1,583 research outputs found

    Visual Search Strategies of Soccer Players Executing a Power vs. Placement Penalty Kick

    Get PDF
    Introduction: When taking a soccer penalty kick, there are two distinct kicking techniques that can be adopted; a ‘power’ penalty or a ‘placement’ penalty. The current study investigated how the type of penalty kick being taken affected the kicker’s visual search strategy and where the ball hit the goal (end ball location). Method: Wearing a portable eye tracker, 12 university footballers executed 2 power and placement penalty kicks, indoors, both with and without the presence of a goalkeeper. Video cameras were used to determine initial ball velocity and end ball location. Results: When taking the power penalty, the football was kicked significantly harder and more centrally in the goal compared to the placement penalty. During the power penalty, players fixated on the football for longer and more often at the goalkeeper (and by implication the middle of the goal), whereas in the placement penalty, fixated longer at the goal, specifically the edges. Findings remained consistent irrespective of goalkeeper presence. Discussion/conclusion: Findings indicate differences in visual search strategy and end ball location as a function of type of penalty kick. When taking the placement penalty, players fixated and kicked the football to the edges of the goal in an attempt to direct the ball to an area that the goalkeeper would have difficulty reaching and saving. Fixating significantly longer on the football when taking the power compared to placement penalty indicates a greater importance of obtaining visual information from the football. This can be attributed to ensuring accurate foot-to-ball contact and subsequent generation of ball velocity. Aligning gaze and kicking the football centrally in the goal when executing the power compared to placement penalty may have been a strategy to reduce the risk of kicking wide of the goal altogether

    The Abnormal Contralateral Atrioventricular Valve in Mitral and Tricuspid Atresia in Neonates: An Echocardiographic Study

    Full text link
    Abnormalities of the mitral valve (MV) or the tricuspid valve (TV) morphology and/or function in patients with functional single ventricle may result in early morbidity and death. The purpose of this study was to determine the incidence of contralateral atrioventricular valve (AVV) pathologies in mitral valve atresia (MA) and tricuspid valve atresia (TA). We retrospectively reviewed the echocardiographic data of 50 neonates with MV and 20 with TA. Appearance of the papillary muscles, chordae tendinae, and valve leaflets was assessed. AVV regurgitation was semiquantitated by color-flow Doppler and the AVV annulus diameter was measured and indexed to body surface area. MV abnormalities were found in 9 of 20 (45%) of patients with TA. The MV was myxomatous in 9 patients, the leaflets were redundant in 5 patients, and prolapsing occurred in 4 patients. Mild regurgitation was found in 2 patients. In 18 of 20 (90%) patients MV annulus size was larger than 95% of predicted normal values. TV abnormalities were found in 12 of 50 (24%) patients with MA. The TV was myxomatous in 4 patients, prolapsing in 2, and redundant in 3, and moderate TV regurgitation was found in 3 patients. In 29 of 50 (58%) patients TV annulus size was larger than 95% of predicted normal values. Contralateral AVV abnormalities in tricuspid and mitral valve atresia are common and should be assessed carefully before surgical procedures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42381/1/246-20-3-200_20n3p200.pd

    A Markov chain model for changes in users’ assessment of search results

    Get PDF
    Previous research shows that users tend to change their assessment of search results over time. This is a first study that investigates the factors and reasons for these changes, and describes a stochastic model of user behaviour that may explain these changes. In particular, we hypothesise that most of the changes are local, i.e. between results with similar or close relevance to the query, and thus belong to the same ”coarse” relevance category. According to the theory of coarse beliefs and categorical thinking, humans tend to divide the range of values under consideration into coarse categories, and are thus able to distinguish only between cross-category values but not within them. To test this hypothesis we conducted five experiments with about 120 subjects divided into 3 groups. Each student in every group was asked to rank and assign relevance scores to the same set of search results over two or three rounds, with a period of three to nine weeks between each round. The subjects of the last three-round experiment were then exposed to the differences in their judgements and were asked to explain them. We make use of a Markov chain model to measure change in users’ judgments between the different rounds. The Markov chain demonstrates that the changes converge, and that a majority of the changes are local to a neighbouring relevance category. We found that most of the subjects were satisfied with their changes, and did not perceive them as mistakes but rather as a legitimate phenomenon, since they believe that time has influenced their relevance assessment. Both our quantitative analysis and user comments support the hypothesis of the existence of coarse relevance categories resulting from categorical thinking in the context of user evaluation of search results

    An addressable quantum dot qubit with fault-tolerant control fidelity

    Get PDF
    Exciting progress towards spin-based quantum computing has recently been made with qubits realized using nitrogen-vacancy (N-V) centers in diamond and phosphorus atoms in silicon, including the demonstration of long coherence times made possible by the presence of spin-free isotopes of carbon and silicon. However, despite promising single-atom nanotechnologies, there remain substantial challenges in coupling such qubits and addressing them individually. Conversely, lithographically defined quantum dots have an exchange coupling that can be precisely engineered, but strong coupling to noise has severely limited their dephasing times and control fidelities. Here we combine the best aspects of both spin qubit schemes and demonstrate a gate-addressable quantum dot qubit in isotopically engineered silicon with a control fidelity of 99.6%, obtained via Clifford based randomized benchmarking and consistent with that required for fault-tolerant quantum computing. This qubit has orders of magnitude improved coherence times compared with other quantum dot qubits, with T_2* = 120 mus and T_2 = 28 ms. By gate-voltage tuning of the electron g*-factor, we can Stark shift the electron spin resonance (ESR) frequency by more than 3000 times the 2.4 kHz ESR linewidth, providing a direct path to large-scale arrays of addressable high-fidelity qubits that are compatible with existing manufacturing technologies

    Interpretation of ambiguous situations: evidence for a dissociation between social and physical threat in Williams syndrome

    Get PDF
    There is increasing evidence that Williams syndrome (WS) is associated with elevated anxiety that is non-social in nature, including generalised anxiety and fears. To date very little research has examined the cognitive processes associated with this anxiety. In the present research, attentional bias for non-social threatening images in WS was examined using a dot-probe paradigm. Participants were 16 individuals with WS aged between 13 and 34 years and two groups of typically developing controls matched to the WS group on chronological age and attentional control ability respectively. The WS group exhibited a significant attention bias towards threatening images. In contrast, no bias was found for group matched on attentional control and a slight bias away from threat was found in the chronological age matched group. The results are contrasted with recent findings suggesting that individuals with WS do not show an attention bias for threatening faces and discussed in relation to neuroimaging research showing elevated amygdala activation in response to threatening non-social scenes in WS

    Antioxidant properties of MitoTEMPOL and its hydroxylamine

    Get PDF
    Piperidine nitroxides such as TEMPOL have been widely used as antioxidants in vitro and in vivo. MitoTEMPOL is a mitochondria-targeted derivative of TEMPOL designed to protect mitochondria from the oxidative damage that they accumulate, but once there is rapidly reduced to its hydroxylamine, MitoTEMPOL-H. As little is known about the antioxidant efficacy of hydroxylamines, this study has assessed the antioxidant activity of both MitoTEMPOL and MitoTEMPOL-H. The hydroxylamine was more effective at preventing lipid-peroxidation than MitoTEMPOL and decreased oxidative damage to mitochondrial DNA caused by menadione. In contrast to MitoTEMPOL, MitoTEMPOL-H has no superoxide dismutase activity and its antioxidant actions are likely to be mediated by hydrogen atom donation. Therefore, even though MitoTEMPOL is rapidly reduced to MitoTEMPOL-H in cells, it remains an effective antioxidant. Furthermore, as TEMPOL is also reduced to a hydroxylamine in vivo, many of its antioxidant effects may also be mediated by its hydroxylamine

    The role of input noise in transcriptional regulation

    Get PDF
    Even under constant external conditions, the expression levels of genes fluctuate. Much emphasis has been placed on the components of this noise that are due to randomness in transcription and translation; here we analyze the role of noise associated with the inputs to transcriptional regulation, the random arrival and binding of transcription factors to their target sites along the genome. This noise sets a fundamental physical limit to the reliability of genetic control, and has clear signatures, but we show that these are easily obscured by experimental limitations and even by conventional methods for plotting the variance vs. mean expression level. We argue that simple, global models of noise dominated by transcription and translation are inconsistent with the embedding of gene expression in a network of regulatory interactions. Analysis of recent experiments on transcriptional control in the early Drosophila embryo shows that these results are quantitatively consistent with the predicted signatures of input noise, and we discuss the experiments needed to test the importance of input noise more generally.Comment: 11 pages, 5 figures minor correction

    Preferential attentional engagement drives attentional bias to snakes in Japanese macaques (Macaca fuscata) and humans (Homo sapiens)

    Get PDF
    © 2018, The Author(s). In humans, attentional biases have been shown to negative (dangerous animals, physical threat) and positive (high caloric food, alcohol) stimuli. However, it is not clear whether these attentional biases reflect on stimulus driven, bottom up, or goal driven, top down, attentional processes. Here we show that, like humans, Japanese macaques show an attentional bias to snakes in a dot probe task (Experiment 1). Moreover, this attentional bias reflects on bottom up driven, preferential engagement of attention by snake images (Experiment 2a), a finding that was replicated in a study that used the same methodology in humans (Experiment 2b). These results are consistent with the notion that attentional bias to snakes reflects on an evolutionarily old, stimulus driven threat detection mechanism which is found in both species
    corecore