321 research outputs found

    Brachiopod Fauna from the Deep Mediterranean Sea: Distribution Patterns and Ecological Preferences

    Get PDF
    Compared to their fossil counterparts, living brachiopods are investigated far less often, due to their occurrence in remote environments such as dark caves or deep environments. Due to the scarcity of studies targeting in situ brachiopods' populations, large-scale information on their distribution and ecological preferences is still lacking, especially on hardgrounds. The extensive employment of remotely operated vehicles (ROVs), however, has opened up the chance to better explore this taxon's diversity and ecology in the mesophotic and bathyal zones. The analysis of over 600 h of video footage collected from 624 sites, from 40 m to 1825 m, located along the Ligurian and Tyrrhenian coasts of Italy and the Sicily Channel, allowed for a large-scale investigation. The four identified species, Novocrania anomala, Gryphus vitreus, Megerlia truncata and Terebratulina retusa, emerged as common macrofaunal components of the explored habitats, especially between 150 m and 250 m, with high occurrences in the northern areas, especially on offshore seamounts. All species can form dense aggregations of individuals, with M. truncata showing the densest populations on steep rocky terraces (up to 773 individuals m(-2)). Except for G. vitreus, the only species also recorded on soft bottoms, the others were found exclusively on hardgrounds, with N. anomala showing a peculiar ability to exploit anthropogenic substrates such as terracotta amphorae. No stable species-specific associations were noted, even if numerous species were frequently observed together. Although brachiopods do not show the conspicuous tridimensionality of large filter-feeders, their substrate occupancy and their role in pelagic-benthic processes support their importance in deep-sea Mediterranean ecosystems

    Structure and status of the Italian red coral forests: What can a large-scale study tell?

    Get PDF
    The precious coral Corallium rubrum (Linnaeus, 1758) is a charismatic Mediterranean species. A recent large-scale investigation along the Italian coast highlighted its widespread occurrence at mesophotic and upper bathyal depths, especially on coralligenous and bathyal vertical hardgrounds. The lack of morphometric data limited the considerations on the structure and health status of the populations, fundamental to identify the most vulnerable sites and the correct management actions. For this reason, a ROV dataset, consisting of 624 dives carried out between 40 m and 1825 m in the Ligurian Sea, Tyrrhenian Sea, and Sicily Channel, was analysed to extrapolate quantitative data to describe the populations. Ten random frames were obtained from each of the 170 sites hosting red coral. Density, height, and entanglement were evaluated for about 15700 colonies counted in the frames. The densest populations were mainly found between 40 m and 80 m, with a clear latitudinal density decrease. The mesophotic populations were characterized by both scattered and densely aggregated colonies, while the bathyal ones were dominated by sparse colonies. This study identified 17 major coral areas based on the geographic proximity of the sites hosting red coral and their topographic and oceanographic affinity. The size-frequency distribution of the heights was skewed towards the smaller classes in almost all populations, with a modal class between 2 cm and 4 cm. This study depicted a stress situation of the populations throughout the entire study area, which could be correlated also to the long-term harvesting pressure carried out in the basins. Two additional sources of direct mortality were pointed out in this study. Entanglement to artisanal and recreational fishing gear interested about 18% of the recorded colonies, mainly at mesophotic depths. Almost all populations suffered from mechanical entanglement, with the highest percentages in the Ligurian Sea and Sicilian areas. This study also highlighted a massive occurrence of recent deep mortality events, mainly along the eastern and southern coast of Sardinia and in the Campanian Archipelago. Thirty sites with extensive patches of dead colonies still in place were reported from 70 m to around 200 m, but their formation remains unclear

    Consequences of the marine climate and ecosystem shift of the 1980-90s on the Ligurian Sea biodiversity (NW Mediterranean Sea)

    Get PDF
    A rapid temperature increase in the 1980-90s has been accompanied by dramatic and unprecedented changes in the biota and communities of the Ligurian Sea. This review uses existing historical series (a few of which have been purposely updated) to assess extent and consequences of such changes. A number of warm-water species, previously absent or occasional in the comparatively cold Ligurian Sea, has recently established thanks to warmer winters. Occurrence among them of invasive alien species is causing concern because of their capacity of outcompeting autochthonous species. Summer heatwaves, on the other hand, caused mass mortalities in marine organisms, some of which found refuge at depth. New marine diseases appeared, as well as other dysfunctions such as the formation of mucilage aggregates that suffocated and entangled benthic organisms. Human pressures have combined with climate change to cause phase shifts (i.e., abrupt variations in species composition and community structure) in different habitats, such as the pelagic environment, seagrass meadows, rocky reefs, and marine caves. These phase shifts implied biotic homogenization, reduction of diversity, and dominance by invasive aliens, and may be detrimental to the resilience of Ligurian Sea ecosystems. Another phase of rapid warming has possibly started in the 2010s and there are clues pointing to a further series of biological changes, but data are too scarce to date for proper assessment. Only well addressed long-term studies will help understanding the future dynamics of Ligurian Sea ecosystems and their possibilities of recovery

    Basin-scale occurrence and distribution of mesophotic and upper bathyal red coral forests along the Italian coasts

    Get PDF
    The analysis of 879 ROV dives carried out along the Italian coasts on hard substrata at mesophotic and upper bathyal depths (40-775 m) allowed us to evaluate the current basin-scale presence, relative abundance, bathymetric limits, and habitat preferences of one of the most charismatic Mediterranean habitat-former anthozoan species, Corallium rubrum (Linnaeus, 1758). The species is widespread, and its occurrence ranged from 13% of the explored sites in Ionian Calabria to a hotspot of approximately 80% in Sardinia. Population relative densities were generally low (< 10 colonies m-2), except along the Sardinian coasts and in some areas along the Apulian coast. Almost no red coral colonies were observed between 60 m and 590 m in the nine explored offshore seamounts in the Ligurian and Tyrrhenian Seas. A distinctive coastal distribution discontinuity was found in the Ionian Sea. The optimum bathymetric distribution was between 75 m and 125 m, and no colonies were found below 247 m. Red coral colonies showed a preference for biogenic habitats dominated by crustose coralline algae (CCA) and vertical substrata. The species was absent on iron wrecks. Corallium rubrum disappeared from 14% of the historical fishing banks, while it was confirmed in 86% of them, some of which have been deeply harvested in the past. In particular, the still flourishing Sardinian populations could be supported by the high reproductive potential and favourable hydrodynamic conditions in the area

    A population genomics insight by 2b‐RAD reveals populations' uniqueness along the Italian coastline in Leptopsammia pruvoti (Scleractinia, Dendrophylliidae)

    Get PDF
    Aim Marine bioconstructions such as coralligenous formations are hotspot of biodiversity and play a relevant ecological role in the preservation of biodiversity by providing carbon regulation, protection and nursery areas for several marine species. For this reason, the European Union Habitat Directive included them among priority habitats to be preserved. Although their ecological role is well established, connectivity patterns are still poorly investigated, representing a limit in conservation planning. The present study pioneers a novel approach for the analysis of connectivity in marine bioconstructor species, which often lack suitable genetic markers, by taking advantage of next‐generation sequencing techniques. We assess the geographical patterns of genomic variation of the sunset cup coral Leptopsammia pruvoti Lacaze‐Duthiers, 1897, an ahermatypic, non‐zooxanthellate and solitary scleractinian coral species common in coralligenous habitats and distributed across the Mediterranean Sea. Location The Italian coastline (Western and Central Mediterranean). Methods We applied the restriction site‐associated 2b‐RAD approach to genotype over 1,000 high‐quality and filtered single nucleotide polymorphisms in 10 population samples. Results The results revealed the existence of a strongly supported genetic structure, with highly significant pairwise FST values between all the population samples, including those collected about 5 km apart from each other. Moreover, genomic data indicate that the strongest barriers to gene flow are between the western (Ligurian–Tyrrhenian Sea) and the eastern side (Adriatic Sea) of the Italian peninsula. Main conclusions The strong differentiation found in L. pruvoti is similar to that found in other species of marine bioconstructors investigated in this area, but it strongly contrasts with the small differences found in many fish and invertebrates at the same geographical scale. All in one, our results highlight the importance of assessing connectivity in species belonging to coralligenous habitats as, due to their limited dispersal ability, they might require specific spatial conservation measures

    Biodiversity of Prokaryotic Communities Associated with the Ectoderm of Ectopleura crocea (Cnidaria, Hydrozoa)

    Get PDF
    The surface of many marine organisms is colonized by complex communities of microbes, yet our understanding of the diversity and role of host-associated microbes is still limited. We investigated the association between Ectopleura crocea (a colonial hydroid distributed worldwide in temperate waters) and prokaryotic assemblages colonizing the hydranth surface. We used, for the first time on a marine hydroid, a combination of electron and epifluorescence microscopy and 16S rDNA tag pyrosequencing to investigate the associated prokaryotic diversity. Dense assemblages of prokaryotes were associated with the hydrant surface. Two microbial morphotypes were observed: one horseshoe-shaped and one fusiform, worm-like. These prokaryotes were observed on the hydrozoan epidermis, but not in the portions covered by the perisarcal exoskeleton, and their abundance was higher in March while decreased in late spring. Molecular analyses showed that assemblages were dominated by Bacteria rather than Archaea. Bacterial assemblages were highly diversified, with up to 113 genera and 570 Operational Taxonomic Units (OTUs), many of which were rare and contributed to <0.4%. The two most abundant OTUs, likely corresponding to the two morphotypes present on the epidermis, were distantly related to Comamonadaceae (genus Delftia) and to Flavobacteriaceae (genus Polaribacter). Epibiontic bacteria were found on E. crocea from different geographic areas but not in other hydroid species in the same areas, suggesting that the host-microbe association is species-specific. This is the first detailed report of bacteria living on the hydrozoan epidermis, and indeed the first study reporting bacteria associated with the epithelium of E. crocea. Our results provide a starting point for future studies aiming at clarifying the role of this peculiar hydrozoan-bacterial association

    “Ten Commandments” for the Appropriate use of Antibiotics by the Practicing Physician in an Outpatient Setting

    Get PDF
    A multi-national working group on antibiotic stewardship, from the International Society of Chemotherapy, put together ten recommendations to physicians prescribing antibiotics to outpatients. These recommendations are: (1) use antibiotics only when needed; teach the patient how to manage symptoms of non-bacterial infections; (2) select the adequate ATB; precise targeting is better than shotgun therapy; (3) consider pharmacokinetics and pharmacodynamics when selecting an ATB; use the shortest ATB course that has proven clinical efficacy; (4) encourage patients’ compliance; (5) use antibiotic combinations only in specific situations; (6) avoid low quality and sub-standard drugs; prevent prescription changes at the drugstore; (7) discourage self-prescription; (8) follow only evidence-based guidelines; beware those sponsored by drug companies; (9) rely (rationally) upon the clinical microbiology lab; and (10) prescribe ATB empirically – but intelligently; know local susceptibility trends, and also surveillance limitations

    The Italian Museo Nazionale dell’Antartide

    Get PDF
    These abstract proceedings were produced based on the program for the POLAR2018 SCAR/IASC Open Science Conference, updated until 25 May 2018

    Ascorbic acid pre-treated quartz stimulates TNF-α release in RAW 264.7 murine macrophages through ROS production and membrane lipid peroxidation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inhalation of crystalline silica induces a pulmonary fibrotic degeneration called silicosis caused by the inability of alveolar macrophages to dissolve the crystalline structure of phagocytosed quartz particles. Ascorbic acid is capable of partially dissolving quartz crystals, leading to an increase of soluble silica concentration and to the generation of new radical sites on the quartz surface. The reaction is specific for the crystalline forms of silica. It has been already demonstrated an increased cytotoxicity and stronger induction of pro-inflammatory cyclooxygenase-2 (COX-2) by ascorbic acid pre-treated quartz (QA) compared to untreated quartz (Q) in the murine macrophage cell line RAW 264.7.</p> <p>Methods</p> <p>Taking advantage of the enhanced macrophage response to QA as compared to Q particles, we investigated the first steps of cell activation and the contribution of early signals generated directly from the plasma membrane to the production of TNF-α, a cytokine that activates both inflammatory and fibrogenic pathways.</p> <p>Results</p> <p>Here we demonstrate that TNF-α mRNA synthesis and protein secretion are significantly increased in RAW 264.7 macrophages challenged with QA as compared to Q particles, and that the enhanced response is due to an increase of intracellular ROS. Plasma membrane-particle contact, in the absence of phagocytosis, is sufficient to trigger TNF-α production through a mechanism involving membrane lipid peroxidation and this appears to be even more detrimental to macrophage survival than particle phagocytosis itself.</p> <p>Conclusion</p> <p>Taken together these data suggest that an impairment of pulmonary macrophage phagocytosis, i.e. in the case of alcoholic subjects, could potentiate lung disease in silica-exposed individuals.</p
    corecore