796 research outputs found

    A thermostable DNA primase-polymerase from a mobilegenetic element involved in defence againstenvironmental DNA.

    Get PDF
    Primase-polymerases (Ppol) are one of the few enzymes able to start DNA synthesis on ssDNA templates. The role of Thermus thermophilus HB27 Ppol, encoded along a putative helicase (Hel) within a mobile genetic element (ICETh2), has been studied. A mutant lacking Ppol showed no effects on the replication of the element. Also, no apparent differences in the sensitivity to DNA damaging agents and other stressors or morphological changes in the mutant cells were detected. However, the mutants lacking Ppol showed an increase in two to three orders of magnitude in their transformation efficiency with plasmids and genomic DNA acquired from the environment (eDNA), independently of its origin and G + C content. In contrast, no significant differences with the wild type were detected when the cells received the DNA from other T. thermophilus partners in conjugation-like mating experiments. The similarities of this behaviour with that shown by mutants lacking the Argonaute (ThAgo) protein suggests a putative partnership Ppol-ThAgo in the DNA–DNA interference mechanism of defence, although other eDNA defence mechanisms independent of ThAgo cannot be discarded.post-print697 K

    Stability of Surface Complexes Formed at the TiO2/Water Interface

    Get PDF
    TiO2 surface complexation by bidentate organic ligands is analysed in terms of the ligand Brønstead and Lewis basicities. The complexation and basicity constants comply with linear Gibbs Energy relationships (LGERs). For dicarboxylic acids, the surface chelate bond makes an approximately constant contribution to the stability. The proton transfer to the surface modulates the pH dependence of stability. A correlation exists between the surface complexation constant of the neutral acid H2L and the ligand first acidity constant. On the other hand, the surface complexation constants of dianions L2- of cathecols and aminophenols are positively correlated with the ligand second acidity constant. Apparent stability is determined by the competition of H+ and surface metal ions for the ligand. Stability trends are strongly influenced by the Brønstead acid base reaction between the acid ligands H2L and the surface, whereas the stability of the surface chelate contributes to the overall stability

    Electrokinetic Behaviour and Interaction with Oxalic Acid of Different Hydrous Chromium(III) Oxides

    Get PDF
    Three samples of hydrous chromium(III) oxide have been prepared by different procedures, and their electrokinetic mobilities have been measured. In mineral media, isoelectric points were found to be 8.45 ±0.15. This value is shifted from the solution isoelectric point by –0.35 ±0.15, due to the contribution of solvation energy to the energy of ionic adsorption. On the basis of a simple model, it is suggested that the two successive surface acidity constants of hydrous chromium(III) oxide are pKS a1 = 7.17 and pKS a2 = 9.72. The influence of oxalic acidity on mobility may be described in terms of two successive adsorption equilibria, the first one conducive to the neutralization of positive protonic charge, and the second one originating a charge reversal. It is shown that the apparent affinity for this latter mode is lower in one of the samples, suggesting that surface complexation constants may in fact be sensitive to the history of hydrous chromium(III) oxide particles. The three samples show similar dissolution behaviour but the specific rates differ, in one case by two orders of magnitude. This difference is explained in terms of the influence of crosslinking on the reactivity

    Electrokinetic Behaviour and Interaction with Oxalic Acid of Different Hydrous Chromium(III) Oxides

    Get PDF
    Three samples of hydrous chromium(III) oxide have been prepared by different procedures, and their electrokinetic mobilities have been measured. In mineral media, isoelectric points were found to be 8.45 ±0.15. This value is shifted from the solution isoelectric point by –0.35 ±0.15, due to the contribution of solvation energy to the energy of ionic adsorption. On the basis of a simple model, it is suggested that the two successive surface acidity constants of hydrous chromium(III) oxide are pKS a1 = 7.17 and pKS a2 = 9.72. The influence of oxalic acidity on mobility may be described in terms of two successive adsorption equilibria, the first one conducive to the neutralization of positive protonic charge, and the second one originating a charge reversal. It is shown that the apparent affinity for this latter mode is lower in one of the samples, suggesting that surface complexation constants may in fact be sensitive to the history of hydrous chromium(III) oxide particles. The three samples show similar dissolution behaviour but the specific rates differ, in one case by two orders of magnitude. This difference is explained in terms of the influence of crosslinking on the reactivity

    Effects of periodic forcing in chaotic scattering

    Get PDF
    The effects of a periodic forcing on chaotic scattering are relevant in certain situations of physical interest. We investigate the effects of the forcing amplitude and the external frequency in both the survival probability of the particles in the scattering region and the exit basins associated to phase space. We have found an exponential decay law for the survival probability of the particles in the scattering region. A resonant-like behavior is uncovered where the critical values of the frequencies omega aprox. 1 and omega aprox. 2 permit the particles to escape faster than for other different values. On the other hand, the computation of the exit basins in phase space reveals the existence of Wada basins depending of the frequency values. We provide some heuristic arguments that are in good agreement with the numerical results. Our results are expected to be relevant for physical phenomena such as the effect of companion galaxies, among others

    Neuron types in the primate striatum: stereological analysis of projection neurons and interneurons in control and parkinsonian monkeys

    Full text link
    The striatum is mainly composed of projection neurons. It also contains interneurons, which modulate and control striatal output. The aim of the present study was to assess the percentages of projection neurons and interneuron populations in the striatum of control monkeys and of parkinsonian monkeys. Methods: Unbiased stereology was used to estimate the volume density of every neuron population in the caudate, putamen and ventral striatum of control monkeys and of monkeys treated with MPTP, which results in striatal dopamine depletion. The various neuron population phenotypes were identified by immunohistochemistry. All analyses were performed within the same subjects using similar processing and analysis parameters, thus allowing for reliable data comparisons. Results: In control monkeys, the projection neurons, which express the dopamine-and-cAMP-regulated-phosphoprotein, 32-KDa (DARPP-32), were the most abundant: ~86% of the total neurons counted. The interneurons accounted for the remaining 14%. Among the interneurons, those expressing calretinin were the most abundant (Cr+: ~57%; ~8% of the total striatal neurons counted), followed those expressing Parvalbumin (Pv+: ~18%; 2.6%), dinucleotide phosphate-diaphorase (NADPH+: ~13%; 1.8%), choline acetyltransferase (ChAT+: ~11%; 1.5%) and tyrosine hydroxylase (TH+: ~0.5%; 0.1%). No significant changes in volume densities occurred in any population following dopamine depletion, except for the TH+ interneurons, which increased in parkinsonian non-symptomatic monkeys and even more in symptomatic monkeys. Conclusions: These data are relevant for translational studies targeting specific neuron populations of the striatum. The fact that dopaminergic denervation does not cause neuron loss in any population has potential pathophysiological implication

    Early paradoxical increase of dopamine: A neurochemical study of olfactory bulb in asymptomatic and symptomatic MPTP treated monkeys

    Full text link
    Parkinson’s disease (PD) is a neurodegenerative disease with both motor and non-motor manifestations. Hyposmia is one of the early non-motor symptoms, which can precede motor symptoms by several years. The relationship between hyposmia and PD remains elusive. Olfactory bulb (OB) pathology shows an increased number of olfactory dopaminergic cells, protein aggregates and dysfunction of neurotransmitter systems. In this study we examined tissue levels of dopamine (DA) and serotonin (5-hydroxytryptamine, 5-HT) and their metabolites, of noradrenaline (NA) and of the amino acid neurotransmitters aspartate, glutamate, taurine and γ-aminobutyric acid in OBs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated Macaca fascicularis in different stages, includin g monkeys who were always asymptomatic, monkeys who recovered from mild parkinsonian signs, and monkeys with stable moderate or severe parkinsonism. DA was increased compared to controls, while neither NA and 5-HT nor the amino acid neurotransmitters were significantly changed. Furthermore, DA increased before stable motor deficits appear with +51% in asymptomatic and +96% in recovered monkeys. Unchanged DA metabolites suggest a special metabolic profile of the newly formed DA neurons. Significant correlation of homovanillic acid (HVA) with taurine single values within the four MPTP groups and of aspartate with taurine within the asymptomatic and recovered MPTP groups, but not within the controls suggest interactions in the OB between taurine and the DA system and taurine and the excitatory neurotransmitter triggered by MPTP. This first investigation of OB in various stages after MPTP administration suggests that the DA increase seems to be an early phenomenon, not requiring profound nigrostriatal neurodegeneration or PD symptoms.This work was funded by grants from the Ministerio de Economía y Competitividad: SAF2015-67239-P; Instituto de Salud Carlos III (CIBERNED) SAF2016-78207, Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III—Fondos FEDER, a way to build Europe FIS PIE14/00034 to JAO and by the chair UAM-Fundación Tatiana Pérez de Guzmán el Bueno to C

    An ArsR/SmtB family member regulates arsenic resistance genes unusually arranged in Thermus thermophilus HB27.

    Get PDF
    Arsenic resistance is commonly clustered in ars operons in bacteria; main ars operon components encode an arsenate reductase, a membrane extrusion protein, and an As-sensitive transcription factor. In the As-resistant thermophile Thermus thermophilus HB27, genes encoding homologues of these proteins are interspersed in the chromosome. In this article, we show that two adjacent genes, TtsmtB, encoding an ArsR/SmtB transcriptional repressor and, TTC0354, encoding a Zn2+/Cd2+-dependent membrane ATPase are involved in As resistance; differently from characterized ars operons, the two genes are transcribed from dedicated promoters upstream of their respective genes, whose expression is differentially regulated at transcriptional level. Mutants defective in TtsmtB or TTC0354 are more sensitive to As than the wild type, proving their role in arsenic resistance. Recombinant dimeric TtSmtB binds in vitro to both promoters, but its binding capability decreases upon interaction with arsenate and, less efficiently, with arsenite. In vivo and in vitro experiments also demonstrate that the arsenate reductase (TtArsC) is subjected to regulation by TtSmtB. We propose a model for the regulation of As resistance in T. thermophilus in which TtSmtB is the arsenate sensor responsible for the induction of TtArsC which generates arsenite exported by TTC0354 efflux protein to detoxify cells

    Is Parkinson's disease a vesicular dopamine storage disorder?: Evidence from a study in isolated synaptic vesicles of human and nonhuman primate striatum

    Full text link
    The cause of degeneration of nigrostriatal dopamine (DA) neurons in idiopathic Parkinson’s disease (PD) is still unknown. Intraneuronally, DA is largely confined to synaptic vesicles where it is protected from metabolic breakdown. In the cytoplasm, however, free DA can give rise to formation of cytotoxic free radicals. Normally, the concentration of cytoplasmic DA is kept at a minimum by continuous pumping activity of the vesicular monoamine transporter (VMAT)2. Defects in handling of cytosolic DA by VMAT2 increase levels of DA-generated oxy radicals ultimately resulting in degeneration of DAergic neurons. Here, we isolated for the first time, DA storage vesicles from the striatum of six autopsied brains of PD patients and four controls and measured several indices of vesicular DA storage mechanisms. We found that (1) vesicular uptake of DA and binding of the VMAT2-selective label [ 3H]dihydrotetrabenazine were profoundly reduced in PD by 87–90% and 71– 80%, respectively; (2) after correcting for DA nerve terminal loss, DA uptake per VMAT2 transport site was significantly reduced in PD caudate and putamen by 53 and 55%, respectively; (3) the VMAT2 transport defect appeared specific for PD as it was not present in Macaca fascicularis (7 MPTP and 8 controls) with similar degree of MPTP-induced nigrostriatal neurodegeneration; and (4) DA efflux studies and measurements of acidification in the vesicular preparations suggest that the DA storage impairment was localized at the VMAT2 protein itself. We propose that this VMAT2 defect may be an early abnormality promoting mechanisms leading to nigrostriatal DA neuron death in P
    corecore