816 research outputs found

    Ecology And Infection Rates Of Natural Vectors Of Filariasis In Tanah Intan, South Kalimantan (Borneo), Indonesia

    Full text link
    Data ekologi nyamuk vektor dan tingkat infeksi filaría secara alami dan secara buatan telah diperoleh dari perkebunan karet di Kalimantan Selatan, Indonesia. Berbagai macam cara penangkapan dalam kondisi ekologi yang berbeda telah dipakai dalam pengumpulan 51 jenis nyamuk (N = 95.735). Pembedahan nyamuk, infeksi buatan dan identifikasi larva filaría mengikuti prosedur dan kunci yang sudah baku. Infeksi filaría Brugia, Breinlia dan Cardiofílaria secara alami ditemukan pada nyamuk Coquillettidia crassipes. Dari penelitian ini dapat dijelaskan hasil infeksi buatan, kepadatan populasi nyamuk secara musiman dan perbandingan cara penangkapan nyamuk

    Identification and functional characterization of a highly divergent N-acetylglucosaminyltransferase I (TbGnTI) in <em>Trypanosoma brucei</em>

    Get PDF
    Trypanosoma brucei expresses a diverse repertoire of N-glycans, ranging from oligomannose and paucimannose structures to exceptionally large complex N-glycans. Despite the presence of the latter, no obvious homologues of known β1–4-galactosyltransferase or β1–2- or β1–6-N-acetylglucosaminyltransferase genes have been found in the parasite genome. However, we previously reported a family of putative UDP-sugar-dependent glycosyltransferases with similarity to the mammalian β1–3-glycosyltransferase family. Here we characterize one of these genes, TbGT11, and show that it encodes a Golgi apparatus resident UDP-GlcNAc:α3-d-mannoside β1–2-N-acetylglucosaminyltransferase I activity (TbGnTI). The bloodstream-form TbGT11 null mutant exhibited significantly modified protein N-glycans but normal growth in vitro and infectivity to rodents. In contrast to multicellular organisms, where the GnTI reaction is essential for biosynthesis of both complex and hybrid N-glycans, T. brucei TbGT11 null mutants expressed atypical “pseudohybrid” glycans, indicating that TbGnTII activity is not dependent on prior TbGnTI action. Using a functional in vitro assay, we showed that TbGnTI transfers UDP-GlcNAc to biantennary Man(3)GlcNAc(2), but not to triantennary Man(5)GlcNAc(2), which is the preferred substrate for metazoan GnTIs. Sequence alignment reveals that the T. brucei enzyme is far removed from the metazoan GnTI family and suggests that the parasite has adapted the β3-glycosyltransferase family to catalyze β1–2 linkages

    Contrasting Decollement and Prism Properties over the Sumatra 2004-2005 Earthquake Rupture Boundary

    No full text
    Styles of subduction zone deformation and earthquake rupture dynamics are strongly linked, jointly influencing hazard potential. Seismic reflection profiles across the trench west of Sumatra, Indonesia, show differences across the boundary between the major 2004 and 2005 plate interface earthquakes, which exhibited contrasting earthquake rupture and tsunami generation. In the southern part of the 2004 rupture, we interpret a negative-polarity sedimentary reflector ~500 meters above the subducting oceanic basement as the seaward extension of the plate interface. This predécollement reflector corresponds to unusual prism structure, morphology, and seismogenic behavior that are absent along the 2005 rupture zone. Although margins like the 2004 rupture zone are globally rare, our results suggest that sediment properties influence earthquake rupture, tsunami hazard, and prism development at subducting plate boundaries

    Deep lithospheric structures along the southern central Chile Margin from wide-angle P-wave modellilng

    Get PDF
    Crustal- and upper-mantle structures of the subduction zone in south central Chile, between 42 degrees S and 46 degrees S, are determined from seismic wide-angle reflection and refraction data, using the seismic ray tracing method to calculate minimum parameter models. Three profiles along differently aged segments of the subducting Nazca Plate were analysed in order to study subduction zone structure dependencies related to the age, that is, thermal state, of the incoming plate. The age of the oceanic crust at the trench ranges from 3 Ma on the southernmost profile, immediately north of the Chile triple junction, to 6.5 Ma old about 100 km to the north, and to 14.5 Ma old another 200 km further north, off the Island of Chiloe. Remarkable similarities appear in the structures of both the incoming as well as the overriding plate. The oceanic Nazca Plate is around 5 km thick, with a slightly increasing thickness northward, reflecting temperature changes at the time of crustal generation. The trench basin is about 2 km thick except in the south where the Chile Ridge is close to the deformation front and only a small, 800-m-thick trench infill could develop. In south central Chile, typically three quarters (1.5 km) of the trench sediments subduct below the decollement in the subduction channel. To the north and south of the study area, only about one quarter to one third of the sediments subducts, the rest is accreted above. Similarities in the overriding plate are the width of the active accretionary prism, 35-50 km, and a strong lateral crustal velocity gradient zone about 75-80 km landward from the deformation front, where landward upper-crustal velocities of over 5.0-5.4 km s&lt;SU-1&lt;/SU decrease seaward to around 4.5 km s&lt;SU-1&lt;/SU within about 10 km, which possibly represents a palaeo-backstop. This zone is also accompanied by strong intraplate seismicity. Differences in the subduction zone structures exist in the outer rise region, where the northern profile exhibits a clear bulge of uplifted oceanic lithosphere prior to subduction whereas the younger structures have a less developed outer rise. This plate bending is accompanied by strongly reduced rock velocities on the northern profile due to fracturing and possible hydration of the crust and upper mantle. The southern profiles do not exhibit such a strong alteration of the lithosphere, although this effect may be counteracted by plate cooling effects, which are reflected in increasing rock velocities away from the spreading centre. Overall there appears little influence of incoming plate age on the subduction zone structure which may explain why the M-w = 9.5 great Chile earthquake from 1960 ruptured through all these differing age segments. The rupture area, however, appears to coincide with a relatively thick subduction channel

    Pola Penyakit Transmigran Jawa dan Transmigran Lokal di Daerah Hiperendemis Malaria Armopasp2, Kecamatan Bonggo, Kabupaten Jayapura, Papua, Tahun 1996-1999

    Full text link
    POLA PENYAKIT TRANSMIGRAN JAWA DAN TRANSMIGRAN LOKAL DI DAERAH HIPERENDEMIS MALARIA ARMOPASP2, KECAMATAN BONGGO, KABUPATEN JAYAPURA, PAPUA , TAHUN 1996-199

    Malaria di Pulau Samosir, Kabupaten Toba Samosir, Provinsi Sumatera Utara Tahun 2003

    Full text link
    MALARIA DI PULAU SAMOSIR, KABUPATEN TOBA SAMOSIR, PROVINSI SUMATERA UTARA TAHUN 200

    Horizontal principal stress orientation in the Costa Rica Seismogenesis Project (CRISP) transect from borehole breakouts

    Get PDF
    The Costa Rica Seismogenesis Project (CRISP) drilled the Pacific margin of the Middle America Trench just north of where the Cocos Ridge enters the subduction zone, resulting in basal erosion of the upper plate. Here we report the orientations of the maximum horizontal principal stress (SHmax) from borehole breakouts detected by logging-while-drilling and wireline downhole measurements. All SHmax directions were estimated in the sediment cover of the margin, above the deeper rocks of the deformed margin wedge. We observe three overall SHmax orientations: NNE-SSW (25° azimuth) in the deepest interval drilled at the upper slope Site U1379; ENE-WSW (82°) in the rest of Site U1379 and in Site U1413, also drilled in the upper slope; and NNW-SSE (157°) in the mid-slope Site U1378. Our preferred interpretation is that the deepest interval of Site U1379 records the stress conditions in the underlying margin wedge, as SHmax is parallel to the direction of the Cocos-Caribbean plate convergence and of the compressional axes of plate boundary fault earthquakes. The variable SHmax directions observed elsewhere are likely due to the effect of a network of normal faults that subdivide the sediment cover into a number of independently deforming blocks. In addition, the observed SHmax directions may be influenced by the subducting Cocos Ridge, which acts as an indenter causing oblique deformation, and by the transition to seismogenic subduction along the plate boundary fault
    corecore