We propose an experiment for generating and detecting vacuum-induced
dissipative motion. A high frequency mechanical resonator driven in resonance
is expected to dissipate energy in quantum vacuum via photon emission. The
photons are stored in a high quality electromagnetic cavity and detected
through their interaction with ultracold alkali-metal atoms prepared in an
inverted population of hyperfine states. Superradiant amplification of the
generated photons results in a detectable radio-frequency signal temporally
distinguishable from the expected background.Comment: 4 pages, 2 figure