1,235 research outputs found

    Three-dimensional CAD/CAM reconstruction of the iliac bone following DCIA composite flap harvest

    Get PDF
    This article reports a new technique to restore iliac bone integrity with a customized titanium device designed by CAD/CAM, in patients undergoing deep circumflex iliac artery (DCIA) composite flap harvest. Eight consecutive patients who underwent the repair of major head and neck defects with DCIA flaps were enrolled retrospectively. Computed tomography scans of the pelvis were obtained preoperatively. Starting from DICOM data, each personalized device was designed using modelling software and was finally made by additive manufacturing using a laser sintering machine. After surgery, the patients were followed up at 3-month intervals to evaluate the incidence of complications and the long-term outcome at the donor site. A subcutaneous seroma developed in one patient and an inguinal skin burn occurred in another. At a median follow-up of 12 months, the patients did not report pain, or any gait or sensory disturbance at the donor site. There was no occurrence of bulging, herniation, or instability or inflammation near the device for the entire follow-up duration. All patients were satisfied with the aesthetic result. In conclusion, reconstruction of the iliac bone with a customized device is safe and well tolerated. We recommend use of this device in patients deemed at high risk of herniation. Further studies are needed to confirm the stability of the device in the long term

    Experimental study for improving the angle dependence of the response of PADC-based personal neutron dosemeters

    Get PDF
    Abstract The large angle dependence of the H p (10) response in PADC-based personal neutron dosemeters constitutes a serious concern in operational radiation protection dosimetry. For planar dosemeters, the typical H p (10) response falls by half or more when the incidence angle changes from 0° to 60°. To reduce this source of systematic uncertainty, configurations based on multiple detectors at different angles have been developed, but their complex geometries constitute an important obstacle to the implementation in routine services. This works proposes a simplified configuration, based on two orthogonal PADC detectors, which is suitable for the implementation in the routine service of INFN-LNF (Frascati). This system was tested, using a ISO slab standard phantom, in the following reference neutron fields: 241 Am–Be and 252Cf(D2O) available at ENEA-Bologna, and 1.2 MeV, 5 MeV and 14.8 MeV mono-chromatic beams available at PTB Braunschweig. Incidence angles of 0°, ±15°, ±30°, ±45° and ±60° were chosen. The sum of the track density in the PADC parallel to the phantom and that in the detector normal to the phantom face, was regarded as "dosemeter reading". On this basis the Hp(10) response was calculated for different energies and incidence angles. As expected, the angular response of the two-orthogonal-element dosemeter is highly improved with respect to that of a single planar PADC

    A Detailed Analysis of a Cygnus Loop Shock-Cloud Interaction

    Get PDF
    The XA region of the Cygnus Loop is a complex zone of radiative and nonradiative shocks interacting with interstellar clouds. We combine five far ultraviolet spectral observations from the Hopkins Ultraviolet Telescope (HUT), a grid of 24 IUE spectra and a high-resolution longslit Halpha spectrum to study the spatial emission line variations across the region. These spectral data are placed in context using ground-based, optical emission line images of the region and a far-UV image obtained by the Ultraviolet Imaging Telescope (UIT). The presence of high-ionization ions (OVI, NV, CIV) indicates a shock velocity near 170 km/s while other diagnostics indicate v_shock=140 km/s. It is likely that a large range of shock velocities may exist at a spatial scale smaller than we are able to resolve. By comparing CIV 1550, CIII 977 and CIII] 1909, we explore resonance scattering across the region. We find that a significant column depth is present at all positions, including those not near bright optical/UV filaments. Analysis of the OVI doublet ratio suggests an average optical depth of about unity in that ion while flux measurements of [SiVIII] 1443 suggest a hot component in the region at just below 10^6K. Given the brightness of the OVI emission and the age of the interaction, we rule out the mixing layer interpretation of the UV emission. Furthermore, we formulate a picture of the XA region as the encounter of the blast wave with a finger of dense gas protruding inward from the pre-SN cavity.Comment: 21 pages, 9 figures, accepted by the Astronomical Journal, July 2001 Full resolution figures available at http://fuse.pha.jhu.edu/~danforth/xa

    Search for Neutron Flux Generation in a Plasma Discharge Electrolytic Cell

    Get PDF
    Following some recent unexpected hints of neutron production in setups like high-voltage atmospheric discharges and plasma discharges in electrolytic cells, we present a measurement of the neutron flux in a configuration similar to the latter. We use two different types of neutron detectors, poly-allyl-diglicol-carbonate (PADC, aka CR-39) tracers and Indium disks. At 95% C.L. we provide an upper limit of 1.5 neutrons cm^-2 s^-1 for the thermal neutron flux at ~5 cm from the center of the cell. Allowing for a higher energy neutron component the largest allowed flux is 64 neutrons cm^-2 s^-1. This upper limit is two orders of magnitude smaller than what previously claimed in an electrolytic cell plasma discharge experiment. Furthermore the behavior of the CR-39 is discussed to point our possible sources of spurious signals.Comment: 4 pages, 3 figure

    A complementary compact laser based neutron source

    Full text link
    Several experiments of neutron generation using high intensity laser sources, with a power exceeding 10^19W/cm^2 via TNSA (Target Normal Sheath Acceleration) or other similar methods, have been performed in the past years in different laboratories. However, so far there is no one running neutron source based on such a technology. In the framework of the Conceptual Report Design of a new accelerator in the Eupraxia project we are studying the possibility to have a laser-based neutron source, not only by TNSA but also from self-injection schemes. We focus our attention on the applications in cultural heritage studies as well also on the complementary role that such a source can have in the framework of large facilities devoted to radiation production.Comment: 4 pages, two figures, 3rd European Advanced Accelerators Concept

    A Comparison of Ultraviolet, Optical, and X-Ray Imagery of Selected Fields in the Cygnus Loop

    Full text link
    During the Astro-1 and Astro-2 Space Shuttle missions in 1990 and 1995, far ultraviolet (FUV) images of five 40' diameter fields around the rim of the Cygnus Loop supernova remnant were observed with the Ultraviolet Imaging Telescope (UIT). These fields sampled a broad range of conditions including both radiative and nonradiative shocks in various geometries and physical scales. In these shocks, the UIT B5 band samples predominantly CIV 1550 and the hydrogen two-photon recombination continuum. Smaller contri- butions are made by emission lines of HeII 1640 and OIII] 1665. We present these new FUV images and compare them with optical Halpha and [OIII], and ROSAT HRI X-ray images. Comparing the UIT images with those from the other bands provides new insights into the spatial variations and locations of these different types of emission. By comparing against shock model calculations and published FUV spectroscopy at select locations, we surmise that resonance scattering in the strong FUV permitted lines is widespread in the Cygnus Loop, especially in the bright optical filaments typically selected for observation in most previous studies.Comment: 21 pages with 10 figures. See http://www.pha.jhu.edu/~danforth/uit/ for full-resolution figure

    Comparing active and passive Bonner Sphere Spectrometers in the 2.5 MeV quasi mono-energetic neutron field of the ENEA Frascati Neutron Generator (FNG)

    Get PDF
    Bonner Sphere Spectrometer (BSS) equipped with passive detectors are used to replace active BSS in radiation environment characterized by high fluence rate, large photon background and pulsed time structure as those encountered near particle accelerators. In this work a newly developed passive Bonner Sphere Spectrometer, using Dysprosium activation foils as central detectors (Dy-BSS), was tested through comparison with a well-established active BSS. As a suitable neutron field, where both systems can correctly operate, the 2.5 MeV quasi mono-energetic beam of the ENEA Frascati Neutron Generator (FNG) was chosen. The two spectrometers are based on substantially different operation principles, therefore their response matrix are very different. In addition, the BSS are independently calibrated in different reference neutron fields. The exercise took place at 90 ďż˝ and at a fixed distance from the neutron emitting deuterated target. As reference data, the results obtained by unfolding the active BSS data were used. The FRUIT unfolding code, ver. 5 was used. The results of the Dy-BSS are fully comparable with those of the active BSS, in terms of both total fluence and shape of the neutron spectra. For the energy range studied in this exercise, the expected level of accuracy of the Dy-BSS and its suitability for operational neutron monitoring are fully confirmed

    Relationship between fatty liver and glucose metabolism: A cross-sectional study in 571 obese children

    Get PDF
    BACKGROUND AND AIMS: Early onset type 2 diabetes mellitus (T2DM) is associated with obesity, insulin resistance and impaired beta-cell function. Non-alcoholic fatty liver disease (NAFLD) may be an independent risk factor for T2DM. We investigated the relationship between NAFLD and glucose metabolism in a large sample of obese children. METHODS AND RESULTS: A total of 571 obese children (57% males and 43% females) aged 8-18 years were consecutively studied at a tertiary care centre specialised in paediatric obesity. Liver ultrasonography was used to diagnose NAFLD after exclusion of hepatitis B and C and alcohol consumption. Oral-glucose tolerance testing (OGTT) was performed; insulin sensitivity was evaluated by using the insulin sensitivity index (ISI) and beta-cell function by using the ratio between the incremental areas under the curve (AUC) of insulin and glucose (incAUCins/incAUCglu). A total of 41% of the obese children had NAFLD. Impaired glucose tolerance or T2DM was present in 25% of the children with NAFLD versus 8% of those without it (p<0.001). Children with NAFLD had higher body mass index (BMI), fasting glucose, 120-min OGTT glucose, incAUCins/incAUCglu and lower ISI as compared with children without NAFLD (p</=0.002). At bootstrapped multivariable median regression analysis controlling for gender, age, pubertal status and BMI, NAFLD was an independent predictor of 120-min OGTT glucose and ISI, but not of incAUCins/incAUCglu. Similar findings were obtained using continuous liver steatosis as the predictor, instead of dichotomous NAFLD. CONCLUSION: NAFLD was present in 41% of our obese children and was associated with higher insulin resistance, but not with impaired beta-cell function
    • …
    corecore