12 research outputs found

    Dietary essential oils improve feed efficiency and hepatic antioxidant content of broiler chickens

    Get PDF
    The aim of this study was to test the hypothesis of an improved growth, dietary nutrient availability and overall health of broiler chickens reared on recycled litter when fed a standardised combination of essential oils (EO; carvacrol, cinnamaldehyde and capsicum oleoresin). To assess the effect of dietary treatments, feed intake, weight gain, feed efficiency, availability of dietary nutrients and energy, villus morphometry, excreta sialic acid concentration, hepatic antioxidants and serum amyloid A (SAA) when fed to broiler chickens were evaluated. Counts of Eimeria spp. oocysts were also determined in excreta samples. Four experimental diets were offered, including two basal control diets based on either wheat or maize that contained 215 g CP/kg and 12.13 MJ/kg metabolisable energy and another two diets using the basal control diets supplemented with the EO combination at 100 mg/kg diet. Each diet was fed to eight floor pens, containing two birds each, following randomisation. Birds fed the EO-supplemented diets had an improved (P0.05) were observed in villus morphometry, sialic acid secretion, number of oocysts and SAA. Feeding the EO improved (P<0.05) the retention of dietary Ca and Na. Compared with maize, feeding wheat-based diets improved the retention coefficients for Ca, P and Na (P<0.05). Feeding dietary EO improved (P<0.05) the concentrations of the hepatic antioxidants, including carotene, coenzyme Q10 and total vitamin E. The hepatic concentration of carotene of the maize-fed birds was 55.6% greater (P<0.05) compared with the wheat-fed birds. These results demonstrated that the addition of a standardised combination of EO in wheat- and maize-based diets provided benefits in terms of feed efficiency, mineral retention and antioxidant status of the birds when reared on recycled litter

    Modificación del nivel y tipo de fibra en piensos de cerdos mediante la inclusión de subproductos agroindustriales sobre las características del purín y su potencial de producción de amoniaco, biogás y metano (resultados preliminares)

    Get PDF
    La alimentación de los animales se considera una vía importante de mitigación de la emisión de gases contaminantes a la atmósfera, principalmente amoniaco (NH3) y metano (CH4), (BREF, 2006). La incorporación de fuentes de fibra fácilmente fermentable poco lignificada en piensos es capaz de modificar el comportamiento fermentativo de las bacterias en el intestino grueso y el balance entre el nitrógeno (N) orgánico e inorgánico y el pH de las deyecciones (Portejoie y col., 2004; Jarret y col., 2011). Este efecto, que no altera la excreción total de N puede condicionar considerablemente a la emisión de NH3. Por otro lado, el efecto de la inclusión de fuentes de fibra en la dieta sobre las emisiones de CH4 ha sido menos estudiado. Algunos estudios sugieren que un incremento de la cantidad de fibra en los piensos puede aumentar la producción de CH4 por cerdo y día (Jarret y col., 2011) al reducir la digestibilidad de los nutrientes e incrementar la cantidad de materia orgánica no digerida en las heces. El objetivo del presente estudio es evaluar los efectos de las variaciones en el nivel y tipo de fibra (fermentable y no fermentable) de los piensos sobre las características del purín y las emisiones de NH3,CH4 y Biogás

    The effect of slurry composition on methane potential emissions from fattening pig slurries: a review of three nutrition assays

    Get PDF
    This study reviews the effects of pig slurry composition on the biochemical methane (CH4) potential (B0), using the information collected in three nutrition assays. A total of 84 animals were used to test the effect of 13 different diets

    Dietary Fibre in Pig's Diets: Effects on Greenhouse Gas Emissions from Slurry Storage to Field Application

    Get PDF
    Pig’s slurry is a key source of greenhouse gases (GHG). In Spain, GHG emissions (CH4+ N2O) from pig slurry (storage and land application) accounted in 2011 for 18.4% of total GHG emissions (in CO2- equivalent) of the agriculture sector according to the National Inventory Report (NIR). Slurry composition can be modified through diet manipulation. The aim of this work was to evaluate the effect of different fibre types in fattening pigs’ diets on GHG emissions from pig slurry storage and field application

    Composition, potential emissions and agricultural value of pig slurry from Spanish commercial farms

    Full text link
    [EN] Pig slurry is a valuable fertilizer for crop production but at the same time its management may pose environmental risks. Slurry samples were collected from 77 commercial farms of four animal categories (gestating and lactating sows, nursery piglets and growing pigs) and analyzed for macronutrients, micronutrients, heavy metals and volatile fatty acids. Emissions of ammonia (NH3) and biochemical methane potential (BMP) were quantified. Slurry electrical conductivity, pH, dry matter content and ash content were also determined. Data analysis included an analysis of correlations among variables, the development of predictionmodels for gaseousemissions and the analysis of nutritional content of slurries for crop production. Descriptive information is provided in this work and shows a wide range of variability in all studied variables. Animal category affected some physicochemical parameters, probably as a consequence of different slurry management and use of cleaning water. Slurries from gestating sows and growing pigs tended to be more concentrated in nutrients, whereas the slurry from lactating sows and nursery piglets tended to be more diluted. Relevant relationships were found among slurry characteristics expressed in fresh basis and gas emissions. Predictivemodels using on-farmmeasurable parameterswere obtained forNH3 (R2 = 0.51) andCH4 (R2 = 0.76), which suggests that BMP may be estimated in commercial farms from easily determined slurry characteristics. Finally, slurry nutrient composition was highly variable. Therefore, complete analyses of slurries should be performed for an effective and environmental friendly land application.This project was funded by the Spanish Ministry of Science and Innovation (AGL2011-30023) and the Valencian Government (ACOMP/2013/118). We thank the BABEL Project, Building Academic Bonds between Europe and Latin America. Erasmus Mundus Programme Action 2 for PhD fellowships. The translation of this paper was funded by the Universitat Politecnica de Valencia, Spain.Antezana-Julian, WO.; Blas, CD.; García-Rebollar, P.; Rodríguez, C.; Beccaccia, A.; Ferrer Riera, P.; Cerisuelo, A.... (2016). Composition, potential emissions and agricultural value of pig slurry from Spanish commercial farms. Nutrient Cycling in Agroecosystems. 104(2):159-173. https://doi.org/10.1007/s10705-016-9764-3S1591731042Aarnink AJA, Verstegen MWA (2007) Nutrition, key factor to reduce environmental load from pig production. Livest Sci 109(1–3):194–203Abubaker J, Risberg K, Jönsson E, Dahlin A S, Cederlund H, Pell M (2015) Short-term effects of biogas digestates and pig slurry application on soil microbial activity. Appl Environ Soil Sci. Article ID 658542: 1–15Adekunle KF, Okolie JA (2015) A review of biochemical process of anaerobic digestion. Adv Biosci Biotechnol 6:205–212Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy J, Kalyuzhnyi S, Jenicek P, Van Lier JB (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59(5):927–934Antezana W, Calvet S, Beccaccia A, Ferrer P, De Blas C, García-Rebollar P, Cerisuelo A (2015) Effects of nutrition on digestion efficiency and gaseous emissions from slurry in growing pigs: III. Influence of varying the dietary level of calcium soap of palm fatty acids distillate with or without orange pulp supplementation. Anim Feed Sci Technol 209:128–136APHA (2005) Standard methods for the examination of water and wastewater. Centennial, BaltimoreBai ZH, Qin W, Chen Q, Oenema O, Zhang FS (2014) Changes in pig production in china and their effects on nitrogen and phosphorus use and losses. Environ Sci Technol 48:12742–12749Beccaccia A, Ferrer P, Ibáñez MA, Estellés F, Rodríguez C, Moset V, De Blas C, Calvet S, García-rebollar P (2015) Relationships among slurry characteristics and gaseous emissions at different types of commercial spanish pig farms. Span J Agric Res 13(1):1–15Conn KL, Topp E, Lazarovits G (2007) Factors influencing the concentration of volatile fatty acids, ammonia, and other nutrients in stored liquid pig manure. J Environ Qual 36(2):440–447Diacono M, Montemurro F (2010) Long-term effects of organic amendments on soil fertility. A review. Agron Sustain Dev 30:401–422. doi: 10.1051/agro/2009040Díez JA, Hernaiz P, Muñoz MJ, Torre A, Vallejo A (2006) Impact of pig slurry on soil properties, water salinization, nitrate leaching and crop yield in a four-year experiment in Central Spain. Soil Use Manag 20(4):444–450Dourmad J-Y, Jondreville C (2007) Impact of nutrition on nitrogen, phosphorus, Cu and Zn in pig manure, and on emissions of ammonia and odours. Livest Sci 112(3):192–198EUROSTAT (2015) Pig farming sector—statistical portrait. Pig Farming in the European Union: considerable variations from one member state to another. Statistics in Focus 15/2014. Author: Pol Marquer, Teresa Rabade, Roberta Forti ISSN:2314-9647, Catalogue number: KS-SF-14-015-EN-NFangueiro D, Lopes C, Surgy S, Vasconcelos E (2012a) Effect of the pig slurry separation techniques on the characteristics and potential availability of N to plants in the resulting liquid and solid fractions. Biosyst Eng 113(2):187–194Fangueiro D, Ribeiro H, Vasconcelos E, Coutinho J, Cabral F (2012b) Influence of animal slurries composition and relative particle size fractions on the C and N mineralization following soil incorporation. Biomass Bioenergy 47:50–51Ferrer P, Cambra-López M, Cerisuelo A, Peñaranda D, Moset V (2014) The use of agricultural substrates to improve methane yield in anaerobic co-digestion with pig slurry: effect of substrate type and inclusion level. Waste Manag 34:196–203Galassi G, Colombini S, Malagutti L, Crovetto GM, Rapetti L (2010) Effects of high fibre and low protein diets on performance, digestibility, nitrogen excretion and ammonia emission in the heavy pig. Anim Feed Sci Technol 161:3–4Gopalan P, Jensen PD, Batstone DJ (2013) Anaerobic digestion of swine effluent: impact of production stages. Biomass Bioenergy 48:121–129Hernández D, Fernández JM, Plaza C, Polo A (2007) Water-soluble organic matter and biological activity of a degraded soil amended with pig slurry. Sci Total Environ 378:101–103Hernández D, Polo A, Plaza C (2013) Long-term effects of pig slurry on barley yield and N use efficiency under semiarid mediterranean conditions. Eur J Agron 44:47–86Hristov AN, Oh J, Lee C, Meinen R, Montes F, Ott T, Firkins J, Rotz A, Dell C, Adesogan A, Yang W, Tricarico J, Kebreab E, Waghorn G, Dijkstra J, Oosting S (2013) Mitigation of greenhouse gas emissions in livestock production—A review of technical options for non-CO2 emissions. In: Gerber PJ, Henderson B, Makkar HPS (eds) FAO Animal Production and Health Paper No. 177. FAO, RomeIguácel F, Yagüe MR, Betrán J, Orús F (2011) Ensayos de Fertilización Con Purín Porcino, En Cereales de Invierno de Secano, Dirección General de Desarrollo Rural, Centro de Transferencia Agroalimentaria, Gobierno de Aragón. Informe Técnico 226:15Jarret G, Cerisuelo A, Peu P, Martinez J, Dourmad JY (2012) Impact of pig diets with different fibre contents on the composition of excreta and their gaseous emissions and anaerobic digestion. Agric Ecosyst Environ 160:51–58Jouany JP (1982) Volatile fatty acid and alcohol determination in digestive contents, silage juices, bacterial cultures and anaerobic fermentor contents. Sci Alimen 2:131–144Krupa SV (2003) Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environ Pollut 124(2):179–221Mantovi P, Fumagalli L, Beretta GP, Guermandi M (2006) Nitrate leaching through the unsaturated zone following pig slurry applications. J Hydrol 316:1–4Martínez-Suller L, Azzellino A, Provolo G (2008) Analysis of livestock slurries from farms across Northern Italy: relationship between indicators and nutrient content. Biosyst Eng 99(4):540–552Moral R, Moreno-Caselles J, Perez-Murcia MD, Perez-Espinosa A, Rufete B, Paredes C (2005a) Characterisation of the organic matter pool in manures. Bioresour Technol 96(2):153–158Moral R, Perez-Murcia MD, Perez-Espinosa A, Moreno-Caselles J, Paredes C (2005b) Estimation of nutrient values of pig slurries in Southeast Spain using easily determined properties. Waste Manag 25(7):719–725Moral R, Perez-Murcia MD, Perez-Espinosa A, Moreno-Caselles J, Paredes C, Rufete B (2008) Salinity, organic content, micronutrients and heavy metals in pig slurries from South-Eastern Spain. Waste Manag 28(2):367–371Morazán H, Alvarez-Rodriguez J, Seradj AR, Balcells J, Babot D (2015) Trade-offs among growth performance, nutrient digestion and carcass traits when feeding low protein and/or high neutral-detergent fiber diets to growing-finishing pigs. Anim Feed Sci Technol 207:168–180Moset V, Cambra-López M, Estellés F, Torres AG, Cerisuelo A (2012) Evolution of chemical composition and gas emissions from aged pig slurry during outdoor storage with and without prior solid separation. Biosyst Eng 111(1):2–10Ndegwa PM, Vaddella VK, Hristov N, Joo HS (2009) Measuring concentrations of ammonia in ambient air or exhaust air stream using acid traps.  J Environ Qual 38(2):647–653Nicholson FA, Chambers BJ, Williams JR, Unwin RJ (1999) Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresour Technol 70(1):23–31Olusegun OS (2014) Influence of NPK 15-15-15 Fertilizer and Pig Manure on Nutrient Dynamics and Production of Cowpea, Vigna unguiculata L. Walp. Am J Agric For 2(6):267Parera i Pous J, Olivé D, Mallol Nabot C, Torrijos NC (2010) Adaptación Del Uso de La Conductividad Eléctrica (CE) Para Determinar de Forma Rápida El Contenido En Nutrientes Del Purín Porcino En Catalunya. International Workshop on Anaerobic Digestion of Slaughterhouse Waste, pp 67–76Patience JF, Gould SA, Koehler D, Corrigan B, Elsbernd A, Holloway CL (2015) Super-dosed phytase improves rate and efficiency of gain in nursery pigs. Anim Ind Rep AS 661:98Penha HG, Menezes JF, Silva CA, Lopes G, Carvalho CA, Ramos SJ, Guilherme LRG (2015) Nutrient accumulation and availability and crop yields following long-term application of pig slurry in a Brazilian Cerrado soil. Nutr Cycl Agroecosyst 101(2):259–269Popovic O, Jensen LS (2012) Storage temperature affects distribution of carbon, VFA, ammonia, phosphorus, copper and zinc in raw pig slurry and its separated liquid fraction. Water Res 46(12):3849–3858Provolo G, Martínez-Suller L (2007) In situ determination of slurry nutrient content by electrical conductivity. Bioresour Technol 98(17):3235–3242Sánchez M, González JL (2005) The fertilizer value of pig slurry. I. Values depending on the type of operation. Bioresour Technol 96(10):1117–1123SAS Institute (2008) SAS/STAT User´s guide, v 9.3. SAS Institute Inc., CarySchoumans OF, Chardon WJ, Bechmann ME, Gascuel-Odoux C, Hofman G, Kronvang B, Rubæk HG, Ulén B, Dorioz JM (2014) Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a review. Sci Total Environ 468–469:1255–1266Schröder JJ, Cordell D, Smit AL, Rosemarin A (2010) Sustainable use of phosphorus. Plant Research International Wageningen UR. Report 357Scotford IM, Cumby TR, White RP, Carton OT, Lorenz F, Hatterman U, Provolo G (1998) Estimation of the nutrient value of agricultural slurries by measurement of physical and chemical properties. J Agric Eng Res 71(3):291–305Snoek DJW, Johannes DS, Ogink NWM, Koerkamp PWGG (2014) Sensitivity analysis of mechanistic models for estimating ammonia emission from dairy cow urine puddles. Biosyst Eng 121:12–24Suresh A, Choi HL, Oh DI, Moon OK (2009) Prediction of the nutrients value and biochemical characteristics of swine slurry by measurement of EC—electrical conductivity. Bioresour Technol 100:4683–4689Thygesen O, Triolo JM, Sommer SG (2012) Indicators of physical properties and plant nutrient content of animal slurry and separated slurry. Biol Eng Trans 5(3):123–135Triolo JM, Sommer SG, Møller HB, Weisbjerg MR, Jiang XY (2011) A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential. Bioresour Technol 102:9395–9402Van Duivenbooden N, de Wit CT, Van Keulen H (1996) Nitrogen, phosphorus and potassium relations in five major cereals reviewed in respect to fertilizer recommendations using simulation modelling. Fertil Res Wagening 44:37–49Viguria M, Sanz-Cobeña A, López DM, Arriaga H, Merino P (2015) Ammonia and greenhouse gases emission from impermeable covered storage and land application of cattle slurry to bare soil. Agric Ecosyst Environ 199:261–271Villamar CA, Canuta T, Belmonte M, Vidal G (2012) Characterization of swine wastewater by toxicity identification evaluation methodology (TIE). Water Air Soil Pollut 223(1):363–369Villamar CA, Rodríguez DC, López D, Peñuela G, Vidal G (2013) Effect of the generation and physical–chemical characterization of swine and dairy cattle slurries on treatment technologies. Waste Manage Res 31(8):820–828Villar MC, Petrikova V, Díaz-Raviña M, Carballas T (2004) Recycling of organic wastes in burnt soils: combined application of poultry manure and plant cultivation. Waste Manage 24(4):365–370Webb J, Menzi H, Pain BF, Misselbrook TH, Dämmgen U, Hendriks H, Döhler H (2005) Managing ammonia emissions from livestock production in Europe. Environ Pollut 135:399–406Webb J, Broomfield M, Jones S, Donovan B (2014) Ammonia and odour emissions from UK pig farms and nitrogen leaching from outdoor pig production. Sci Total Environ 470:865–875Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860Yagüe MR, Bosch-Serra AD, Boixadera J (2012) Measurement and estimation of the fertiliser value of pig slurry by physicochemical models: usefulness and constraints. Biosyst Eng 111(2):206–216Zhang W, Wei Q, Wu S, Qi D, Li W, Zuo Z, Dong R (2014) Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions. Appl Energy 128:175–18

    Diet management to effectively abate N2O emissions from surface applied pig slurry

    Get PDF
    [EN] Application of manure (urine and/or feces) to agricultural soils enhances emissions of gases such as nitrous oxide (N2O) and carbon dioxide (CO2). Some minor N compounds such as hippuric acid and benzoic acid present in urine can be controlled through diet manipulation to mitigate these emissions. The aim of this study was to evaluate how the inclusion of fibrous by-products in the diet of pigs affects hippuric and benzoic acid concentrations in the excreted urine/slurry, and their possible effect on N2O emissions following application of these manures to soil. Slurries were obtained from growing-finishing pigs fed five contrasting diets: a conventional diet (pig slurry control, PSC); and orange pulp and carob meal at a dietary fiber level of 75 or 150 g kg(-1) (OP-75; OP-150; CM-75; CM-150) and were then applied to mesocosms containing young ryegrass plants. A control treatment without slurry was also included. The N2O and CO2 emissions were measured using static chambers following slurry application, alongside measurements of soil ammonium (NH4), nitrate (NO3-), and dissolved organic carbon. Soils amended with slurries obtained from fibre by-products, OP and CM, decreased N2O emissions by 65 and 47%, respectively, compared with slurries obtained through a conventional pig diet. Benzoic acid was negatively correlated with N2O emission for slurries from OP diets, which had over double the hippuric acid content, and more than 1.8 times the benzoic acid content than the CM. However, this effect only occurred during the first week due to rapid degradation of this compound within soil. The possible toxic effect of benzoic acid did not appear to affect soil respiration, since a positive correlation was found. Results of a benzoic acid balance (considering both intake through feed and release through urine) indicated that the source of both acids were phenolic compounds (polyphenolic or lignin) present in the fibrous fraction. These results show that N2O emissions are more affected than CO2 by to compounds within urine/faeces that can be manipulated indirectly through the diet.The authors are grateful to the Spanish Ministry of Science and Innovation and the Autonomous Community of Madrid for their economic support through Projects AGL2011-30023, AGL2012-37815-CO5-01,AGL2015-64582-C3-3-R and the Agrisost Project S2013/ABI-2717. This study would not have been possible without technical assistance from the technicians and researchers at the Department of Agricultural Chemistry and Analysis of the Agronomy Faculty (Technical University of Madrid, UPM) especially Gemma Andreu Cadenas. We are also grateful to Dr. Pedro Aparicio for his support in determination of BA in feeds. The input from DRC and KAM contribute to the UK-China Virtual Joint Centre for Improved Nitrogen Agronomy (CINAg), funded by the Newton Fund via UK BBSRC/NERC (BB/N013468/1)Sánchez-Martín, L.; Beccaccia, A.; De Blas, C.; Sanz-Cobeña, A.; García-Rebollar, P.; Estellés, F.; Mardsen, K.... (2017). Diet management to effectively abate N2O emissions from surface applied pig slurry. Agriculture Ecosystems & Environment. 239:1-11. https://doi.org/10.1016/j.agee.2016.12.007S11123

    Effects of nutrition on digestion efficiency and gaseous emissions from slurry in growing-finishing pigs. I. Influence of the inclusion of two levels of orange pulp and carob meal in isofibrous diets

    Full text link
    An experiment was conducted to investigate the effects of increasing the level of two sources of fibrous by-products, orange pulp (OP) and carob meal (CM), in iso-NDF growing-finishing pig diets on nutrient balance, slurry composition and potential ammonia (NH3) and methane (CH4) emissions. Thirty pigs (85.4 +/- 12.3 kg) were fed five iso-nutritive diets: a commercial control wheat/barley (C) and four experimental diets including two sources of fibrous by-products (OP and CM) and two dietary levels (75 and 150 g/kg) in a 2 x 2 factorial arrangement. After a 14-day adaptation period, faeces and urine were collected separately for 7 days to measure nutrient digestibility and the excretory patterns of N from pigs (6 replicates per diet) housed individually in metabolic pens. For each animal, the derived NH3 and CH4 emissions were measured in samples of slurry over an 11- and 100-day storage periods, respectively. Source and level of the fibrous by-products affected digestion efficiency in a different way as the coefficients of total tract apparent digestibility (CTTAD) for dry matter (DM), organic matter (OM), fibre fractions and gross energy increased with OP but decreased with CM (P<0.05). Crude protein CTTAD decreased with the inclusion of both sources of fibre, being lower at the highest dietary level. Faecal concentration of fibre fractions increased (P<0.05) with the level of inclusion of CM but decreased with that of OP (P<0.01). High dietary level for both sources of fibre increased (P<0.02) CP faecal content but urine N content decreased (from 205 to 168 g/kg DM, P<0.05) in all the fibre-supplemented compared to C diet. Additionally, the proportions of undigested dietary, water soluble, and bacterial and endogenous debris of faecal N excretion were not affected by treatments. The initial slurry characteristics did not differ among different fibre sources and dietary levels, except pH, which decreased at the highest by-product inclusion levels. Ammonia emission per kg of slurry was lower in all the fibre-supplemented diets than in C diet (from 2.44 to 1.81 g, P< 0.05). Additionally, slurries from the highest dietary level of by-products tended (P< 0.06) to emit less NH3 per kg of initial total Kjeldahl N and showed a lower Bo, independently of the fibre source. Thus, the fibre sources and their dietary levels affected pig nutrient digestion and composition of urine and faeces, showing potential to decrease NH3 and CH4 emissions at high levels of inclusion, independently of type of fibre. C) 2015 Elsevier B.V. All rights reserved.This project was funded by the Spanish Ministry of Science and Innovation (AGL2011-30023) and the Valencian Government (ACOMP/2013/118). We also thank CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70040-020, Brazil for a research fellowship grant.Beccaccia, A.; Calvet Sanz, S.; Cerisuelo García, A.; Ferrer Riera, P.; Garcia-Rebollar, P.; Blas, CD. (2015). Effects of nutrition on digestion efficiency and gaseous emissions from slurry in growing-finishing pigs. I. Influence of the inclusion of two levels of orange pulp and carob meal in isofibrous diets. Animal Feed Science and Technology. 208:158-169. https://doi.org/10.1016/j.anifeedsci.2015.07.008S15816920

    Animal feeding strategies to abate N2O and NH3 emission from surface applied slurry to a grassland soil

    No full text
    The main objective of this study was to evaluate the effect of five different feeds, in terms of protein content, on the emissions of ammonia (NH3), nitrous oxide (N2O) and carbon dioxide (CO2) from a grassland soil fertilized with pig slurries

    Effects of nutrition on digestion efficiency and gaseous emissions from slurry in growing pigs: II. Effect of protein source in practical diets

    Full text link
    This research aimed to investigate effects of protein source in practical diets on nutrient excretion and potential emissions of ammonia (NH3) and methane (CH4) in pigs. Three experimental feeds were designed to substitute a mixture of soybean meal and soybean hulls (SB diet) with sunflower meal (SFM) or wheat DDGS (WDDGS). The proportion of other ingredients was also modified in order to maintain similar nutrient contents across diets. Changes in protein source led to differences in dietary content of neutral detergent insoluble crude protein, soluble fibre (SF) and acid detergent lignin. Twenty-four pigs (8 per diet), weighing 52.3 or 60.8 kg at the first and second batch, respectively, were housed individually in metabolic pens to determine during a 7-day period dry matter (DM) balance, coefficients of total tract apparent digestibility (MAD) of nutrients, and faecal and urine composition. Representative slurry samples from each animal were used to measure NH3 and CH4 emissions over an 11 and/or 100-day storage period, respectively. Neither DM intake, nor DM or energy CTTAD differed among experimental diets, but type of feed affected (P WDDGS > SB (from 0.171 to 0.109 and 0.086, respectively) in parallel to a decrease of potential CH4 emission per g of OM of slurry (from 301 to 269 and 256 mL, respectively). When both gaseous emissions were expressed per animal and day, differences followed the same trend, but did not reach significant levels. (C) 2015 Elsevier B.V. All rights reserved.This project was funded by the Spanish Ministry of Science and Innovation (AGL2011-30023) and the Valencian Government (ACOMP/2013/118). We also thank CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70040-020, Brazil for a research fellowship grant.Beccaccia, A.; Cerisuelo García, A.; Calvet Sanz, S.; Ferrer Riera, P.; Estellés, F.; Blas, CD.; Garcia-Rebollar, P. (2015). Effects of nutrition on digestion efficiency and gaseous emissions from slurry in growing pigs: II. Effect of protein source in practical diets. Animal Feed Science and Technology. 209:137-144. https://doi.org/10.1016/j.anifeedsci.2015.07.02113714420
    corecore