1,084 research outputs found
Inelastic cotunneling in quantum dots and molecules with weakly broken degeneracies
We calculate the nonlinear cotunneling conductance through interacting
quantum dot systems in the deep Coulomb blockade regime using a rate equation
approach based on the T-matrix formalism, which shows in the concerned regions
very good agreement with a generalized master equation approach. Our focus is
on inelastic cotunneling in systems with weakly broken degeneracies, such as
complex quantum dots or molecules. We find for these systems a characteristic
gate dependence of the non-equilibrium cotunneling conductance. While on one
side of a Coulomb diamond the conductance decreases after the inelastic
cotunneling threshold towards its saturation value, on the other side it
increases monotonously even after the threshold. We show that this behavior
originates from an asymmetric gate voltage dependence of the effective
cotunneling amplitudes.Comment: 12 pages, 12 figures; revised published versio
The importance of initial-final state correlations for the formation of fragments in heavy ion collisions
Using quantum molecular dynamics simulations, we investigate the formation of
fragments in symmetric reactions between beam energies of E=30AMeV and 600AMeV.
After a comparison with existing data we investigate some observables relevant
to tackle equilibration: dsigma/dErat, the double differential cross section
dsigma/pt.dpz.dpt,... Apart maybe from very energetic E>400AMeV and very
central reactions, none of our simulations gives evidence that the system
passes through a state of equilibrium. Later, we address the production
mechanisms and find that, whatever the energy, nucleons finally entrained in a
fragment exhibit strong initial-final state correlations, in coordinate as well
as in momentum space. At high energy those correlations resemble the ones
obtained in the participant-spectator model. At low energy the correlations are
equally strong, but more complicated; they are a consequence of the Pauli
blocking of the nucleon-nucleon collisions, the geometry, and the excitation
energy. Studying a second set of time-dependent variables (radii,
densities,...), we investigate in details how those correlations survive the
reaction especially in central reactions where the nucleons have to pass
through the whole system. It appears that some fragments are made of nucleons
which were initially correlated, whereas others are formed by nucleons
scattered during the reaction into the vicinity of a group of previously
correlated nucleons.Comment: 45 pages text + 20 postscript figures Accepted for publication in
Physical Review
Breakup Density in Spectator Fragmentation
Proton-proton correlations and correlations of protons, deuterons and tritons
with alpha particles from spectator decays following 197Au + 197Au collisions
at 1000 MeV per nucleon have been measured with two highly efficient detector
hodoscopes. The constructed correlation functions, interpreted within the
approximation of a simultaneous volume decay, indicate a moderate expansion and
low breakup densities, similar to assumptions made in statistical
multifragmentation models.
PACS numbers: 25.70.Pq, 21.65.+f, 25.70.Mn, 25.75.GzComment: 11 pages, LaTeX with 3 included figures; Also available from
http://www-kp3.gsi.de/www/kp3/aladin_publications.htm
Recent Advances in Imprinting Disorders.
Imprinting disorders (ImpDis) are a group of currently 12 congenital diseases with common underlying (epi)genetic etiologies and overlapping clinical features affecting growth, development and metabolism. In the last years it has emerged that ImpDis are characterized by the same types of mutations and epimutations, i.e. uniparental disomies, copy number variations, epimutations, and point mutations. Each ImpDis is associated with a specific imprinted locus, but the same imprinted region can be involved in different ImpDis. Additionally, even the same aberrant methylation patterns are observed in different phenotypes. As some ImpDis share clinical features, clinical diagnosis is difficult in some cases. The advances in molecular and clinical diagnosis of ImpDis help to circumvent these issues, and they are accompanied by an increasing understanding of the pathomechanism behind them. As these mechanisms have important roles for the etiology of other common conditions, the results in ImpDis research have a wider effect beyond the borders of ImpDis. For patients and their families, the growing knowledge contributes to a more directed genetic counseling of the families and personalized therapeutic approaches.COST (BM1208), Bundesministerium für Bildung und Forschung (Network ‘Imprinting Diseases’, 01GM1513B), German Ministry of research and education (01GM1513B)This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1111/cge.1282
Dust and the spectral energy distribution of the OH/IR star OH 127.8+0.0: Evidence for circumstellar metallic iron
We present a fit to the spectral energy distribution of OH 127.8+0.0, a
typical asymptotic giant branch star with an optically thick circumstellar dust
shell. The fit to the dust spectrum is achieved using non-spherical grains
consisting of metallic iron, amorphous and crystalline silicates and water ice.
Previous similar attempts have not resulted in a satisfactory fit to the
observed spectral energy distributions, mainly because of an apparent lack of
opacity in the 3--8 micron region of the spectrum. Non-spherical metallic iron
grains provide an identification for the missing source of opacity in the
near-infrared. Using the derived dust composition, we have calculated spectra
for a range of mass-loss rates in order to perform a consistency check by
comparison with other evolved stars. The L-[12 micron] colours of these models
correctly predict the mass-loss rate of a sample of AGB stars, strengthening
our conclusion that the metallic iron grains dominate the near-infrared flux.
We discuss a formation mechanism for non-spherical metallic iron grains.Comment: 10 pages, 6 figures, accepted for publication by A&
Pion radii in nonlocal chiral quark model
The electromagnetic radius of the charged pion and the transition radius of
the neutral pion are calculated in the framework of the nonlocal chiral quark
model. It is shown in this model that the contributions of vector mesons to the
pion radii are noticeably suppressed in comparison with a similar contribution
in the local Nambu--Jona-Lasinio model. The form-factor for the process
gamma*pi+pi- is calculated for the -1 GeV^2<q^2<1.6 GeV^2. Our results are in
satisfactory agreement with experimental data.Comment: 7 pages, 7 figure
Statistical Multifragmentation of Non-Spherical Expanding Sources in Central Heavy-Ion Collisions
We study the anisotropy effects measured with INDRA at GSI in central
collisions of Xe+Sn at 50 A.MeV and Au+Au at 60, 80, 100 A.MeV incident energy.
The microcanonical multifragmentation model with non-spherical sources is used
to simulate an incomplete shape relaxation of the multifragmenting system. This
model is employed to interpret observed anisotropic distributions in the
fragment size and mean kinetic energy. The data can be well reproduced if an
expanding prolate source aligned along the beam direction is assumed. An either
non-Hubblean or non-isotropic radial expansion is required to describe the
fragment kinetic energies and their anisotropy. The qualitative similarity of
the results for the studied reactions suggests that the concept of a
longitudinally elongated freeze-out configuration is generally applicable for
central collisions of heavy systems. The deformation decreases slightly with
increasing beam energy.Comment: 35 pages, 19 figures, submitted to Nuclear Physics
The Spitzer Spectroscopic Survey of S-type Stars
S-type AGB stars are thought to be in the transitional phase between M-type
and C-type AGB stars. Because of their peculiar chemical composition, one may
expect a strong influence of the stellar C/O ratio on the molecular chemistry
and the mineralogy of the circumstellar dust. In this paper, we present a large
sample of 87 intrinsic galactic S-type AGB stars, observed at infrared
wavelengths with the Spitzer Space Telescope, and supplemented with
ground-based optical data. On the one hand, we derive the stellar parameters
from the optical spectroscopy and photometry, using a grid of model
atmospheres. On the other, we decompose the infrared spectra to quantify the
flux-contributions from the different dust species. Finally, we compare the
independently determined stellar parameters and dust properties. For the stars
without significant dust emission, we detect a strict relation between the
presence of SiS absorption in the Spitzer spectra and the C/O ratio of the
stellar atmosphere. These absorption bands can thus be used as an additional
diagnostic for the C/O ratio. For stars with significant dust emission, we
define three groups, based on the relative contribution of certain dust species
to the infrared flux. We find a strong link between group-membership and C/O
ratio. We show that these groups can be explained by assuming that the
dust-condensation can be cut short before silicates are produced, while the
remaining free atoms and molecules can then form the observed magnesium
sulfides or the carriers of the unidentified 13 and 20 micron features.
Finally, we present the detection of emission features attributed to molecules
and dust characteristic to C-type stars, such as molecular SiS, hydrocarbons
and magnesium sulfide grains. We show that we often detect magnesium sulfides
together with molecular SiS and we propose that it is formed by a reaction of
SiS molecules with Mg.Comment: Accepted for publication in A&
Breakup Conditions of Projectile Spectators from Dynamical Observables
Momenta and masses of heavy projectile fragments (Z >= 8), produced in
collisions of 197Au with C, Al, Cu and Pb targets at E/A = 600 MeV, were
determined with the ALADIN magnetic spectrometer at SIS. An analysis of
kinematic correlations between the two and three heaviest projectile fragments
in their rest frame was performed. The sensitivity of these correlations to the
conditions at breakup was verified within the schematic SOS-model. The data
were compared to calculations with statistical multifragmentation models and to
classical three-body calculations. Classical trajectory calculations reproduce
the dynamical observables. The deduced breakup parameters, however, differ
considerably from those assumed in the statistical multifragmentation models
which describe the charge correlations. If, on the other hand, the analysis of
kinematic and charge correlations is performed for events with two and three
heavy fragments produced by statistical multifragmentation codes, a good
agreement with the data is found with the exception that the fluctuation widths
of the intrinsic fragment energies are significantly underestimated. A new
version of the multifragmentation code MCFRAG was therefore used to investigate
the potential role of angular momentum at the breakup stage. If a mean angular
momentum of 0.75/nucleon is added to the system, the energy fluctuations
can be reproduced, but at the same time the charge partitions are modified and
deviate from the data.
PACS numbers: 25.70.Mn, 25.70.Pq, 25.75.Ld, 25.75.-qComment: 38 pages, RevTeX with 21 included figures; Also available from
http://www-kp3.gsi.de/www/kp3/aladin_publications.htm
- …
