518 research outputs found

    Atrial signal extraction in atrial fibrillation ECGs exploiting spatial constraints

    Get PDF
    International audienceThe accuracy in the extraction of the atrial activity (AA) from electrocardiogram (ECG) signals recorded during atrial fibrillation (AF) episodes plays an important role in the analysis and characterization of atrial arrhhythmias. The present contribution puts forward a new method for AA signal automatic extraction based on a blind source separation (BSS) formulation that exploits spatial information about the AA during the T-Q segments. This prior knowledge is used to optimize the spectral content of the AA signal estimated by BSS on the full ECG recording. The comparative performance of the method is evaluated on real data recorded from AF sufferers. The AA extraction quality of the proposed technique is comparable to that of previous algorithms, but is achieved at a reduced cost and without manual selection of parameters

    Liability-driven investment and pension fund exposure to emerging markets: A Minskyan analysis

    Get PDF
    This paper explores the determinants and implications of the growing allocation of insurance companies and pension funds to emerging markets. The key contention put forward is that liabilities are at the core of the portfolio choice of insurance companies and pension funds, and that this has important consequences for the stability of asset demand. The paper supports this contention with a theoretical framework based on Hyman Minsky and the results from 22 semi-structured interviews with European insurance companies and pension funds’ executives, investment consultants, and asset managers. It shows that the rising insurance companies and pension funds’ demand for emerging markets’ assets has to be analysed in the context of the pressures resulting from structural funding deficits and low yields. Emerging markets’ assets are sought as part of the sector’s strategy to increase returns and, given their subordinate integration into a spatially uneven international monetary and financial system, remain not suited to directly meet insurance companies and pension funds’ liabilities. This causes insurance companies and pension funds’ demand for these assets to be volatile and independent of conditions in these countries, reproducing emerging markets’ monetary and financial subordination. By stressing the structural financial (in)stability implications insurance companies and pension funds’ liabilities have for emerging markets’ asset demand, the paper contributes to the literature on insurance companies and pension funds’ investments in emerging markets and bridges the gap between those which have noted the importance of liability conditions for insurance companies and pension funds and the literature pointing to the destabilising impact of insurance companies and pension funds due to behavioural and agency issues. Moreover, by basing itself on a Minskyan theoretical framework, it responds to recent calls for a more systematic incorporation of heterodox economic thought into financial geography

    Gut–brain axis and neurodegeneration : State-of-the-art of meta-omics sciences for microbiota characterization

    Get PDF
    Recent advances in the field of meta-omics sciences and related bioinformatics tools have allowed a comprehensive investigation of human-associated microbiota and its contribution to achieving and maintaining the homeostatic balance. Bioactive compounds from the microbial community harboring the human gut are involved in a finely tuned network of interconnections with the host, orchestrating a wide variety of physiological processes. These includes the bidirectional crosstalk between the central nervous system, the enteric nervous system, and the gastrointestinal tract (i.e., gut\u2013brain axis). The increasing accumulation of evidence suggest a pivotal role of the composition and activity of the gut microbiota in neurodegeneration. In the present review we aim to provide an overview of the state-of-the-art of meta-omics sciences including metagenomics for the study of microbial genomes and taxa strains, metatranscriptomics for gene expression, metaproteomics and metabolomics to identify and/or quantify microbial proteins and metabolites, respectively. The potential and limitations of each discipline were highlighted, as well as the advantages of an integrated approach (multi-omics) to predict microbial functions and molecular mechanisms related to human diseases. Particular emphasis is given to the latest results obtained with these approaches in an attempt to elucidate the link between the gut microbiota and the most common neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer\u2019s disease (AD), Parkinson\u2019s disease (PD), and amyotrophic lateral sclerosis (ALS)

    Comparative computational analysis of SARS-CoV-2 nucleocapsid protein epitopes in taxonomically related coronaviruses

    Get PDF
    Several research lines are currently ongoing to address the multitude of facets of the pandemic COVID-19. In line with the One-Health concept, extending the target of the studies to the animals which humans are continuously interacting with may favor a better understanding of the SARS-CoV-2 biology and pathogenetic mechanisms; thus, helping to adopt the most suitable containment measures. The last two decades have already faced severe manifestations of the coronavirus infection in both humans and animals, thus, circulating epitopes from previous outbreaks might confer partial protection from SARS-CoV-2 infections. In the present study, we provide an in-silico survey of the major nucleocapsid protein epitopes and compare them with the homologues of taxonomically-related coronaviruses with tropism for animal species that are closely inter-related with the human beings population all over the world. Protein sequence alignment provides evidence of high sequence homology for some of the investigated proteins. Moreover, structural epitope mapping by homology modelling revealed a potential immunogenic value also for specific sequences scoring a lower identity with SARS-CoV-2 nucleocapsid proteins. These evidence provide a molecular structural rationale for a potential role in conferring protection from SARS-CoV-2 infection and identifying potential candidates for the development of diagnostic tools and prophylactic-oriented strategies

    Indocyanine Green Nanoparticles : Are They Compelling for Cancer Treatment?

    Get PDF
    Indocyanine green (ICG) is a Food and Drug Administration\u2013approved near-infrared fluorescent dye, employed as an imaging agent for different clinical applications due to its attractive physicochemical properties, high sensitivity, and safety. However, free ICG suffers from some drawbacks, such as relatively short circulation half-life, concentration-dependent aggregation, and rapid clearance from the body, which would confine its feasible application in oncology. Here, we aim to discuss encapsulation of ICG within a nanoparticle formulation as a strategy to overcome some of its current limitations and to enlarge its possible applications in cancer diagnosis and treatment. Our purpose is to provide a short but exhaustive overview of clinical outcomes that these nanocomposites would provide, discussing opportunities, limitations, and possible impacts with regard to the main clinical needs in oncology

    Antimicrobial Effects of Conditioned Medium From Amniotic Progenitor Cells in vitro and in vivo : toward Tissue Regenerative Therapies for Bovine Mastitis

    Get PDF
    There is increasing evidence to suggest that, in addition to their regenerative effect, mesenchymal stromal cells (MSCs), and their secretome have an anti-inflammatory and antimicrobial role in the innate immune response in conditions such as sepsis. However, there is no published information on the effect of MSCs in bovine mastitis. Mastitis often results in extensive tissue damage due to multi-microorganism co-infection. This study investigated the ability of amniotic-derived conditioned medium (CM), in vitro and in vivo, to counteract microbial action and restore healthy tissue capable of milk production. Following determination of a dose\u2013response curve, 10,000 colony-forming units (CFU) of Staphylococcus aureus (S. aureus) were inoculated into bovine mammary epithelial cell culture with and without 10% CM (supplemented either at the time of bacteria inoculation or after 4 h). Acridine orange staining was used to assess cell viability/apoptosis. Additionally, an in vivo study was performed using 48 dairy cows with acute and chronic mastitis, treated with CM (treated group) or antibiotics (control group). In vitro results showed that CM can attenuate bacterial growth, as evaluated by the number of CFU. After 24 h of culture with S. aureus, 89.67% of mammary epithelial cells treated with CM were still alive, whereas all cells cultured without CM were dead. Rates of epithelial cell survival (60.67%) were similar when CM was added 4 h after bacteria inoculation. There was no difference in somatic cell count between cases of acute mastitis in the CM-treated or control group in the in vivo study. However, relapses in chronic mastitis were less common in the group receiving CM. Our results show that CM is able to mitigate bacterial growth in vitro and may be particularly useful in the treatment of chronic mastitis, aiding restoration of milk production in cows that would otherwise be removed from the production cycle

    From “One Health” to “One Communication”: the contribution of communication in Veterinary Medicine to public health

    Get PDF
    Despite the fact that health communication is a discipline developed only recently, its importance in human medicine is well recognized. However, it is less considered in veterinary medicine, even if it has the potential to improve public health because of the role of veterinary medicine in public health. For this reason, an One Health approach is useful for communication as well. This approach leads to a \u201cOne Communication\u201d concept, which is the result of the synergy in communicative efforts both in human and in veterinary medicine. Our analysis explores the potential of communication in several veterinary fields: institutions, food safety, companion animal and food-producing animal practice, pharmacology and drugs, wildlife fauna and environment. In almost all the areas of veterinary activity communication can contribute to human health. It takes many forms and use several channels, and this variety of communicative opportunities represent a challenge for veterinarians. For this reason, the communication course should be included in the curricula of Veterinary Medicine Schools. As One Health, One Communication is a strategy for expanding collaborations in health communication and it will enhance public health

    The emerging role of p53 in stem cells

    Get PDF
    Among the hundreds of oncogenes and tumor suppressors that have been identified in the past 50 years, p53 is probably the best characterized; nevertheless, new functions are constantly being discovered. As a tumor suppressor, p53 regulates cellular responses to different stress stimuli by inducing reversible cell cycle arrest and DNA repair, or triggering senescence or apoptosis. Recent findings on the regulation of stem cell (SC) division and reprogramming suggest the intriguing possibility that p53 also carries out its tumor suppression function by regulating SC homeostasis. Specifically, p53 activation may counteract SC expansion by several emerging mechanisms including restriction of self-renewing divisions, inhibition of symmetric division and block of reprogramming of somatic/progenitor cells into SCs

    Immunoinformatic analysis of the SARS-CoV-2 envelope protein as a strategy to assess cross-protection against COVID-19

    Get PDF
    Envelope protein of coronaviruses is a structural protein existing in both monomeric and homo-pentameric form. It has been related to a multitude of roles including virus infection, replication, dissemination and immune response stimulation. In the present study, we employed an immunoinformatic approach to investigate the major immunogenic domains of the SARS-CoV-2 envelope protein and map them among the homologue proteins of coronaviruses with tropism for animal species that are closely inter-related with the human beings population all over the world. Also, when not available, we predicted the envelope protein structural folding and mapped SARS-CoV-2 epitopes. Envelope sequences alignment provides evidence of high sequence homology for some of the investigated virus specimens; while the structural mapping of epitopes resulted in the interesting maintenance of the structural folding and epitope sequence localization also in the envelope proteins scoring a lower alignment score. In line with the One-Health approach, our evidences provide a molecular structural rationale for a potential role of taxonomically related coronaviruses in conferring protection from SARS-CoV-2 infection and identifying potential candidates for the development of diagnostic tools and prophylactic-oriented strategies

    Serum protein profiling of early and advanced stage Crohn's disease

    Get PDF
    AbstractCrohn's disease (CD) represents a highly debilitating disease of difficult diagnosis and increasing incidence. Serum protein profiling of early stage Crohn's disease (ES) CD was investigated in order to improve the comprehension of the very early pathologic mechanisms and to support the difficult diagnostic procedures currently available. Inflammatory proteins and complement 3 chain C (C3c) were over-represented during ES CD, clusterin, retinol binding protein, α1-microglobulin and transthyretin were under-represented. A C3c isoform was found to be present only during ES CD. By now, lack of specific antibodies to detect isoforms made it impossible to perform alternative validation
    • …
    corecore