
Towards a Systemic Approach to Autonomic Systems Engineering

David Bustard1, Roy Sterritt1, A. Taleb-Bendiab2, Andrew Laws2, Martin Randles2, Frank Keenan3

1Faculty of Engineering, University of Ulster, UK
2School of Computing & Mathematical Sciences, Liverpool John Moores University, UK
3Department of Mathematics and Computing, Dundalk Institute of Technology, Ireland

Abstract

An autonomic system is structured as a network of
autonomic elements that collaborate to achieve the
system’s purpose. This paper examines the potential
benefit of using well-established systems concepts and
techniques in the development of such systems. In
particular, it considers the possible role of Checkland’s
Soft Systems Methodology and Beer’s Viable Systems
Model in system design. The paper summarizes the
relevant aspects of each approach and then assesses both
their individual and joint strengths in support of the
construction and evaluation of designs. Some practical
issues in the use of these approaches are also identified.
The discussion is illustrated using aspects of the design of
an autonomic operating system.

1. Introduction

Abstractly, a system is a collection of interrelated parts
[1]. In an autonomic system [3, 15, 19, 20], the individual
parts are autonomic elements, which are related through
their mutual dependence and ability to interact. Systems
are often hierarchical, meaning that any one system is
typically part of a larger enclosing system. Everything
outside an autonomic system relevant to its operation is
usually described as its environment. This is similar to the
machine-domain relationship described by Jackson [21].

Any computing system can be constructed in an
autonomic form and, indeed, that seems desirable to
ensure its effectiveness. Consider, for example, the basic
structure of an operating system, as depicted in Figure 1.
The outer box represents a workstation, showing external
connections to physical devices and the Internet.
Internally, the applications are shown connected to
elements of the operating system responsible for
managing the facilities and services of the workstation.

If each of the components in the diagram is autonomic
then each will have an active role in performing its
designated function. For example, the printer element, as
well as implementing print requests from the applications
can take initiative in reporting problems, such as low
toner. It may also be responsible for recognising the
connection of a new printer and obtaining the required

driver from the Internet. Similarly, each application on
the workstation can actively seek out and install its own
new releases or updates. Such support is obviously very
helpful to users but will also increase their confidence in
using the workstation.

…Printer Internet Other Facility
or Service

…Application
1

Application
2

Application
n

.

Figure 1 Basic Operating System Structure

This paper effectively addresses two particular
questions in relation to the design of an autonomic
system: (i) how should the elements of the autonomic
system be organised internally; and (ii) to what extent
should the environment of the autonomic system be
understood and modelled, including what communication
and control mechanisms are required to facilitate the
coordination and co-evolution of a given autonomic
system with respect to its environment.

From Figure 1, it is perhaps not obvious that an
organisation structure among autonomic elements is
necessary in that it appears to represent a collection of
cooperating components of equal status. Such simplified
diagrams, however, often omit management elements. For
example, if applications compete for shared resources,
such as workstation memory, some higher level
mechanism is needed (another autonomic element) to
observe the consequences of this competition and tune the
tasks and resources allocation to achieve best
performance overall. Also, as each element is self-
monitoring (being typically composed of a managed
component and an autonomic manager [26]), it will have
to inform a ‘higher authority’ if it detects a problem that it
is unable to resolve; this would be another management
element in the system.

Knowledge of the environment is also important in
designing the autonomic system. Understanding the
environment is, of course, a basic part of determining the

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

requirements of any computing system [21], but in
autonomic systems some model of that environment also
needs to be developed for inclusion within the autonomic
system itself. For example, if toner is low on the printer
then the person responsible for maintenance should be
informed, which requires knowledge of the context. For a
personal computer, reporting low toner might simply be
achieved by displaying a message on the user’s screen. In
other cases, it may be more appropriate to contact a
designated technician (perhaps via e-mail or text
messaging).

So far, work on the design of autonomic systems (and
self-adaptive systems in general) has tended to
concentrate on system architecture, both in terms of
design patterns [14, 16-18, 28] and the structuring of
lower level components [26]. This paper focuses more on
the design process. In particular, it considers the potential
benefit of using general systems concepts and related
techniques in modelling the environment and refining the
autonomic systems design. Two specific approaches
considered are Soft Systems Methodology (SSM) [12, 13,
30, 31] and the Viable Systems Model (VSM) [4-7].

The next two sections provide overviews of VSM and
SSM, illustrated with respect to the workstation example.
A concluding section critically assesses the value of VSM
and SSM to the engineering of autonomic systems and
identifies some issues that need to be resolved.

2. VSM and Autonomic Systems

A viable system is one that is robust against internal
malfunction or external disturbance; it has the ability to
respond and adapt to unexpected stimuli, allowing it to
survive in a changing and unpredictable environment [4-
7, 17, 18, 22, 23]. Stafford Beer developed the Viable
System Model as a way of describing the essential
elements of a viable system, with particular reference to
an organisation or organism [6]. His work, which started
in the early 1950s, provides a theoretically supported
cybernetic model of organisation. The original model
identified five necessary and sufficient subsystems that
together maintain overall system viability. This was later
extended to a sixth subsystem as indicated in the
summary in Table 1 [22].

The table provides a brief general description of each
subsystem, together with a diagram to indicate how the
subsystems are related. Logically, the S1s, S3, S4 and S5
subsystems are structured in a hierarchy, connected by a
central ‘spine’ of communication channels passing from
the higher-level systems through to each of the S1
management elements. These provide high priority
communication facilities to determine resource
requirements, account for allocated resources, raise alerts
that a particular plan is failing and re-planning is
necessary, and disseminate “legal and corporate

requirements” or policies of the system [5, 7]. The VSM
is a recursive description, and, in particular, the S1
subsystems are also expected to be ‘viable’.

When describing an organisation, subsystems S2-S5
are perceived as management activities, implemented by
individuals in the organisation. For organisms, the lower
level subsystems S1-S3 are automatic but the others (S3*-
S5) can be influenced by higher-level brain functions.
Autonomic computing systems aspire to the level of
internal management of an organism while being
amenable to human monitoring and guidance.

In the VSM, the S1 subsystems are an exact match for
autonomic elements as they have an operational part
(managed component) overseen by a management part
(autonomic manager) [26]. In the autonomic operating
system example, the applications and operating system
services are all S1 subsystems. Each application,
therefore, is expected to have individual management
support, responsible for facilitating and monitoring the
desired behaviour of the application.

Coordination (S2) is needed in the operating system
when using shared resources such as disk memory, the
user screen, and the processor (or processors) of the
workstation. Control (S3) is exercised when functions
cannot be performed as required because of resource
shortage, such as the disk becoming full or main memory
exhausted. Control is also required when there is failure
in some part of the system, such as the unexpected
termination of an application or the loss of a network
connection.

The most obvious example of an audit (S3*) function
on a workstation is the periodic running of a virus
checker. Auditing can also be useful as an aid to cleaning
up files on disk storage and, at a management level, in
ensuring that there are appropriate licences to support the
applications on the workstation.

There is also a growing ‘intelligence’ (S4) in operating
systems in detecting environmental changes and reacting
to them. In particular, concerns over workstation security
have encouraged the development and use of automatic
updates for both the operating system and virus detection
software. In principle, these updates could be
implemented without human intervention but in practice
their installation often has to be initiated and overseen by
the user in case problems occur.

Operating systems embody some aspects of the policy
function (S5) as part of their basic design. Where they are
currently weak, however, is in making these policies
visible and in having a reasonably well developed ‘world
view’ of the environment in which they exist. For
example, in the case of reporting low toner on a printer,
as mentioned in the introduction, this situation would
typically be handled by reporting the problem to the
person using the printer rather than the technician
responsible for its maintenance, as the concept of local

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

technical support is not normally part of the design of a
personal workstation.

In terms of overall effectiveness, it seems highly
desirable to have some means of describing the context in
which the workstation is being used so that the operating

system can interact appropriately with that environment
and support the wider business function. The next section
describes Soft Systems Methodology, which appears to
have the potential to meet this need.

Table 1. The Major Subsystems of the Viable System Model

System Type Structure

System One (S1): Operations. S1s perform the productive operations of the system, with each
providing a distinct product or service. An S1 contains an operational element controlled by a
management process and is in contact with the operational environment.

System Two (S2): Coordination. S2s are concerned with coordinating the activities of S1 units.
They are essentially ‘anti-oscillatory’ in that they attempt to contain or minimize inter-S1
fluctuations. This is achieved by the provision of stabilizing, coordinating facilities such as
scheduling and standardisation information that is disseminated over all S1s, but tailored locally
to suit individual S1 needs.

System Three (S3): Control. Each S3 is concerned with the provision of cohesion and synergy to
a set of S1 units. The management processes contained within this system will be concerned with
short-term, immediate management issues, such as resource provision and strategic plan
production, where ‘strategic’ in this situation refers to planning with existing resources rather
than in the normally accepted sense.

System Three* (read as System Three Star): Audit. S3* provides facilities for the intermittent
audit of S1 progress and provides direct access to the physical operations of a particular S1
allowing immediate corroboration of that progress. This essentially provides additional data over
and above that provided by normal reporting procedures.

System Four (S4): Intelligence. S4 is concerned with planning the way ahead in the light of
external environmental changes and internal system capabilities. To this end, S4 ‘scans’ the
environment for trends that may be either beneficial or detrimental to the system and constructs
developmental organisational plans accordingly. To ensure that such plans are grounded in an
accurate appreciation of the current system, the intelligence function contains an up-to-date
model of system capability.

System Five (S5): Policy. S5 determines the overall purpose of the system i.e. defines the
activities that are performed by S1s. As such, S5 represents the policy-formulation or normative
planning function. Policy formulation is informed by a ‘world-view’ provided by S4 and
representing the current beliefs and assumptions held by the system about the environment and
models of current system capability, populated by data flowing from the lower level systems in
the organisation.

3. SSM and Autonomic Systems

Like VSM, Soft Systems Methodology (SSM) [12,
13, 24, 30, 31] has a long-standing, well-respected
pedigree in the systems community. It emerged from
work that began at the University of Lancaster (in the
UK) in the late 1960s and evolved through action
research up to 1990, when it reached its current stable
form [12, 24]. It is essentially a general systems
improvement technique that helps identify opportunities
for beneficial change by promoting a better
understanding of a ‘problem situation’ among system
stakeholders. This is achieved through the construction

of relevant system models. The models and the process
through which they are constructed promote discussion
and debate about possible improvements and lead to
recommendations for change. The approach is
applicable to any problem situation but its use in
information systems development has received
particular attention [27]. In this work, SSM has been
used as the first stage of analysis to provide context
information for subsequent development through the
models it creates. SSM seems particularly relevant to
autonomic systems development as its models can serve
as their environment description.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

Classically, SSM has been described as a seven-stage
process [12], as illustrated in Figure 2. There are five
stages associated with so-called ‘real world thinking’:
two of them for understanding and finding out about a
problem situation (1, 2), and the other three for deriving
change recommendations and taking action to improve
the problem situation (5-7). There are also two stages

(below the dotted line) concerned with ‘systems
thinking’ (3, 4), in which root definitions and
conceptual models are developed. Each root definition
provides a particular perspective of the system under
investigation. A conceptual model defines activities
necessary to implement the perspective given in a root
definition.

1. The problem
situation: unstructured

2. The problem
situation: expressed

3. Root definition of
relevant systems

4. Conceptual
models

5. Comparison
of 4 with 2

6. Definition of
feasible desirable

changes

7. Action to solve the
problem or improve

the situation

Real world thinking

Systems thinking

FINDING
OUT

TAKING
ACTION

BUILDING
MODELS

EVALUATING
MODELS

Figure 2: Seven-Stage Soft Systems Methodology Model

One broad perspective on workstations is that they
exist to facilitate business activities in the workplace,
through the provision of suitable hardware and software.
Another, more specific perspective, is that workstations
are there to facilitate communication with customers and
among staff, using e-mail, document production tools,
and support for audio visual presentations.

SSM root definitions are structured descriptions of
individual perspectives. In general, each root definition
identifies or implies six particular pieces of information,
as listed in Table 2.

Table 2: General Components of a Root Definition

Components Meaning
Customers The beneficiaries or victims of a

system
Actors The agents who carry out, or cause

to be carried out, the main activities
of the system

Transformation The process by which defined inputs
are transformed into defined outputs

Weltanschauung A viewpoint, framework, image or
purpose, which makes a particular
root definition meaningful

Owner Those who own a system (have the
power to close it down)

Environment Influences external to a system that
affect its operation

The ‘Weltanschauung’, or world-view, identifies
why a system exists, and the ‘transformation’ indicates

what the system does to achieve its purpose. These are
the two most important elements of the root definition
but their meaning is perhaps not obvious from the
general descriptions shown.

As an illustration of the form of the six components,
Table 3 gives possible descriptions for the ‘enabling
technology’ perspective on workstations. This applies to
some unnamed host organisation (owner), based on the
belief that computing technology facilitates business
activities (Weltanschauung). Technical and management
staff (actors) are responsible for providing a computing
service (transformation) to operational staff
(customers), with the constraints that the technology
should function as required and be cost effective
(environment).

Table 3: ‘Enabling Technology’ Root Definition

Components Meaning
Customers Operational staff
Actors Technical and management staff
Transformation Provide a computing service
Weltanschauung Computing technology facilitates

business activities
Owner Host organisation
Environment Technology should function as

required; technology must be cost
effective

A root definition is usually presented as a single
statement combining its six individual components. In
this case it might be:

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

A [host organisation] owned system, operated by
[technical and management staff], to [provide a
computing service] to [facilitate business activities]
of [operational staff], taking account of the need for
the [technology to function as required and be cost
effective].

Further root definitions can be produced in the same
way to describe other perspectives, such as the
communications viewpoint mentioned above.

Each root definition is expanded into a conceptual
model, defining the activities necessary for the system to
meet the purpose specified, and indicating relationships
among the activities involved. For example, Figure 3
shows a conceptual model based on the enabling
technology root definition described in Table 3. The
activities have been labelled for convenience.

The model includes the transformation taken directly
from the root definition (A1). This is essentially the
central activity of the model. Another important activity
is A2, which monitors that the defined Weltanschauung
(viewpoint) is achieved, taking control action if
necessary (TCA), which can affect any other activity in
the model. Activities are also added to handle the

environmental constraints listed in the root definition
(A3-A6) and to cover consequential or implied activities
(A7-A10).

Although conceptual models are largely informal—
in that the meaning of each activity identified is
described solely by the text displayed in the diagram,
and the linking arrows simply imply relationships
between activities with no accompanying labels or
explanations—they do provide a good basis for debate
about the meaning and implementation of activities
within a system. For example, in deciding that
computing facilities should be cost effective, this raises
the rather difficult issue of assessing the benefit of the
computing technology to the operation of the
organisation, which needs to be resolved. Conceptual
models can also provide a basis for further analysis
towards the development of specific implementations of
change, such as the creation or enhancement of
information systems [24, 26] or simply computing
systems [10]. They can also form the basis of other
types of model such as dataflow diagrams [8], process
models [9] and object models [10, 11, 28].

A2: monitor that the
computing service facilitates
business activities and take
control action as necessary

A8: install
new

computing
facilities

A10: withdraw
obsolete

technology

A7: be aware of
computing

technology in use

A4: maintain stock
of spare equipment,
parts and supplies

A9: procure
equipment, parts

and supplies

A5: be aware of
the cost of the

computing service

A3: maintain
technology

in use

A1: provide
a computing

service

A6: be aware of the
benefit of the

computing service

TCA

Figure 3: Conceptual Model for Enabling Technology Perspective of an Organisation

Conceptual models are hierarchical, allowing for the
possibility of each individual activity being expanded
into a full conceptual model in its own right. Such
expansion seems desirable, for example, to explain A1:
provide a computing service and A3: maintain
technology in use.

In relation to supporting the development of
autonomic systems, conceptual models offer a number
of advantages:

They clarify the role of the autonomic system in the
wider business context and so encourage the
development of a design that takes business
objectives into account. For example, knowing that
the system is meant to be ‘cost effective’, it would
be possible to keep a record of the use of individual
applications to compare against the cost of
providing those applications.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

Consideration of the wider context helps identify
opportunities for additional improvement. For
example, if application usage is tracked then it will
be possible to identify applications that are not used
and so can be withdrawn.
Analysis of conceptual models reveals the need for
computing support systems. For example, in the
operating system case, databases will be required to
keep track of equipment and spares. These then
form part of the environment for the autonomic
system and can be consulted in performing some of
the higher-level functions of the system. For
example, a database of licence agreements can be
referenced when auditing software use on a
particular workstation; similarly, details of the stock
of toner cartridges in the equipment database can be
monitored against printer usage to trigger a
replacement order or inform a decision to maintain
a higher stock level.

4. Evaluation

The preceding two sections have outlined the
principles of VSM and SSM and indicated how they
might be relevant to the design of autonomic systems. In
effect, these ideas have been presented as an
enhancement to some pre-existing, but unspecified,
design process. The implied steps are: (i) design
software as usual; (ii) validate and refine the design
using VSM; and (iii) extend and refine the design
through integration with an environment model
developed using SSM (in particular, this supports the
implementation of the ‘policy’ subsystem required by
VSM).

Although this enhanced design approach has merit,
there are some significant costs involved. The use of
VSM, however, is not expensive. Its checklist of six
activities (subsystems) necessary for viability is both
easy to understand and to remember so little effort is
required to become familiar with the approach. Using
the VSM concepts effectively, however, as in any
creative endeavour, still relies on the skill and
experience of the designer in being able to look
critically at a design and appreciate the requirements
and implications of the viable model with respect to that
design.

In effect, the VSM is a design pattern [17, 22, 23],
which can also influence the way that designs are
created as well as being used for validation. With
practice, this pattern will shape the thinking of the
designer so that he/she is likely to incorporate the viable
subsystems without conscious effort.

Using SSM as an add-on to an existing design
process is much more problematic. Firstly, significant
effort is required to understand the methodology to a

level where it can be applied effectively. This will
necessarily involve practical experience and not just
academic study. It is not difficult to produce models that
look plausible but again, like all design, achieving
relevant content that captures the situation adequately
requires aptitude and practice.

A second difficulty in using SSM at the end of the
design process is that there is likely to be a significant
mismatch between the system structure implied in the
SSM models and that developed by more traditional
means. In particular, SSM, through encouraging a
consideration of multiple perspectives of a situation—
separate from ‘real world’ constraints—yields models
that are often significantly different from the way an
organisation is currently structured. In that respect, it
provides good support for business process
reengineering. Unfortunately, that also means a likely
mismatch with any design that reflects the current
organisational structure, and a consequential difficulty
in linking the SSM derived environment model to that
structure.

A third difficulty is that SSM studies can take a
significant amount of time to complete. Examples in the
literature often suggest an analysis time of months [25]
and certainly it seems unlikely that useful models can be
produced in anything less than a few weeks even if the
analyst already has some understanding of the problem
situation.

The only reasonable conclusion that can be drawn
from this evaluation is that SSM is not a practical way
of adding an environment description to an existing
autonomic design. Even if the cost of developing
expertise in the methodology is ignored, and time is
available to carry out a particular SSM study, the
significant refactoring needed to integrate the SSM and
separately created design models is unlikely to be
acceptable.

Despite this bleak assessment, all is not lost, but to
gain the desired benefit from SSM its use must begin
earlier in the design process. In particular, it needs to be
used as the first stage of systems analysis to avoid any
design conflicts. Fortunately, this is not an unreasonable
suggestion. Indeed, it is simply a particular
implementation of the top-down approach to systems
analysis recommended by Ackoff, another highly
regarded systems theorist and practitioner. Specifically,
Ackoff identifies three stages of analysis, as follows [2]:

Identify a containing whole (system) of which the
thing to be explained is a part
Explain the behaviour or properties of the
containing whole
Then explain the behaviour or properties of the
thing to be explained in terms of its role(s) or
function(s) within its containing whole

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

The “thing to be explained” in this case is the
autonomic system and the “containing whole” is its
environment. There has been considerable positive
experience reported in using SSM as the first stage in
the analysis of information and computing systems [10,
27] so SSM appears to provide a good basis for
autonomic system development if the top-down strategy
is acceptable.

An overall design process using both SSM and VSM
is summarised in Figure 4.

Environment
Design 1

SSM

Environment
Design 2

VSM

Autonomic
Design 1

SSM +

ODT

Autonomic
Design 2

VSM

Figure 4 A Systems-Oriented Autonomic Design
Process

This is a four-stage process. In stage 1 an
environment design (system model) is developed using
SSM. This is then refined using VSM to ensure that the
viable requirements are covered adequately. At this
point the context for the autonomic computing system
will have been defined. The SSM models can then be
taken down to a lower level to describe the autonomic
system, coupled with other computing-oriented
modelling techniques such as UML (ODT) to produce
the autonomic system design. Again this design can be
tuned by evaluating it with respect to VSM in the fourth
and final stage.

5. Conclusions

This paper has examined the potential benefit of
using well-established general systems ideas in the
design process for autonomic systems. It first considered
the possibility of simply extending existing design
approaches with further systems analysis to enhance the
structure of designs produced traditionally.

One conclusion is that Beer’s Viable Systems Model
(VSM) seems to be a useful aid to ensuring that there
are adequate management controls within a design.
Specifically, it can be used to assess autonomic designs
to ensure that they have elements for ensuring system

viability from broad policy-setting down to the
monitoring and control of individual activities. It is
relatively easy to appreciate the essential concepts
involved in VSM and to use them as a checklist in
validating designs; thus, the cost-benefit balance seems
satisfactory. If VSM is used in this way it is expected
that designers will progressively absorb the implied
design pattern for viable systems and use it naturally
(subconsciously) in their normal design process.

Similarly, Checkland’s Soft Systems Methodology
(SSM) was considered as a way of adding an
environmental model to an autonomic system design. It
was concluded that while it was possible to develop the
required environment description this way the cost of
integrating it with an existing system design is
unacceptable. Instead, it was proposed that SSM be used
as the first stage of design and so influence the complete
design process. In the past, this has been recommended
for the design of computing system, in general [10], and
corresponds to a general top-down approach to systems
analysis. It will be important to find ways of minimising
the cost of performing this wider analysis to ensure
general acceptability of the approach for autonomic
systems.

The conclusions drawn seem plausible in that the
individual techniques described have been used
successfully in general systems areas. Nevertheless, the
authors recognize the importance of looking specifically
at autonomic computing systems to bring out any
specific issues involved and to add confidence to the
conclusions drawn. It is therefore planned to run a
number of experiments of different sizes to further
explore the systems-oriented design process proposed.

As recognised by others working in the autonomic
field [32], the role of design patterns is likely to be of
growing importance. Patterns are relevant at the
environment level as well as within the autonomic
system. Herring and Kaplan have proposed a viable
systems architecture based on VSM, which may provide
the best fit for the systems-oriented process proposed
here.

In general, further work is needed to harness and
improve the usability of VSM and SSM to validate a
design but, overall, the general systems ideas seem to
have substantial potential for providing a framework for
autonomic system design and development.

Acknowledgements

This work was undertaken through the Centre for
Software Process Technologies, which is supported by
the EU Programme for Peace and Reconciliation in
Northern Ireland and the Border Region of Ireland
(PEACE II). Further support for the work has been
provided by the EPSRC project “Towards a Disciplined

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

Approach to Integrating Decision-Support Systems for
Breast Cancer Care Activities” (GR/R86782/01).

References

[1] Ackoff, R.L., Towards a System of Systems Concepts, in
Systems Analysis Techniques, J.D. Couger and R.W.
Knapp, Editors, John Wiley & Sons, Chichester. pp. 27-
38, 1974.

[2] Ackoff, R.L., Creating the Corporate Future, John
Wiley & Sons, Chichester, 1981.

[3] Bantz, D.F., et al., Autonomic personal computing, IBM
Systems Journal, Vol. 42, No. 1, pp. 165-176, 2003.

[4] Beer, S., The Heart of the Enterprise, John Wiley &
Sons, Chichester, 1979.

[5] Beer, S., Brain of the Firm, 2nd ed, John Wiley & Sons,
Chichester, 1981.

[6] Beer, S., The Viable System Model: Its Provenance,
Development, Methodology and Pathology, Journal of
the Operational Research Society, Vol. 35, pp. 7-26,
1984.

[7] Beer, S., Diagnosing the System for Organizations, John
Wiley & Sons, Chichester, 1985.

[8] Bustard, D.W., Oakes, R. and E. Heslin, Support for the
Integrated Use of Conceptual and Dataflow Models in
Requirements Specification, Colloquium on
Requirements for Software Intensive Systems, pp. 37-44,
DRA Malvern, 1993.

[9] Bustard, D.W. and P.J. Lundy, Enhancing Soft Systems
Analysis with Formal Modelling, IEEE Requirements
Engineering Symposium (RE'95), York, pp. 164-171,
1995.

[10] Bustard, D.W., Dobbin T.J. and B. Carey, Integrating
Soft Systems and Object Oriented Analysis, IEEE
International Conference on Requirements Engineering,
Colorado Springs, USA, pp. 52-59, 1996.

[11] Bustard, D.W., He, Z., and F.G. Wilkie, Linking Soft
Systems and Use-Case Modelling Through Scenarios,
Interacting with Computers, 13, pp. 97-110, 2000.

[12] Checkland, P., Systems Thinking, Systems Practice (with
30-year retrospective), John Wiley & Sons, Chichester,
1999.

[13] Checkland, P. and G. Scholes, Soft Systems Methodology
in Action, John Wiley & Sons, Chichester, 1990.

[14] Cheng, S-W, et al., Rainbow: Architecture-Based Self-
Adaptation with Reusable Infrastructure, IEEE
International Conference on Autonomic Computing
(ICAC'04), New York, pp. 276-277, 2004.

[15] Ganek, A.G. and T.A. Corbi, The dawning of the
autonomic computing era, IBM Systems Journal, Vol.
42, No. 1, pp. 5-18, 2003.

[16] Gracanin, D., Bohner, S.A. and M. Hinchey, Towards a
Model-Driven Architecture for Autonomic Systems,
IEEE ECBS 2004, pp. 500-505, 2004

[17] Herring, C. and S. Kaplan, The Viable Systems
Architecture, HICSS, Hawaii, 2001.

[18] Herring, C., Viable Software: The Intelligent Control
Paradigm for Adaptable and Adaptive Architecture, PhD
Thesis, University of Queensland, Brisbane, Australia,
2002

[19] Horn, P., Autonomic computing: IBM perspective on the
state of information technology, in AGENDA 2001,
Scotsdale, AR., 2001.

[20] IBM, alphaworks Autonomic Computing site,
http://www.alphaworks.ibm.com/autonomic,

[21] Jackson, M., Software Requirements & Specifications: A
Lexicon of Software Practice, Principles and Prejudices,
Addison-Wesley, 1995.

[22] Laws, A.G., et al., From Wetware to Software: A
Cybernetic Perspective of Self-Adaptive Software, in
Self-Adaptive Software: Applications, Second
International Workshop on Self-Adaptive Software, R.
Laddaga, P. Robertson, and H. Shrobe, Editors, Springer-
Verlag: Berlin, 2003.

[23] Laws, A.G., A. Taleb-Bendiab, and S.J. Wade, Towards a
Viable Reference Architecture for Multi-Agent
Supported Holonic Manufacturing Systems, Journal of
Applied Systems Studies, Vol. 2, No. 1, 2001.

[24] Mingers, J., An Idea Ahead of its Time: The History and
Development of Soft Systems Methodology Systemist,
Vol. 24, No. 2, pp. 113-139, 2002.

[25] Mingers, J. and S. Taylor, The Use of Soft Systems
methodology in Practice, Journal of Operational
Research, Vol. 43, No. 4, pp.321-332, 1992.

[26] Sterritt, R. and D.W. Bustard, Towards an Autonomic
Computing Environment, in 1st International Workshop
on Autonomic Computing Systems at 14th International
Conference on Database and Expert Systems
Applications (DEXA'2003), Prague, Czech Republic,
2003.

[27] Stowell, F.A. (ed.), Information Systems Provision: The
Contributions of SSM, McGraw-Hill, London, 1995.

[28] Guo, M., Wu, Z. and F.A. Stowell, Information Systems
Specifications Within the Framework of Client-Led
Design, in Systems Modelling for Business Process
Improvement, Bustard, D.W., Kawalek, P., and M.T.
Norris, Editors, Artech House, pp. 199-212, 2000.

[29] White, S.R., An Architectural Approach to Autonomic
Computing, IEEE International Conference on
Autonomic Computing (ICAC'04), New York, pp. 2-9,
2004.

[30] Wilson, B., Systems: Concepts, Methodologies and
Applications, 2nd ed, John Wiley & Sons, Chichester,
1990.

[31] Wilson, B., Soft Systems Methodology: Conceptual
Model Building and Its Contribution, John Wiley &
Sons, Chichester, 2001.

[32] Shackleton, M. Saffre, F., et al. “Autonomic Computing
for Pervasive ICT – a whole-system perspective”, BT
Technology Journal, Vol. 22, No. 3, July 2004.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

