612 research outputs found

    Highly restricted localization of RNA polymerase II within a locus control region of a tissue-specific chromatin domain

    Get PDF
    RNA polymerase II (Pol II) can associate with regulatory elements far from promoters. For the murine β-globin locus, Pol II binds the β-globin locus control region (LCR) far upstream of the β-globin promoters, independent of recruitment to and activation of the βmajor promoter. We describe here an analysis of where Pol II resides within the LCR, how it is recruited to the LCR, and the functional consequences of recruitment. High-resolution analysis of the distribution of Pol II revealed that Pol II binding within the LCR is restricted to the hypersensitive sites. Blocking elongation eliminated the synthesis of genic and extragenic transcripts and eliminated Pol II from the βmajor open reading frame. However, the elongation blockade did not redistribute Pol II at the hypersensitive sites, suggesting that Pol II is recruited to these sites. The distribution of Pol II did not strictly correlate with the distributions of histone acetylation and methylation. As Pol II associates with histone-modifying enzymes, Pol II tracking might be critical for establishing and maintaining broad histone modification patterns. However, blocking elongation did not disrupt the histone modification pattern of the β-globin locus, indicating that Pol II tracking is not required to maintain the pattern

    Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning

    Full text link
    Diabetic eye disease is one of the fastest growing causes of preventable blindness. With the advent of anti-VEGF (vascular endothelial growth factor) therapies, it has become increasingly important to detect center-involved diabetic macular edema (ci-DME). However, center-involved diabetic macular edema is diagnosed using optical coherence tomography (OCT), which is not generally available at screening sites because of cost and workflow constraints. Instead, screening programs rely on the detection of hard exudates in color fundus photographs as a proxy for DME, often resulting in high false positive or false negative calls. To improve the accuracy of DME screening, we trained a deep learning model to use color fundus photographs to predict ci-DME. Our model had an ROC-AUC of 0.89 (95% CI: 0.87-0.91), which corresponds to a sensitivity of 85% at a specificity of 80%. In comparison, three retinal specialists had similar sensitivities (82-85%), but only half the specificity (45-50%, p<0.001 for each comparison with model). The positive predictive value (PPV) of the model was 61% (95% CI: 56-66%), approximately double the 36-38% by the retinal specialists. In addition to predicting ci-DME, our model was able to detect the presence of intraretinal fluid with an AUC of 0.81 (95% CI: 0.81-0.86) and subretinal fluid with an AUC of 0.88 (95% CI: 0.85-0.91). The ability of deep learning algorithms to make clinically relevant predictions that generally require sophisticated 3D-imaging equipment from simple 2D images has broad relevance to many other applications in medical imaging

    Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning

    Get PDF
    Center-involved diabetic macular edema (ci-DME) is a major cause of vision loss. Although the gold standard for diagnosis involves 3D imaging, 2D imaging by fundus photography is usually used in screening settings, resulting in high false-positive and false-negative calls. To address this, we train a deep learning model to predict ci-DME from fundus photographs, with an ROC–AUC of 0.89 (95% CI: 0.87–0.91), corresponding to 85% sensitivity at 80% specificity. In comparison, retinal specialists have similar sensitivities (82–85%), but only half the specificity (45–50%, p < 0.001). Our model can also detect the presence of intraretinal fluid (AUC: 0.81; 95% CI: 0.81–0.86) and subretinal fluid (AUC 0.88; 95% CI: 0.85–0.91). Using deep learning to make predictions via simple 2D images without sophisticated 3D-imaging equipment and with better than specialist performance, has broad relevance to many other applications in medical imaging

    An antiangiogenic neurokinin-B/thromboxane A2 regulatory axis

    Get PDF
    Establishment of angiogenic circuits that orchestrate blood vessel development and remodeling requires an exquisite balance between the activities of pro- and antiangiogenic factors. However, the logic that permits complex signal integration by vascular endothelium is poorly understood. We demonstrate that a “neuropeptide,” neurokinin-B (NK-B), reversibly inhibits endothelial cell vascular network assembly and opposes angiogenesis in the chicken chorioallantoic membrane. Disruption of endogenous NK-B signaling promoted angiogenesis. Mechanistic analyses defined a multicomponent pathway in which NK-B signaling converges upon cellular processes essential for angiogenesis. NK-B−mediated ablation of Ca2+ oscillations and elevation of 3′–5′ cyclic adenosine monophosphate (cAMP) reduced cellular proliferation, migration, and vascular endothelial growth factor receptor expression and induced the antiangiogenic protein calreticulin. Whereas NK-B initiated certain responses, other activities required additional stimuli that increase cAMP. Although NK-B is a neurotransmitter/ neuromodulator and NK-B overexpression characterizes the pregnancy-associated disorder preeclampsia, NK-B had not been linked to vascular remodeling. These results establish a conserved mechanism in which NK-B instigates multiple activities that collectively oppose vascular remodeling

    The effect of posterior subtenon methylprednisolone acetate in the refractory diabetic macular edema: a prospective nonrandomized interventional case series

    Get PDF
    BACKGROUND: To investigate the efficacy of posterior subtenon methylprednisolone acetate injection in treatment of refractory diffuse clinically significant diabetic macular edema (CSME). METHODS: In a prospective, nonrandomized, interventional case series, 52 eyes were diagnosed with CSME and treated with at least two sessions of laser photocoagulation according to Early Treatment Diabetic Retinopathy Study guidelines. At least 3 months after laser therapy, eyes with a residual central macular thickness were offered posterior subtenon injection of 40 mg methylprednisolone acetate. Main outcome measures were visual acuity, macular thickness and intraocular pressure. Potential complications were monitored, including intraocular pressure response, cataract progression and scleral perforation. RESULTS: Mean baseline visual acuity (in logMAR) improved significantly (p = 0.003) from 0.8 ± 0.36 to 0.6 ± 0.41 at 3 months. Mean foveal thickness decreased from 388 ± 78 μm at baseline to 231 ± 40 μm after 3 months (p < 0.0001). Visual acuity improvement in eyes with CSME with extrafoveal hard exudates was significant (p = 0.0001), but not significant in eyes with CSME with subfoveal hard exudates (p = 0.32). Intraocular pressure increased from 14.7 ± 2.0 mmHg (range, 12–18 mmHg) to a maximum value of 15.9 ± 2.1 mmHg (range, 12–20 mmHg) during the follow-up period. Complications in two eyes developed focal conjunctival necrosis at the site of injection. CONCLUSION: Posterior subtenon methylprednisolone acetate may improve early visual outcome in diffuse diabetic macular edema that fails to respond to conventional laser photocoagulation. Visual acuity improvement in eyes with CSME with extrafoveal hard exudates was significant; and this improvement is depends on location of hard exudates. Further study is needed to assess the long-term efficacy, safety, and retreatment

    GATA2 Promotes Hematopoietic Development and Represses Cardiac Differentiation of Human Mesoderm.

    Get PDF
    In vertebrates, GATA2 is a master regulator of hematopoiesis and is expressed throughout embryo development and in adult life. Although the essential role of GATA2 in mouse hematopoiesis is well established, its involvement during early human hematopoietic development is not clear. By combining time-controlled overexpression of GATA2 with genetic knockout experiments, we found that GATA2, at the mesoderm specification stage, promotes the generation of hemogenic endothelial progenitors and their further differentiation to hematopoietic progenitor cells, and negatively regulates cardiac differentiation. Surprisingly, genome-wide transcriptional and chromatin immunoprecipitation analysis showed that GATA2 bound to regulatory regions, and repressed the expression of cardiac development-related genes. Moreover, genes important for hematopoietic differentiation were upregulated by GATA2 in a mostly indirect manner. Collectively, our data reveal a hitherto unrecognized role of GATA2 as a repressor of cardiac fates, and highlight the importance of coordinating the specification and repression of alternative cell fates.Ramón y Cajal Program, Spanish Ministry of Economy, Industry, and Competitiveness, Spanish Cancer Association, FERO, Instituto de Salud Carlos III, European Social Fund, MINECO, PERIS Program of the Generalitat de Catalunya, Obra Social la Caixa-Fundacion Josep Carreras, Spanish Institute of Health Carlos III, Wellcome Trust, MRC, CRUK, NIH-NIDD

    Distinct Differences in Chromatin Structure at Subtelomeric X and Y' Elements in Budding Yeast

    Get PDF
    In Saccharomyces cerevisiae, all ends of telomeric DNA contain telomeric repeats of (TG1–3), but the number and position of subtelomeric X and Y' repeat elements vary. Using chromatin immunoprecipitation and genome-wide analyses, we here demonstrate that the subtelomeric X and Y' elements have distinct structural and functional properties. Y' elements are transcriptionally active and highly enriched in nucleosomes, whereas X elements are repressed and devoid of nucleosomes. In contrast to X elements, the Y' elements also lack the classical hallmarks of heterochromatin, such as high Sir3 and Rap1 occupancy as well as low levels of histone H4 lysine 16 acetylation. Our analyses suggest that the presence of X and Y' elements govern chromatin structure and transcription activity at individual chromosome ends
    corecore