393 research outputs found
The Remarkable Mid-Infrared Jet of Massive Young Stellar Object G35.20-0.74
The young massive stellar object G35.20-0.74 was observed in the mid-infrared
using T-ReCS on Gemini South. Previous observations have shown that the near
infrared emission has a fan-like morphology that is consistent with emission
from the northern lobe of a bipolar radio jet known to be associated with this
source. Mid-infrared observations presented in this paper show a monopolar
jet-like morphology as well, and it is argued that the mid-infrared emission
observed is dominated by thermal continuum emission from dust. The mid-infrared
emission nearest the central stellar source is believed to be directly heated
dust on the walls of the outflow cavity. The hydroxyl, water, and methanol
masers associated with G35.20-0.74 are spatially located along these
mid-infrared cavity walls. Narrow jet or outflow cavities such as this may also
be the locations of the linear distribution of methanol masers that are found
associated with massive young stellar objects. The fact that G35.20-0.74 has
mid-infrared emission that is dominated by the outflow, rather than disk
emission, is a caution to those that consider mid-infrared emission from young
stellar objects as only coming from circumstellar disks.Comment: Accepted for publication in ApJ Letters; 4 pages; 2 figures; a
version with full resolution images is available here:
http://www.ctio.noao.edu/~debuizer
Trigonometric Parallaxes of Massive Star Forming Regions: IV. G35.20-0.74 and G35.20-1.74
We report trigonometric parallaxes for the high-mass star forming regions
G35.20-0.74 and G35.20-1.74, corresponding to distances of 2.19 (+0.24 -0.20)
kpc and 3.27 (+0.56 -0.42) kpc, respectively. The distances to both sources are
close to their near kinematic distances and place them in the
Carina-Sagittarius spiral arm. Combining the distances and proper motions with
observed radial velocities gives the locations and full space motions of the
star forming regions. Assuming a standard model of the Galaxy, G35.20-0.74 and
G35.20-1.74 have peculiar motions of ~13 km/s and ~16 km/s counter to Galactic
rotation and ~9 km/s toward the North Galactic Pole.Comment: 16 pages, 8 figure
A sub-arcsecond study of the hot molecular core in G023.01-00.41
(Abridged) METHODS: We performed SMA observations at 1.3 mm with both the
most extended and compact array configurations, providing sub-arcsecond and
high sensitivity maps of various molecular lines, including both hot-core and
outflow tracers. We also reconstruct the spectral energy distribution of the
region from millimeter to near infrared wavelengths, using the Herschel/Hi-GAL
maps, as well as archival data. RESULTS: From the spectral energy distribution,
we derive a bolometric luminosity of about 4x10^4 Lsun. Our interferometric
observations reveal that the distribution of dense gas and dust in the HMC is
significantly flattened and extends up to a radius of 8000 AU from the center
of radio continuum and maser emission in the region. The equatorial plane of
this HMC is strictly perpendicular to the elongation of the collimated bipolar
outflow, as imaged on scales of about 0.1-0.5 pc in the main CO isotopomers as
well as in the SiO(5-4) line. In the innermost HMC regions (ca. 1000 AU), the
velocity field traced by the CH3CN(12_K-11_K) line emission shows that
molecular gas is both expanding along the outflow direction following a
Hubble-law, and rotating about the outflow axis, in agreement with the (3-D)
velocity field traced by methanol masers. The velocity field associated with
rotation indicates a dynamical mass of 19 Msun at the center of the core. The
latter is likely to be concentrated in a single O9.5 ZAMS star, consistent with
the estimated bolometric luminosity of G023.01-00.41. The physical properties
of the CO(2-1) outflow emission, such as its momentum rate 6x10^-3 Msun km/s
/yr and its outflow rate 2x10^-4 Msun/yr, support our estimates of the
luminosity (and mass) of the embedded young stellar object.Comment: 24 pages, 11 figures, 6 tables, accepted by Astronomy & Astrophysic
VLA observations of water masers towards 6.7 GHz methanol maser sources
22 GHz water and 6.7 GHz methanol masers are usually thought as signposts of
early stages of high-mass star formation but little is known about their
associations and the physical environments they occur in.
The aim was to obtain accurate positions and morphologies of the water maser
emission and relate them to the methanol maser emission recently mapped with
Very Long Baseline Interferometry. A sample of 31 methanol maser sources was
searched for 22 GHz water masers using the VLA and observed in the 6.7 GHz
methanol maser line with the 32 m Torun dish simultaneously. Water maser
clusters were detected towards 27 sites finding 15 new sources. The detection
rate of water maser emission associated with methanol sources was as high as
71%. In a large number of objects (18/21) the structure of water maser is well
aligned with that of the extended emission at 4.5 m confirming the origin
of water emission from outflows. The sources with methanol emission with
ring-like morphologies, which likely trace a circumstellar disk/torus, either
do not show associated water masers or the distribution of water maser spots is
orthogonal to the major axis of the ring. The two maser species are generally
powered by the same high-mass young stellar object but probe different parts of
its environment. The morphology of water and methanol maser emission in a
minority of sources is consistent with a scenario that 6.7 GHz methanol masers
trace a disc/torus around a protostar while the associated 22 GHz water masers
arise in outflows. The majority of sources in which methanol maser emission is
associated with the water maser appears to trace outflows. The two types of
associations might be related to different evolutionary phases.Comment: accepted by Astronomy & Astrophysic
Trigonometric Parallaxes of Massive Star Forming Regions: II. Cep A & NGC 7538
We report trigonometric parallaxes for the sources NGC 7538 and Cep A,
corresponding to distances of 2.65 [+0.12/-0.11] kpc and 0.70 [+0.04/-0.04]
kpc, respectively. The distance to NGC 7538 is considerably smaller than its
kinematic distance and places it in the Perseus spiral arm. The distance to Cep
A is also smaller than its kinematic distance and places it in the Local arm or
spur. Combining the distance and proper motions with observed radial velocities
gives the location and full space motion of the star forming regions. We find
significant deviations from circular Galactic orbits for these sources: both
sources show large peculiar motions (> 10 km/s) counter to Galactic rotation
and NGC 7538 has a comparable peculiar motion toward the Galactic center.Comment: 21 pages, 8 figures; to appear in the Astrophysical Journa
VLBI study of maser kinematics in high-mass SFRs. I. G16.59-0.05
The present paper focuses on the high-mass star-forming region G16.59-0.05.
Methods: Using the VLBA and the EVN arrays, we conducted phase-referenced
observations of the three most powerful maser species in G16.59-0.05: H2O at
22.2 GHz (4 epochs), CH3OH at 6.7 GHz (3 epochs), and OH at 1.665 GHz (1
epoch). In addition, we performed high-resolution (> 0".1), high-sensitivity (<
0.1 mJy) VLA observations of the radio continuum emission from the star-forming
region at 1.3 and 3.6 cm. Results: This is the first work to report accurate
measurements of the "relative" proper motions of the 6.7 GHz CH3OH masers. The
different spatial and 3-D velocity distribution clearly indicate that the 22
GHz water and 6.7 GHz methanol masers are tracing different kinematic
environments. The bipolar distribution of 6.7 GHz maser l.o.s. velocities and
the regular pattern of observed proper motions suggest that these masers are
tracing rotation around a central mass of about 35 solar masses. The flattened
spatial distribution of the 6.7 GHz masers, oriented NW-SE, suggests that they
can originate in a disk/toroid rotating around the massive YSO which drives the
12CO(2-1) outflow, oriented NE-SW, observed on arcsec scale. The extended,
radio continuum source observed close to the 6.7 GHz masers could be excited by
a wide-angle wind emitted from the YSO associated with the methanol masers, and
such a wind is proven to be sufficiently energetic to drive the NE-SW 12CO(2-1)
outflow. The H2O masers distribute across a region offset about 0".5 to the NW
of the CH3OH masers, in the same area where emission of high-density molecular
tracers, typical of HMCs, was detected. We postulate that a distinct YSO,
possibly in an earlier evolutionary phase than that exciting the methanol
masers, is responsible for the excitation of the water masers and the HMC
molecular lines. (Abridged)Comment: 20 pages, 8 figures, 3 tables, accepted by Astronomy and Astrophysic
Born Again Protoplanetary Disk Around Mira B
The Mira AB system is a nearby (~107 pc) example of a wind accreting binary
star system. In this class of system, the wind from a mass-losing red giant
star (Mira A) is accreted onto a companion (Mira B), as indicated by an
accretion shock signature in spectra at ultraviolet and X-ray wavelengths.
Using novel imaging techniques, we report the detection of emission at
mid-infrared wavelengths between 9.7 and 18.3 m from the vicinity of Mira
B but with a peak at a radial position about 10 AU closer to the primary Mira
A. We interpret the mid-infrared emission as the edge of an optically-thick
accretion disk heated by Mira A. The discovery of this new class of accretion
disk fed by M-giant mass loss implies a potential population of young planetary
systems in white-dwarf binaries which has been little explored, despite being
relatively common in the solar neighborhood.Comment: Accepted for Ap
Hot high-mass accretion disk candidates
To better understand the physical properties of accretion disks in high-mass
star formation, we present a study of a 12 high-mass accretion disk candidates
observed at high spatial resolution with the Australia Telescope Compact Array
(ATCA) in the NH3 (4,4) and (5,5) lines. Almost all sources were detected in
NH3, directly associated with CH3OH Class II maser emission. From the remaining
eleven sources, six show clear signatures of rotation and/or infall motions.
These signatures vary from velocity gradients perpendicular to the outflows, to
infall signatures in absorption against ultracompact HII regions, to more
spherical infall signatures in emission. Although our spatial resolution is
~1000AU, we do not find clear Keplerian signatures in any of the sources.
Furthermore, we also do not find flattened structures. In contrast to this, in
several of the sources with rotational signatures, the spatial structure is
approximately spherical with sizes exceeding 10^4 AU, showing considerable
clumpy sub-structure at even smaller scales. This implies that on average
typical Keplerian accretion disks -- if they exist as expected -- should be
confined to regions usually smaller than 1000AU. It is likely that these disks
are fed by the larger-scale rotating envelope structure we observe here.
Furthermore, we do detect 1.25cm continuum emission in most fields of view.Comment: 21 pages, 32 figures, accepted for ApJS. A high-resolution version
can be found at http://www.mpia.de/homes/beuther/papers.htm
First science results from SOFIA/FORCAST: The mid-infrared view of the compact HII region W3A
The massive star forming region W3 was observed with the faint object
infrared camera for the SOFIA telescope (FORCAST) as part of the Short Science
program. The 6.4, 6.6, 7.7, 19.7, 24.2, 31.5 and 37.1 \um bandpasses were used
to observe the emission of Polycyclic Aromatic Hydrocarbon (PAH) molecules,
Very Small Grains and Big Grains. Optical depth and color temperature maps of
W3A show that IRS2 has blown a bubble devoid of gas and dust of 0.05 pc
radius. It is embedded in a dusty shell of ionized gas that contributes 40% of
the total 24 \um emission of W3A. This dust component is mostly heated by far
ultraviolet, rather than trapped Ly photons. This shell is itself
surrounded by a thin (0.01 pc) photodissociation region where PAHs show
intense emission. The infrared spectral energy distribution (SED) of three
different zones located at 8, 20 and 25\arcsec from IRS2, show that the peak of
the SED shifts towards longer wavelengths, when moving away from the star.
Adopting the stellar radiation field for these three positions, DUSTEM model
fits to these SEDs yield a dust-to-gas mass ratio in the ionized gas similar to
that in the diffuse ISM. However, the ratio of the IR-to-UV opacity of the dust
in the ionized shell is increased by a factor 3 compared to the diffuse
ISM.Comment: Accepted for publication in ApJ letters; 13 pages, 3 figures 1 tabl
- …
