3,342 research outputs found

    Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics.

    Get PDF
    Protrusions are deformations that form at the surface of living cells during biological activities such as cell migration. Using combined optical tweezers and fluorescent microscopy, we quantified the mechanical properties of protrusions in adherent human embryonic kidney cells in response to application of an external force at the cell surface. The mechanical properties of protrusions were analyzed by obtaining the associated force-length plots during protrusion formation, and force relaxation at constant length. Protrusion mechanics were interpretable by a standard linear solid (Kelvin) model, consisting of two stiffness parameters, k0 and k1 (with k0>k1), and a viscous coefficient. While both stiffness parameters contribute to the time-dependant mechanical behavior of the protrusions, k0 and k1 in particular dominated the early and late stages of the protrusion formation and elongation process, respectively. Lowering the membrane cholesterol content by 25% increased the k0 stiffness by 74%, and shortened the protrusion length by almost half. Enhancement of membrane cholesterol content by nearly two-fold increased the protrusion length by 30%, and decreased the k0 stiffness by nearly two-and-half-fold as compared with control cells. Cytoskeleton integrity was found to make a major contribution to protrusion mechanics as evidenced by the effects of F-actin disruption on the resulting mechanical parameters. Viscoelastic behavior of protrusions was further characterized by hysteresis and force relaxation after formation. The results of this study elucidate the coordination of plasma membrane composition and cytoskeleton during protrusion formation

    The Eucharistic Image as a Symbol of the Downfall of Modern Man

    Get PDF
    The Eucharistic Image as a Symbol of the Downfall of Modern Ma

    Religious Syncretism in Contemporary Brazilian Theatre

    Get PDF
    Religious Syncretism in Contemporary Brazilian Theatr

    Lowest Order Constrained Variational Calculation of the Polarized Nuclear Matter with the Modern AV18AV_{18} Potential

    Full text link
    The lowest order constrained variational method is applied to calculate the polarized symmetrical nuclear matter properties with the modern AV18AV_{18} potential performing microscopic calculations. Results based on the consideration of magnetic properties show no sign of phase transition to a ferromagnetic phase.Comment: 19 pages, 6 figure

    Detectability of dissipative motion in quantum vacuum via superradiance

    Get PDF
    We propose an experiment for generating and detecting vacuum-induced dissipative motion. A high frequency mechanical resonator driven in resonance is expected to dissipate energy in quantum vacuum via photon emission. The photons are stored in a high quality electromagnetic cavity and detected through their interaction with ultracold alkali-metal atoms prepared in an inverted population of hyperfine states. Superradiant amplification of the generated photons results in a detectable radio-frequency signal temporally distinguishable from the expected background.Comment: 4 pages, 2 figure

    The Protective and Therapeutic Function of Small Heat Shock Proteins in Neurological Diseases

    Get PDF
    Historically, small heat shock proteins (sHSPs) have been extensively studied in the context of being intracellular molecular chaperones. However, recent studies looking at the role of sHSPs in neurological diseases have demonstrated a near universal upregulation of certain sHSPs in damaged and diseased brains. Initially, it was thought that sHSPs are pathological in these disease states because they are found in the areas of damage. However, transgenic overexpression and exogenous administration of sHSPs in various experimental disease paradigms have shown just the contrary – that sHSPs are protective, not pathological. This review examines sHSPs in neurological diseases and highlights the potential for using these neuroprotective sHSPs as novel therapeutics. It first addresses the endogenous expression of sHSPs in a variety of neurological disorders. Although many studies have examined the expression of sHSPs in neurological diseases, there are no review articles summarizing these data. Furthermore, it focuses on recent studies that have investigated the therapeutic potential of sHSPs for neurological diseases. Finally, it will explain what we think is the function of endogenous sHSPs in neurological diseases

    Spatio-temporal patterns of beaked whale echolocation signals in the North Pacific.

    Get PDF
    At least ten species of beaked whales inhabit the North Pacific, but little is known about their abundance, ecology, and behavior, as they are elusive and difficult to distinguish visually at sea. Six of these species produce known species-specific frequency modulated (FM) echolocation pulses: Baird's, Blainville's, Cuvier's, Deraniyagala's, Longman's, and Stejneger's beaked whales. Additionally, one described FM pulse (BWC) from Cross Seamount, Hawai'i, and three unknown FM pulse types (BW40, BW43, BW70) have been identified from almost 11 cumulative years of autonomous recordings at 24 sites throughout the North Pacific. Most sites had a dominant FM pulse type with other types being either absent or limited. There was not a strong seasonal influence on the occurrence of these signals at any site, but longer time series may reveal smaller, consistent fluctuations. Only the species producing BWC signals, detected throughout the Pacific Islands region, consistently showed a diel cycle with nocturnal foraging. By comparing stranding and sighting information with acoustic findings, we hypothesize that BWC signals are produced by ginkgo-toothed beaked whales. BW43 signal encounters were restricted to Southern California and may be produced by Perrin's beaked whale, known only from Californian waters. BW70 signals were detected in the southern Gulf of California, which is prime habitat for Pygmy beaked whales. Hubb's beaked whale may have produced the BW40 signals encountered off central and southern California; however, these signals were also recorded off Pearl and Hermes Reef and Wake Atoll, which are well south of their known range

    Polarized Neutron Matter: A Lowest Order Constrained Variational Approach

    Full text link
    In this paper, we calculate some of the polarized neutron matter properties, using the lowest order constrained variational method with the AV18AV_{18} potential and employing a microscopic point of view. A comparison is also made between our results and those of other many-body techniques.Comment: 23 pages, 8 figure

    Spin polarized neutron matter within the Dirac-Brueckner-Hartree-Fock approach

    Get PDF
    The relation between energy and density (known as the nuclear equation of state) plays a major role in a variety of nuclear and astrophysical systems. Spin and isospin asymmetries can have a dramatic impact on the equation of state and possibly alter its stability conditions. An example is the possible manifestation of ferromagnetic instabilities, which would indicate the existence, at a certain density, of a spin-polarized state with lower energy than the unpolarized one. This issue is being discussed extensively in the literature and the conclusions are presently very model dependent. We will report and discuss our recent progress in the study of spin-polarized neutron matter. The approach we take is microscopic and relativistic. The calculated neutron matter properties are derived from realistic nucleon-nucleon interactions. This makes it possible to understand the nature of the EOS properties in terms of specific features of the nuclear force model.Comment: 6 pages, 11 figures, revised/extended calculation
    corecore