1,280 research outputs found
Description of Nuclear Structure Effects in Subbarrier Fusion by the Interacting Boson Model
Recent theoretical developments in using the Interacting Boson Model to
describe nuclear structure effects in fusion reactions below the Coulomb
barrier are reviewed. Methods dealing with linear and all orders coupling
between the nuclear excitations and the translational motion are discussed, and
the latter is found to lead to a better description of the barrier distribution
data. A systematic study of the available data (cross sections, barrier and
spin distributions) in rare-earth nuclei is presented.Comment: 9 pages + 2 Figures (in eps form). To be published in the Proceedings
of the FUSION97 Conference, South Durras, Australia, March 1997 (J. Phys. G).
Full text and figures are also available at
http://nucth.physics.wisc.edu/preprints/mad-nt-97-01.abs.htm
Probing anharmonic properties of nuclear surface vibration by heavy-ion fusion reactions
Describing fusion reactions between ^{16}O and ^{154}Dy and, between ^{16}O
and ^{144}Sm by the and interacting boson model, we show that
heavy-ion fusion reactions are strongly affected by anharmonic properties of
nuclear surface vibrations and nuclear shape, and thus provide a powerful
method to study details of nuclear structure and dynamics.Comment: 8 pages, 5 figures, To be published in the Proceedings of the FUSION
97 Conference, South Durras, Australia, March 1997 (J. Phys. G
Mutant p53 establishes targetable tumor dependency by promoting unscheduled replication
Gain-of-function (GOF) p53 mutations are observed frequently in most intractable human cancers and establish dependency for tumor maintenance and progression. While some of the genes induced by GOF p53 have been implicated in more rapid cell proliferation compared with p53-null cancer cells, the mechanism for dependency of tumor growth on mutant p53 is unknown. This report reveals a therapeutically targetable mechanism for GOF p53 dependency. We have shown that GOF p53 increases DNA replication origin firing, stabilizes replication forks, and promotes micronuclei formation, thus facilitating the proliferation of cells with genomic abnormalities. In contrast, absence or depletion of GOF p53 leads to decreased origin firing and a higher frequency of fork collapse in isogenic cells, explaining their poorer proliferation rate. Following genome-wide analyses utilizing ChIP-Seq and RNA-Seq, GOF p53–induced origin firing, micronuclei formation, and fork protection were traced to the ability of GOF p53 to transactivate cyclin A and CHK1. Highlighting the therapeutic potential of CHK1’s role in GOF p53 dependency, experiments in cell culture and mouse xenografts demonstrated that inhibition of CHK1 selectively blocked proliferation of cells and tumors expressing GOF p53. Our data suggest the possibility that checkpoint inhibitors could efficiently and selectively target cancers expressing GOF p53 alleles
Path integral approach to no-Coriolis approximation in heavy-ion collisions
We use the two time influence functional method of the path integral approach
in order to reduce the dimension of the coupled-channels equations for
heavy-ion reactions based on the no-Coriolis approximation. Our method is
superior to other methods in that it easily enables us to study the cases where
the initial spin of the colliding particle is not zero. It can also be easily
applied to the cases where the internal degrees of freedom are not necessarily
collective coordinates. We also clarify the underlying assumptions in our
approach.Comment: 11 pages, Latex, Phys. Rev. C in pres
Age and size at maturity: sex, environmental variability and developmental thresholds
In most organisms, transitions between different life-history stages occur later and at smaller sizes as growth conditions deteriorate. Day and Rowe recently proposed that this pattern could be explained by the existence of developmental thresholds (minimum sizes or levels of condition below which transitions are unable to proceed). The developmental-threshold model predicts that the reaction norm of age and size at maturity will rotate in an anticlockwise manner from positive to a shallow negative slope if: (i) initial body size or condition is reduced; and/or (ii) some individuals encounter poor growth conditions at increasingly early developmental stages. We tested these predictions by rearing replicated populations of soil mites Sancassania berlesei (Michael) under different growth conditions. High-food environments produced a vertical relationship between age and size at maturity. The slope became increasingly shallow as food was reduced. By contrast, high food in the maternal environment reduced the slope of the reaction norm of age and size at maturity, whereas low food increased it. Overall, the reaction norm of age and size at maturity in S. berlesei was significantly nonlinear and differed for males and females. We describe how growth conditions, mother's environment and sex determine age and size at maturity in S. berlesei
An Improved Quantum Molecular Dynamics Model and its Applications to Fusion Reaction near Barrier
An improved Quantum Molecular Dynamics model is proposed. By using this
model, the properties of ground state of nuclei from Li to Pb can
be described very well with one set of parameters. The fusion reactions for
Ca+Zr, Ca+Zr and Ca+Zr at energy near
barrier are studied by this model. The experimental data of the fusion cross
sections for Ca+Zr at the energy near barrier can be
reproduced remarkably well without introducing any new parameters. The
mechanism for the enhancement of fusion probability for fusion reactions with
neutron-rich projectile or target is analyzed.Comment: 20 pages, 12 figures, 3 table
Dynamic study on fusion reactions for Ca+Zr around Coulomb barrier
By using the updated improved Quantum Molecular Dynamics model in which a
surface-symmetry potential term has been introduced for the first time, the
excitation functions for fusion reactions of Ca+Zr at
energies around the Coulomb barrier have been studied. The experimental data of
the fusion cross sections for Ca+Zr have been reproduced
remarkably well without introducing any new parameters. The fusion cross
sections for the neutron-rich fusion reactions of Ca+Zr around
the Coulomb barrier are predicted to be enhanced compared with a
non-neutron-rich fusion reaction. In order to clarify the mechanism of the
enhancement of the fusion cross sections for neutron-rich nuclear fusions, we
pay a great attention to study the dynamic lowering of the Coulomb barrier
during a neck formation. The isospin effect on the barrier lowering is
investigated. It is interesting that the effect of the projectile and target
nuclear structure on fusion dynamics can be revealed to a certain extent in our
approach. The time evolution of the N/Z ratio at the neck region has been
firstly illustrated. A large enhancement of the N/Z ratio at neck region for
neutron-rich nuclear fusion reactions is found.Comment: 21 pages, 7 figures,3 table
Enhanced Fusion-Evaporation Cross Sections in Neutron-Rich Sn on Ni
Evaporation residue cross sections have been measured with neutron-rich
radioactive Sn beams on Ni in the vicinity of the Coulomb
barrier. The average beam intensity was particles per second
and the smallest cross section measured was less than 5 mb. Large subbarrier
fusion enhancement was observed. Coupled-channels calculations taking into
account inelastic excitation and neutron transfer underpredict the measured
cross sections below the barrier.Comment: 4 pages including 1 table and 3 figure
Vitality, perceived social support and disease activity determine the performance of social roles in recently diagnosed multiple sclerosis: a longitudinal analysis.
Objective: The aim of this study was to identify the principal determinants that are longitudinally associated with the performance of social roles in the first 3 years following a diagnosis of multiple sclerosis. Design: Inception cohort with 5 measurements over 3 years. Patients: A total of 156 patients recently diagnosed with multiple sclerosis. Method: Performance of social roles was measured using the 2 role functioning and the social sub-scales of the Medical Outcome Study Short Form 36. Potential determinants (n = 43) were divided into the following clusters: patient and disease characteristics (n = 12), psychosocial characteristics (n= 10), basic functions (n= 18) and basic activities (n= 3). Multivariate longitudinal regression analyses were performed with generalized estimating equations. A backwards selection procedure for every cluster per outcome reduced the large number of potential determinants. In order to determine whether longitudinal associations are present the selected determinants were entered into an overall regression model. Results: Twenty-three candidate determinants were selected. Vitality, measured with the SF36 sub-scale vitality, the T2-weighted supratentorial lesion load and the perceived amount of social support, measured with the Social Support List Discrepancies, were longitudinally associated with the performance of social roles in 2 or 3 of the models. Conclusion: Vitality, the perceived amount of social support, and disease activity, i.e. the T2-weighted supratentorial lesion load, determine the performance of social roles in the early stages of multiple sclerosis. © 2007 The Authors. Journal Compilation © 2007 Foundation of Rehabilitation Information
Tuning of Collagen Scaffold Properties Modulates Embedded Endothelial Cell Regulatory Phenotype in Repair of Vascular Injuries In Vivo
Perivascularly implanted matrix embedded endothelial cells (MEECs) are potent regulators of inflammation and intimal hyperplasia following vascular injuries. Endothelial cells (ECs) in collagen scaffolds adopt a reparative phenotype with significant therapeutic potential. Although the biology of MEECs is increasingly understood, tuning of scaffold properties to control cell-substrate interactions is less well-studied. It is hypothesized that modulating scaffold degradation would change EC phenotype. Scaffolds with differential degradation are prepared by cross-linking and predegradation. Vascular injury increases degradation and the presence of MEECs retards injury-mediated degradation. MEECs respond to differential scaffold properties with altered viability in vivo, suppressed smooth muscle cell (SMC) proliferation in vitro, and altered interleukin-6 and matrix metalloproteinase-9 expression. When implanted perivascularly to a murine carotid wire injury, tuned scaffolds change MEEC effects on vascular repair and inflammation. Live animal imaging enables real-time tracking of cell viability, inflammation, and scaffold degradation, affording an unprecedented understanding of interactions between cells, substrate, and tissue. MEEC-treated injuries improve endothelialization and reduce SMC hyperplasia over 14 d. These data demonstrate the potent role material design plays in tuning MEEC efficacy in vivo, with implications for the design of clinical therapies.National Institutes of Health (U.S.) (Grant R01 GM 49039
- …
