406 research outputs found

    Modelling end-pumped solid state lasers

    Get PDF
    The operation dynamics of end-pumped solid-state lasers are investigated by means of a spatially resolved numerical rate-equation model and a time-dependent analytical thermal model. The rate-equation model allows the optimization of parameters such as the output coupler transmission and gain medium length, with the aim of improving the laser output performance. The time-dependent analytical thermal model is able to predict the temperature and the corresponding induced thermal stresses on the pump face of quasi-continuous wave (qcw) end-pumped laser rods. Both models are found to be in very good agreement with experimental results

    Mobile technologies in foreign language learning

    Get PDF
    Welding with laser beams is an innovative optical technique, which leads to higher penetration depth and a narrower seam compared to conventional welding techniques. Significant criteria of the quality of a junction besides detected faults are the penetration depth and the seam width. Within this article optical sensors for process monitoring as well as a predictive control scheme based on these are presented. In the closed loop control the process' inputs laser power and focal position are optimised by taking the future welding speed into account. For modelling the physical demanding, non-linear process an Artificial Neural Network with external dynamics is applied. First results of the application on a real laser welding system are described

    Leveraging OpenStack and Ceph for a Controlled-Access Data Cloud

    Full text link
    While traditional HPC has and continues to satisfy most workflows, a new generation of researchers has emerged looking for sophisticated, scalable, on-demand, and self-service control of compute infrastructure in a cloud-like environment. Many also seek safe harbors to operate on or store sensitive and/or controlled-access data in a high capacity environment. To cater to these modern users, the Minnesota Supercomputing Institute designed and deployed Stratus, a locally-hosted cloud environment powered by the OpenStack platform, and backed by Ceph storage. The subscription-based service complements existing HPC systems by satisfying the following unmet needs of our users: a) on-demand availability of compute resources, b) long-running jobs (i.e., >30> 30 days), c) container-based computing with Docker, and d) adequate security controls to comply with controlled-access data requirements. This document provides an in-depth look at the design of Stratus with respect to security and compliance with the NIH's controlled-access data policy. Emphasis is placed on lessons learned while integrating OpenStack and Ceph features into a so-called "walled garden", and how those technologies influenced the security design. Many features of Stratus, including tiered secure storage with the introduction of a controlled-access data "cache", fault-tolerant live-migrations, and fully integrated two-factor authentication, depend on recent OpenStack and Ceph features.Comment: 7 pages, 5 figures, PEARC '18: Practice and Experience in Advanced Research Computing, July 22--26, 2018, Pittsburgh, PA, US

    Propositional Dynamic Logic for Message-Passing Systems

    Full text link
    We examine a bidirectional propositional dynamic logic (PDL) for finite and infinite message sequence charts (MSCs) extending LTL and TLC-. By this kind of multi-modal logic we can express properties both in the entire future and in the past of an event. Path expressions strengthen the classical until operator of temporal logic. For every formula defining an MSC language, we construct a communicating finite-state machine (CFM) accepting the same language. The CFM obtained has size exponential in the size of the formula. This synthesis problem is solved in full generality, i.e., also for MSCs with unbounded channels. The model checking problem for CFMs and HMSCs turns out to be in PSPACE for existentially bounded MSCs. Finally, we show that, for PDL with intersection, the semantics of a formula cannot be captured by a CFM anymore

    Asynchronous Games over Tree Architectures

    Get PDF
    We consider the task of controlling in a distributed way a Zielonka asynchronous automaton. Every process of a controller has access to its causal past to determine the next set of actions it proposes to play. An action can be played only if every process controlling this action proposes to play it. We consider reachability objectives: every process should reach its set of final states. We show that this control problem is decidable for tree architectures, where every process can communicate with its parent, its children, and with the environment. The complexity of our algorithm is l-fold exponential with l being the height of the tree representing the architecture. We show that this is unavoidable by showing that even for three processes the problem is EXPTIME-complete, and that it is non-elementary in general

    Parallelizing Synthesis from Temporal Logic Specifications by Identifying Equicontrollable States

    Get PDF
    For the synthesis of correct-by-construction control policies from temporal logic specifications the scalability of the synthesis algorithms is often a bottleneck. In this paper, we parallelize synthesis from specifications in the GR(1) fragment of linear temporal logic by introducing a hierarchical procedure that allows decoupling of the fixpoint computations. The state space is partitioned into equicontrollable sets using solutions to parametrized games that arise from decomposing the original GR(1) game into smaller reachability-persistence games. Following the partitioning, another synthesis problem is formulated for composing the strategies from the decomposed reachability games. The formulation guarantees that composing the synthesized controllers ensures satisfaction of the given GR(1) property. Experiments with robot planning problems demonstrate good performance of the approach

    Metric-like Lagrangian Formulations for Higher-Spin Fields of Mixed Symmetry

    Full text link
    We review the structure of local Lagrangians and field equations for free bosonic and fermionic gauge fields of mixed symmetry in flat space. These are first presented in a constrained setting extending the metric formulation of linearized gravity, and then the (γ\gamma-)trace constraints on fields and gauge parameters are eliminated via the introduction of auxiliary fields. We also display the emergence of Weyl-like symmetries in particular classes of models in low space-time dimensions.Comment: 136 pages, LaTeX. References added. Final version to appear in La Rivista del Nuovo Cimento

    On oblivious branching programs with bounded repetition that cannot efficiently compute CNFs of bounded treewidth

    Get PDF
    In this paper we study complexity of an extension of ordered binary decision diagrams (OBDDs) called c-OBDDs on CNFs of bounded (primal graph) treewidth. In particular, we show that for each k ≥ 3 there is a class of CNFs of treewidth k for which the equivalent c-OBDDs are of size Ω(nk/(8c−4)). Moreover, this lower bound holds if c-OBDDs are non-deterministic and semantic. Our second result uses the above lower bound to separate the above model from sentential decision diagrams (SDDs). In order to obtain the lower bound, we use a structural graph parameter called matching width. Our third result shows that matching width and pathwidth are linearly related
    corecore