671 research outputs found

    Scalable cell-free massive MIMO systems with hardware impairments

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This is the accepted manuscript version of a conference paper which has been published in final form at https://doi.org/10.1109/PIMRC48278.2020.9217151Despite the deleterious effect of hardware impairments (HWIs) on wireless systems, most prior works in cell-free (CF) massive multiple-input-multiple-output (mMIMO) systems have not accounted for their impact. In particular, the effect of phase noise (PN) has not been investigated at all in CF systems. Moreover, there is no work investigating HWIs in scalable CF (SCF) mMIMO systems, encountering the prohibitively demanding fronthaul requirements of large networks with many users. Hence, we derive the uplink spectral efficiency (SE) under HWIs with minimum mean-squared error (MMSE) combining in closed-form by means of the deterministic equivalent (DE) analysis. Notably, previous works, accounted for MMSE decoding, studied the corresponding SE only by means of simulations. Numerical results illustrate the performance loss due to HWIs and result in insightful conclusions

    Variability in water column respiration in Salish Sea waters and implications for coastal and ocean acidification

    Get PDF
    Water column respiration is a key driver of carbon cycling, ocean acidification, and oxygen dynamics in marine ecosystems. However, empirical estimates of the range and variability of respiration and its relative contribution to ocean acidification are seldom measured. In 2014, we began measuring respiration rates at multiple sites in the central Salish Sea (San Juan Islands, Bellingham Bay) and then initiated routine monitoring of water column respiration at multiple sites in Padilla Bay National Estuarine Research Reserve (NERR). Measurements in Padilla Bay were integrated into the well-established NERR System Wide Monitoring Program (SWMP). Our investigation revealed that 1) rates of respiration vary seasonally and appear to be associated with changes in organic matter supply and, to a lesser extent, temperature, and 2) incoming deeper waters of marine origin are characterized by relatively low rates of respiration (i.e. ~5ugO2/L/h). To further explore underlying mechanisms, we conducted a series of manipulative experiments to investigate the direct effect of increasing ocean temperature and organic matter supply on rates of respiration. These experiments revealed that respiration can more than triple in response to increases in organic carbon supply and that this response may be influenced by seasonal changes in the export of organic matter and detritus from the extensive eelgrass meadows of Padilla Bay. Our field sampling and manipulative experiments have produced empirical estimates of respiration that can be included in models and projections of water quality and ocean acidification for the Puget Sound, and provide insight into the response of inland marine waters of the Pacific Northwest to a warmer, more acidified ocean

    Approved but non-funded vaccines: Accessing individual protection

    Get PDF
    AbstractFunded immunization programs are best able to achieve high participation rates, optimal protection of the target population, and indirect protection of others. However, in many countries public funding of approved vaccines can be substantially delayed, limited to a portion of the at-risk population or denied altogether. In these situations, unfunded vaccines are often inaccessible to individuals at risk, allowing potentially avoidable morbidity and mortality to continue to occur. We contend that private access to approved but unfunded vaccines should be reconsidered and encouraged, with recognition that individuals have a prerogative to take advantage of a vaccine of potential benefit to them whether it is publicly funded or not. Moreover, numbers of “approved but unfunded” vaccines are likely to grow because governments will not be able to fund all future vaccines of potential benefit to some citizens. New strategies are needed to better use unfunded vaccines even though the net benefits will fall short of those of funded programs.Canada, after recent delays funding several new vaccine programs, has developed means to encourage private vaccine use. Physicians are required to inform relevant patients about risks and benefits of all recommended vaccines, publicly funded or not. Likewise, some provincial public health departments now recommend and promote both funded and unfunded vaccines. Pharmacists are key players in making unfunded vaccines locally available. Professional organizations are contributing to public and provider education about unfunded vaccines (e.g. herpes zoster, not funded in any province). Vaccine companies are gaining expertise with direct-to-consumer advertising. However, major challenges remain, such as making unfunded vaccines more available to low-income families and overcoming public expectations that all vaccines will be provided cost-free, when many other recommended personal preventive measures are user-pay. The greatest need is to change the widespread perception that approved vaccines should be publicly funded or ignored

    Cosmological test of the Yilmaz theory of gravity

    Full text link
    We test the Yilmaz theory of gravitation by working out the corresponding Friedmann-type equations generated by assuming the Friedmann-Robertson-Walker cosmological metrics. In the case that space is flat the theory is consistent only with either a completely empty universe or a negative energy vacuum that decays to produce a constant density of matter. In both cases the total energy remains zero at all times, and in the latter case the acceleration of the expansion is always negative. To obtain a more flexible and potentially more realistic cosmology, the equation of state relating the pressure and energy density of the matter creation process must be different from the vacuum, as for example is the case in the steady-state models of Gold, Bondi, Hoyle and others. The theory does not support the cosmological principle for curved space K =/= 0 cosmological metrics

    Underground Environment Aware MIMO Design Using Transmit and Receive Beamforming in Internet of Underground Things

    Get PDF
    In underground (UG) multiple-input and multiple-output (MIMO), the transmit beamforming is used to focus energy in the desired direction. There are three different paths in the underground soil medium through which the waves propagates to reach at the receiver. When the UG receiver receives a desired data stream only from the desired path, then the UG MIMO channel becomes three path (lateral, direct, and reflected) interference channel. Accordingly, the capacity region of the UG MIMO three path interference channel and degrees of freedom (multiplexing gain of this MIMO channel requires careful modeling). Therefore, expressions are required derived the degrees of freedom of the UG MIMO interference channel. The underground receiver needs to perfectly cancel the interference from the three different components of the EM-waves propagating in the soil medium. This concept is based upon reducing the interference the undesired components to minimum at UG receiver using the receive beamforming. In this paper, underground environment aware MIMO using transmit and receive beamforming has been developed. The optimal transmit beamforming and receive combin- ing vectors under minimal inter-component interference constraint are derived. It is shown that UG MIMO performs best when all three component of the wireless UG channel are leveraged for beamforming. The environment aware UG MIMO technique leads to three-fold performance improvements and paves the wave for design and development of next generation sensor-guided irrigation systems in the field of digital agriculture

    Robust leakage-based distributed precoder for cooperative multicell systems

    Get PDF
    Coordinated multipoint (CoMP) from long term evolution (LTE)-advanced is a promising technique to enhance the system spectral efficiency. Among the CoMP techniques, joint transmission has high communication requirements, because of the data sharing phase through the backhaul network, and coordinated scheduling and beamforming reduces the backhaul requirements, since no data sharing is necessary. Most of the available CoMP techniques consider perfect channel knowledge at the transmitters. Nevertheless for practical systems this is unrealistic. Therefore in this study the authors address this limitation by proposing a robust precoder for a multicell-based systems, where each base station (BS) has only access to an imperfect local channel estimate. They consider both the case with and without data sharing. The proposed precoder is designed in a distributed manner at each BS by maximising the signal-to-leakage-and-noise ratio of all jointly processed users. By considering the channel estimation error in the design of the precoder, they are able to reduce considerably the impact of these errors in the system's performance. The results show that the proposed scheme has improved performance especially for the high signal-to-noise ratio regime, where the impact of the channel estimation error may be more pronounced

    COPD diagnosis related to different guidelines and spirometry techniques

    Get PDF
    The aim was to compare the diagnosis of COPD among smokers according to different international guidelines and to compare the outcome when using slow (SVC) and forced vital capacity (FVC)

    Interplay between pleiotropy and secondary selection determines rise and fall of mutators in stress response

    Get PDF
    Dramatic rise of mutators has been found to accompany adaptation of bacteria in response to many kinds of stress. Two views on the evolutionary origin of this phenomenon emerged: the pleiotropic hypothesis positing that it is a byproduct of environmental stress or other specific stress response mechanisms and the second order selection which states that mutators hitchhike to fixation with unrelated beneficial alleles. Conventional population genetics models could not fully resolve this controversy because they are based on certain assumptions about fitness landscape. Here we address this problem using a microscopic multiscale model, which couples physically realistic molecular descriptions of proteins and their interactions with population genetics of carrier organisms without assuming any a priori fitness landscape. We found that both pleiotropy and second order selection play a crucial role at different stages of adaptation: the supply of mutators is provided through destabilization of error correction complexes or fluctuations of production levels of prototypic mismatch repair proteins (pleiotropic effects), while rise and fixation of mutators occur when there is a sufficient supply of beneficial mutations in replication-controlling genes. This general mechanism assures a robust and reliable adaptation of organisms to unforeseen challenges. This study highlights physical principles underlying physical biological mechanisms of stress response and adaptation

    Immunoreactive trypsinogen levels in newborn screened infants with an inconclusive diagnosis of cystic fibrosis.

    Get PDF
    BACKGROUND: Newborn screening (NBS) for cystic fibrosis (CF) not only identifies infants with a diagnosis of CF, but also those with an uncertain diagnosis of cystic fibrosis (CF), i.e. CF transmembrane conductance regulator (CFTR)-related metabolic syndrome (CRMS) or CF screen positive inconclusive diagnosis (CFSPID). These infants have an uncertain long-term outcome and it is currently unclear around time of diagnosis, which infants are at higher risk of later fulfilling a CF diagnosis. In this study, we hypothesised that immunoreactive trypsinogen (IRT) levels, used in NBS as a marker of pancreatic disease and function, may reflect the degree of CFTR dysfunction in each individual and therefore would help to identify those with CRMS/CSPID who are later at risk for meeting the criteria of CF. METHODS: In this longitudinal, prospective study, infants with CRMS/CFSPID and CF were recruited and followed in 9 CF clinics (Canada and Italy). We compared NBS IRT levels between CF and CRMS/CFSPID, and between children with CRMS/CFSPID→CF and CRMS/CFSPID→CRMS/CFSPID during the period of June 2007 to April 2016. RESULTS: Ninety eight CRMS/CFSPID and 120 CF subjects were enrolled. During the study period, 14 (14.3%) CRMS/CFSPID subjects fulfilled the diagnostic criteria for CF (CRMS/CFSPID→CF), while the diagnosis remained uncertain (CRMS/CFSPID→ CRMS/CFSPID) in 84 (85.7%) subjects. Significantly higher NBS IRT concentrations (ng/ml) were present in CF than CRMS/CFPSID (median (interquartile range): 143.8 (99.8-206.2) vs. 75.0 (61.0-105.9); P \u3c 0.0001). Infants with CRMS/CFSPID→CF (n = 14) had significantly higher NBS IRT concentrations (ng/ml) than CRMS/CFSPID→ CRMS/CFSPID (n = 83) (median (interquartile range): 108.9 (72.3-126.8) vs. 73.7(60.0-96.0); P = 0.02). CONCLUSIONS: Amongst infants who tested positive on NBS for CF, there is a gradation of elevated NBS IRT concentrations. Infants with CF have higher NBS IRT levels than CRMS/CFPSID, and higher NBS IRT concentrations were present in infants with CRMS/CFSPID→CF than CRMS/CFSPID→ CRMS/CFSPID. NBS IRT concentrations, in concert with other factors, may have the potential to predict the likelihood of CF amongst infants with CRMS/CFSPID
    corecore