

adaptation.

Much insight into system meta-control and management

has been developed from policy-based management and

context-awareness systems. This enables systems to operate

independently of direct human control yet remain in har-

mony with their users command and controls settings. How-

Proceedings of the 16th International Workshop on Database and Expert Systems Applications (DEXA’05)

1529-4188/05 $20.00 © 2005 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287019476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ever, very little work has focused on the application of sys-

temic approaches to model and capture stakeholders con-

cerns and requirements and so provide a guiding framework

for the development of the adjustable autonomic behaviour

to be exhibited by target computer applications.

The remainder of the paper is organized as follows. An

introduction to the VSM and SSM and where they fit into

the autonomic computing paradigm is presented in the fol-

lowing sections. This is followed by the specification of an

approach to bring SSM and VSM to an iterative autonomic

computing system design process. This is illustrated with a

practical, currently running implementation. Finally, the

paper concludes with a discussion of the contribution made

by this work and the future development opportunities it

affords.

2. A Self-Managing System Architecture

The Viable System Model [3] provides a theoretically

supported cybernetic model of organization. Viable systems

may be defined as being robust against internal malfunction

and external disturbances and have the ability to continually

respond and adapt to unexpected stimuli. The model spe-

cifically attempts to imbue the system with the ability to

adapt to circumstances not foreseen by the original designer

and identifies the necessary and sufficient communication

and control systems that must exist for any organization to

remain viable in a changing environment. The major sys-

tems (i.e. S1s, S3, S4 and S5) are structured hierarchically

and connected by a central ‘spine’ of communication chan-

nels passing from the higher-level systems through each of

the S1 management elements, as shown in . These provide

high priority communication facilities to determine resource

requirements, accounting for allocated resources, alerts in-

dicating that a particular plan is failing and re-planning is

necessary and the provision of the "legal and corporate re-

quirements" or policies of the system.

The systems shown in Figure 1 concern the management

structure at one level of the system, and consequently spec-

ify the communication and control structures that must exist

to manage a set of S1 units. However, the power of the

model derives from its recursive nature. Each S1, consisting

of an operational element and it's management unit, is ex-

pected to develop a similar VSM structure, consequently,

the structure of systems is open ended in both directions and

may be pursued either upwards to ever wider encompassing

systems or downwards to ever smaller units. However, at

each level the same structure of systems would occur al-

though their detail would necessarily differ depending on

context.

The value of assuming such a viewpoint is in the imme-

diate provision not only of the outline architecture that the

autonomic software system itself must assume, namely that

of the Viable System Model, but also the identification of

the requisite communication links to bind the system to the

organization.

System 5

Policy

System 4

Intelligence

System 3

Control

System 3*

Audit
System 1

5

4

3

2

2

2

2

3*

1

O
rg

a
n

iz
a
ti
o

n
a
l
E

n
v
ir
o

n
m

e
n
t

System 2

Coordination

System 2

Coordination

System 1

5

3

4
3*

1

System 2

Coordination

System 1

5

3

4
3*

1

System 2

Coordination

Figure 1. The Viable System Model [3]

We now extend and apply this cybernetic approach and

consider an S1 of the VSM in terms of an autonomic soft-

ware system. To demonstrate, a conceptual, architectural

outline of such a system is determined, using both the prin-

ciples of the VSM and the terminology and design of a clas-

sical Artificial Intelligence design, namely Bratman et al.'s

Intelligent Resource-Bounded Machine Architecture

(IRMA) [8] as a constructional guide. As shown in Figure 2,

the developed J-Reference architecture embeds a Beliefs,

Desires, Intentions (BDI) unit at the S5 level representing;

Desires - or what the agent wants to do and is taken as a

given for the moment.

Beliefs - or what the system currently knows and is rep-

resented by two structures. A model of the external

world and a model of the current internal status of the

architecture.

Intentions - or what will actually be done, is determined

by a process of deliberation, which interprets desires in

the light of current beliefs about both the environment

and the 'stance' of the system.

S3, using a reasoning process supported by a plan library

and the capacity to audit the current status of operational S1

units, structures the intentions into plans, these are then

passed to a scheduling process. The scheduling process, in

Proceedings of the 16th International Workshop on Database and Expert Systems Applications (DEXA’05)

1529-4188/05 $20.00 © 2005 IEEE

cooperation with a resource bargaining process, responsible

for negotiating resource deployment and usage monitoring,

schedule the enactment of the plan. The schedule passes to

the coordinating S2 channel for dissemination to participat-

ing S1 elements.

Desires

W
o

rl
d

M
o

d
el

Deliberation

Process

 In
ten

tio
n

s

Opportunity

Analyser

Environmental

Scan

Filtering

Process

Plans

S
u

rv
i v

in
g

P
la

n
s

In
ten

tio
n

s

Planning Process

Plan

Library

Reasoner

Internal Model

Internal Model

Status

Resource

Bargaining

Process

In
ten

tio
n

s

Overall Plans

R
eso

u
r
ce

s

A
cc

o
u

n
ta

b
il

it
y

In
te

n
tio

n
s

System Three

System Four

System Five

O
p

era
tio

n
a

l

S
ta

tu
s

Scheduling

O
v

era
ll

S
ch

ed
u

le

Local Plans

Local Schedule

Local Monitoring data

Local Monitoring data

Local Monitoring data

O
v
er

al
l

S
ch

ed
u
le

 M
o
n
it

o
ri

n
g
 t

o
 n

ex
t

re
cu

rs
io

n

 Monitoring data

Further

possible

managerial

Activities

Figure 2. The J-Reference Model

Environmental change is addressed by S4, which

equipped with an Opportunity Analyzer and guided by the

S5 desires model, scans the environment for detrimental

events or beneficial opportunities. There are two outcomes

of this process, the first is the formulation of a view of the

outside world which is provided to S5 in the form of the

World model. The second outcome is the production of de-

velopment plans for the future of the system, either exploit-

ing advantageous opportunities or avoiding detrimental

occurrences. Plans are then passed to the deliberation

process to begin the intention forming cycle again.

As noted above, the power of this approach lies in the

recursivity of the underlying model. Figure 2, indicates that

the entire architecture described above is repeated in the

client S1 unit in the next layer. Consequently, the intentions

channel at one recursion informs the desires model in the

next, thus allowing an autonomous response to local condi-

tions at each level while remaining within the purpose of the

overall organization.

3. SSM and Autonomic Systems

Soft Systems Methodology (SSM) seeks to utilize the

basic principles of systems thinking to resolve soft or poorly

defined problem situations [2]. Here it is proposed to bring

SSM into the problem domain of specifying self-governing

distributed software systems in line with the IBM autonomic

computing paradigm. A full description of SSM is beyond

the scope of this paper, however a brief diagrammatic out-

line of the seven stages of SSM is provided by Figure 3 be-

low. The interested reader is directed to the references pro-

vided at the end of the paper for further details.

Figure 3. An SSM Process Summary.

4. A “Lean” SSM and VSM-Based Process

To design an autonomic system or imbue a distributed

system with autonomic functionality via an SSM approach,

it is first necessary to produce a clear picture of the compo-

nents in the system (including the human users) and the in-

teractions they have with each other. This picture ought to

raise the issues that need to be addressed in order to produce

the autonomic system. For instance, a certain component

that must always be available to the system may be identi-

fied as a specific issue. Such issues then lead to the devel-

opment of a relevant system for each issue. So, in the exam-

ple, a system is conceived that always keeps the specified

component available with the root definition:

An autonomic system, which under the following envi-

ronmental constraints <list domain properties> transforms

an input <component unavailable> into this output <com-

ponent available> by means of the following activities <re-

try component, if component retried then seek alternative

component service and enact component repair or replace-

ment routine>. The transformations are carried out by

these components <component manager, system control-

ler> and directly affect <clients>. The concerns that make

this transformation meaningful contain these elements

<autonomic function, reliability, availability etc.>.

This root definition would then be used with other root

definitions to form the conceptual system with deliberation

techniques logically defined. Then, the resulting systems’

architectural positions would be defined, in the whole over-

Proceedings of the 16th International Workshop on Database and Expert Systems Applications (DEXA’05)

1529-4188/05 $20.00 © 2005 IEEE

all system, by their classification according to the VSM

model.

Figure 4 illustrates a kind of “agile” systems’ engineer-

ing process, which will be necessary to define and develop a

required autonomic system including its lifetime self-

management capabilities. The requirements are captured

through the SSM cycle and embodied in a VSM-based con-

ceptual model resulting in an evolvable system. This will

generate an abstract baseline systems architectural model

together with its associated systems’ governing norms in-

cluding; rules, policies for self: -management, -healing, -

configuration, -tuning and -protection.

Figure 4. "Lean" ways in which they might be used.

The Normative units S4 and S5 [9] provide a delibera-

tive and intentional meta-system, which regulates and con-

trols the running of operational systems (S1). The delibera-

tive process specifies the behavioural output via the coop-

eration and coordination of system services.

The process is envisaged as an iterative/spiral model and

can use a variety of techniques including; aspect-oriented

requirement capture, service-oriented architecture and gen-

erative programming. The process can be described as fol-

lows:

Phase I: This follows the SSM cycle (Step 1-7) to define

the conceptual model of a considered autonomic system.

Phase II: In line with the separation of concerns design

principle, different functional and non-functional system

goals are separated under different aspects.

Phase III: a user task model will be listed. From which a

software service model can be generated through task to

service mapping.

Phase IV: Following the VSM-model, S1 (operational

systems) then S2 and S3 etc. are defined.

Phase V: The self-governance is defined, using the ap-

propriate pattern, obtained by capturing the rules from

the logical model.

Phase VI: Validation of the model and refinement.

Phase VII: Systems generation and deployment.

Phase VIII: Systems testing, and policy deployment, etc

Phase IX: runtime adaptation if and when necessary.

This might require refactoring, etc.

5. Evaluation

To evaluate the proposed abstract agile design process

for autonomic systems engineering, this section outlines the

design of an implemented grid-based medical decision-

making system.

Figure 5. The Service Oriented Architecture of the

Cloud Application.

As illustrated in Figure 5, the implementation is based

on a “Cloud” framework [10], in which the notion of a

Cloud represents a federation of application services and/or

computational resources regulated by a system controller,

which comprises the S3/3*/4/5 control, and discovered and

coordinated services respectively. As illustrated in Figure 5,

the Cloud’s coordination and communication is achieved

via the shared memory, which maps to an S2 level function.

In this example, all S1 level units Services 1 to 4 are

medical domain specific applications such as; decision-tree,

medical data access, each of which exposes some of their

states and their identity, roles to other services in the same

Cloud by publishing their metadata and policy documents

via the System Space.

Rather than expressing autonomic norms through tradi-

tional rules, Clouds uses a custom designed meta-language,

JBel to define and deploy the systems’ governance norms

Proceedings of the 16th International Workshop on Database and Expert Systems Applications (DEXA’05)

1529-4188/05 $20.00 © 2005 IEEE

(policies) and decision models as compiled objects that can

be inspected, modified, and executed at runtime.

The example System Controller JBel script below shows

a simplified load balancing norm, and an application service

“hot-swapping” norm (rule) to enable runtime cancer deci-

sion models (services/agents) to be “plugged in” on-demand

and/or when the Cloud discovery service detects a new ver-

sion of a user required decision model service. The full de-

scription of the JBel language and/or the Clouds architecture

is beyond the scope of this paper and can be found in [10].

Rule Load-balancing

if (service.niceguidelinemodelA.cpuload >

service.niceguidelinemodelB.cpuLoad)

 delegate-

Call(service.niceguidelinemodelB)

end if

…..

Rule hot-swap

if (service.required = new)

 hotswap(service.required)

end if

6. Conclusions

In this paper, the authors have described the develop-

ment and use of an agile, system-centric engineering process

for the development of autonomic software systems. This

uses a soft systems approach at the outset allowing a robust

task model to emerge, which incorporates user viewpoints

and establishes system policies and access rights. Applying

the conceptual underpinning of the VSM and the technical

blueprint supplied by the J-Reference model to that output

results in the full architectural specification of the system.

The self-governance aspects of the system, identified in

stage one, are further refined and instigated as a situational

calculus. The operational system can then be generated,

deployed and adaptively refined.

A brief demonstration of these notions was presented in

a case study of the development of a medical decision-

support system. Certainly, more work is required to both

further elaborate and detail the process and undertake a lar-

ger scale evaluation exercise before the true value of this

contribution can be ascertained. However, the approach

presented makes significant progress in determining a real-

izable, norm-driven autonomic system architecture that both

clarifies and, in some respects, extends the autonomic vision

[1], particularly in the higher-level, cognitive/deliberative

elements of our model.

7. Acknowledgements

This research was supported by the Centre for Software

Process Technologies (CSPT), funded by Invest Northern

Ireland (INI) through the Centres of Excellence Programme.

Further support for this research is provided by EPSRC-

funding Clouds project at JMU. The authors would also like

to acknowledge the significant contributions made by both

Philip Miseldine and Martin Randles to the work presented.

8. References

[1] IBM, Autonomic Computing,

http://www.research.ibm.com/autonomic, 2002.

[2] Checkland, P., Systems Thinking, Systems Practice,

John Wiley & Sons, Chichester, 1981.

[3] Beer, S., Brain of the Firm, 2nd ed, John Wiley &

Sons, Chichester, 1981.

[4] Kokar, M., K. Baslawski, and Y. Eracar, Control

Theory-Based Foundation of Self-Controlling

Software, IEEE Intelligent Systems, Vol. , No. pp.

37-45, 1999.

[5] Reilly, D., A. Taleb-Bendiab, A. Laws, and N.

Badr, An Instrumentation and Control-Based Ap-

proach for Distributed Application and Manage-

ment, in ACM SigSoft Workshop on Self-Healing

Systems (WOSS'02), Charleston, SC, 2002.

[6] Robertson, P., R. Laddaga, and H. Shrobe, Intro-

duction to the 1st International Workshop on Self-

Adaptive Software, in 1st International Workshop

on Self-Adapative Software, Oxford, UK, Springer-

Verlag,2000.

[7] Costa, F.M., et al., The Role of Reflective Middle-

ware in Supporting the Engineering of Dynamic

Applications, in Lecture Notes in Computer Sci-

ence, Springer-Verlag: London,1999.

[8] Bratman, M.E., D.J. Israel, and M.E. Pollack,

Plans and Resource-Bounded Practical Reasoning,

Computational Intelligence, Vol. 4, No. 4, pp. 349-

355, 1988.

[9] Laws, A.G., A. Taleb-Bendiab, S.J. Wade, and D.

Reilly, From Wetware to Software: A Cybernetic

Perspective of Self-Adaptive Software, in Self-

Adaptive Software: Applications, Second Interna-

tional Workshop on Self-Adaptive Software, R.

Laddaga, P. Robertson, and H. Shrobe, Editors,

Springer-Verlag: Berlin,2003.

[10] Miseldine, P., JBel Application Development

Guide,School of Computing & Mathematical Sci-

ences, Liverpool John Moores University, 2004.

Proceedings of the 16th International Workshop on Database and Expert Systems Applications (DEXA’05)

1529-4188/05 $20.00 © 2005 IEEE

