219 research outputs found
Control Allocation with Load Balancing
Next generation aircraft with a large number of actuators will require advanced control allocation methods to compute the actuator commands needed to follow desired trajectories while respecting system constraints. Previously, algorithms were proposed to minimize the l1 or l2 norms of the tracking error and of the actuator deflections. The paper discusses the alternative choice of the l(infinity) norm, or sup norm. Minimization of the control effort translates into the minimization of the maximum actuator deflection (min-max optimization). The paper shows how the problem can be solved effectively by converting it into a linear program and solving it using a simplex algorithm. Properties of the algorithm are also investigated through examples. In particular, the min-max criterion results in a type of load balancing, where the load is th desired command and the algorithm balances this load among various actuators. The solution using the l(infinity) norm also results in better robustness to failures and to lower sensitivity to nonlinearities in illustrative examples
Resource Balancing Control Allocation
Next generation aircraft with a large number of actuators will require advanced control allocation methods to compute the actuator commands needed to follow desired trajectories while respecting system constraints. Previously, algorithms were proposed to minimize the l1 or l2 norms of the tracking error and of the control effort. The paper discusses the alternative choice of using the l1 norm for minimization of the tracking error and a normalized l(infinity) norm, or sup norm, for minimization of the control effort. The algorithm computes the norm of the actuator deflections scaled by the actuator limits. Minimization of the control effort then translates into the minimization of the maximum actuator deflection as a percentage of its range of motion. The paper shows how the problem can be solved effectively by converting it into a linear program and solving it using a simplex algorithm. Properties of the algorithm are investigated through examples. In particular, the min-max criterion results in a type of resource balancing, where the resources are the control surfaces and the algorithm balances these resources to achieve the desired command. A study of the sensitivity of the algorithms to the data is presented, which shows that the normalized l(infinity) algorithm has the lowest sensitivity, although high sensitivities are observed whenever the limits of performance are reached
Sensitivity Analysis of Linear Programming and Quadratic Programming Algorithms for Control Allocation
The Next Generation (NextGen) transport aircraft configurations being investigated as part of the NASA Aeronautics Subsonic Fixed Wing Project have more control surfaces, or control effectors, than existing transport aircraft configurations. Conventional flight control is achieved through two symmetric elevators, two antisymmetric ailerons, and a rudder. The five effectors, reduced to three command variables, produce moments along the three main axes of the aircraft and enable the pilot to control the attitude and flight path of the aircraft. The NextGen aircraft will have additional redundant control effectors to control the three moments, creating a situation where the aircraft is over-actuated and where a simple relationship does not exist anymore between the required effector deflections and the desired moments. NextGen flight controllers will incorporate control allocation algorithms to determine the optimal effector commands and attain the desired moments, taking into account the effector limits. Approaches to solving the problem using linear programming and quadratic programming algorithms have been proposed and tested. It is of great interest to understand their relative advantages and disadvantages and how design parameters may affect their properties. In this paper, we investigate the sensitivity of the effector commands with respect to the desired moments and show on some examples that the solutions provided using the l2 norm of quadratic programming are less sensitive than those using the l1 norm of linear programming
Investigation of Optimal Control Allocation for Gust Load Alleviation in Flight Control
Advances in sensors and avionics computation power suggest real-time structural load measurements could be used in flight control systems for improved safety and performance. A conventional transport flight control system determines the moments necessary to meet the pilot's command, while rejecting disturbances and maintaining stability of the aircraft. Control allocation is the problem of converting these desired moments into control effector commands. In this paper, a framework is proposed to incorporate real-time structural load feedback and structural load constraints in the control allocator. Constrained optimal control allocation can be used to achieve desired moments without exceeding specified limits on monitored load points. Minimization of structural loads by the control allocator is used to alleviate gust loads. The framework to incorporate structural loads in the flight control system and an optimal control allocation algorithm will be described and then demonstrated on a nonlinear simulation of a generic transport aircraft with flight dynamics and static structural loads
A Framework for Optimal Control Allocation with Structural Load Constraints
Conventional aircraft generally employ mixing algorithms or lookup tables to determine control surface deflections needed to achieve moments commanded by the flight control system. Control allocation is the problem of converting desired moments into control effector commands. Next generation aircraft may have many multipurpose, redundant control surfaces, adding considerable complexity to the control allocation problem. These issues can be addressed with optimal control allocation. Most optimal control allocation algorithms have control surface position and rate constraints. However, these constraints are insufficient to ensure that the aircraft's structural load limits will not be exceeded by commanded surface deflections. In this paper, a framework is proposed to enable a flight control system with optimal control allocation to incorporate real-time structural load feedback and structural load constraints. A proof of concept simulation that demonstrates the framework in a simulation of a generic transport aircraft is presented
The COVID-19 pandemic in francophone West Africa: from the first cases to responses in seven countries.
BACKGROUND: In early March 2020, the COVID-19 pandemic hit West Africa. In response, countries in the region quickly set up crisis management committees and implemented drastic measures to stem the spread of the SARS-CoV-2 virus. The objective of this article is to analyse the epidemiological evolution of COVID-19 in seven Francophone West African countries (Benin, Burkina Faso, Côte d'Ivoire, Guinea, Mali, Niger, Senegal) as well as the public health measures decided upon during the first 7 months of the pandemic.
METHODS: Our method is based on quantitative and qualitative data from the pooling of information from a COVID-19 data platform and collected by a network of interdisciplinary collaborators present in the seven countries. Descriptive and spatial analyses of quantitative epidemiological data, as well as content analyses of qualitative data on public measures and management committees were performed.
RESULTS: Attack rates (October 2020) for COVID-19 have ranged from 20 per 100,000 inhabitants (Benin) to more than 94 per 100,000 inhabitants (Senegal). All these countries reacted quickly to the crisis, in some cases before the first reported infection, and implemented public measures in a relatively homogeneous manner. None of the countries implemented country-wide lockdowns, but some implemented partial or local containment measures. At the end of June 2020, countries began to lift certain restrictive measures, sometimes under pressure from the general population or from certain economic sectors.
CONCLUSION: Much research on COVID-19 remains to be conducted in West Africa to better understand the dynamics of the pandemic, and to further examine the state responses to ensure their appropriateness and adaptation to the national contexts.3. Good health and well-bein
- …