308 research outputs found

    ATP induces Ca2+signaling in human chondrons cultured in three-dimensional agarose films

    Get PDF
    OBJECTIVE: In vivo, chondrocytes are surrounded by an extracellular matrix, preventing direct cell-to-cell contact. Consequently, intercellular communication through gap junctions is unlikely. However, signaling at a distance is possible through extracellular messengers such as nitric oxide (NO) and nucleotides and nucleosides, adenosine triphosphate (ATP), uridine triphosphate (UTP), or adenosine diphosphate (ADP). We hypothesized that chondrons, chondrocytes surrounded by their native pericellular matrix, increase their intracellular calcium concentration ([Ca(2+)]ic) in response to ATP and other signaling molecules and that the source of Ca(2+) is from intracellular stores. The objectives of this study were to determine if chondrons in a 3-D gel respond to ATP by increasing [Ca(2+)]ic through a purinoceptor mechanism and to test whether chondrons in whole tissue samples would respond to ATP in a similar fashion. DESIGN: Human chondrons, cultured in a three-dimensional agarose gel or in whole cartilage loaded with Fura-2AM, a calcium sensitive dye, were stimulated with 1, 5 and 10 microM ATP. A ratio-imaging fluorescence technique was used to quantitate the [Ca(2+)]ic. RESULTS: ATP-stimulated chondrons increased their [Ca(2+)]ic from a basal level of 60 nM to over 1000 nM. Chondrons incubated in calcium-free medium also increased their [Ca(2+)]ic in response to ATP, indicating the source of Ca(2+) was not extracellular. ATP-induced calcium signaling was inhibited in chondrons pre-treated with suramin, a generic purinoceptor blocker. In addition, UTP and adenosine 5'-O-(3-thiotriphosphate) (ATPgammas) induced a calcium response, but 2-methylthio-ATP (2-MeSATP), ADP, and adenosine did not induce a significant increase in [Ca(2+)]ic, substantiating that the P2Y2 purinoceptor was dominant. Chondrons in whole cartilage increased [Ca(2+)]ic in response to ATP. CONCLUSIONS: We conclude that chondrons in 3-D culture respond to ATP by increasing [Ca(2+)]ic via P2Y2 receptor activation. Thus, ATP can pass through the agarose gel and the pericellular matrix, bind purinoceptors and increase intracellular Ca(2+) in a signaling response

    Generating acceptable Arabic Core Vocabularies and Symbols for AAC users

    No full text
    This paper discusses the development of an Arabic Symbol Dictionary for Augmentative and Alternative Communication (AAC) users, their families, carers, therapists and teachers as well as those who may benefit from the use of symbols to enhance literacy skills. With a requirement for a bi-lingual dictionary, a vocabulary list analyzer has been developed to evaluate similarities and differences in word frequencies from a range of word lists in order to collect suitable AAC lexical entries. An online bespoke symbol management has been created to hold the lexical entries alongside specifically designed symbols which are then accepted via a voting system using a series of criteria. Results to date have highlighted how successful these systems can be when encouraging participation along with the need for further research into the development of personalised context sensitive core vocabularies

    Building a GPS Receiver for Space Lessons Learned

    Get PDF
    Over the past 4 years the Component Systems and Hardware branch at NASA GSFC has pursued an inhouse effort to build a unique space-flight GPS receiver. This effort has resulted in the Navigator GPS receiver. Navigator's first flight opportunity will come with the STS-125 HST-SM4 mission in August 2008. This paper covers the overall hardware design for the receiver and the difficulties encountered during the transition from the breadboard design to the final flight hardware design. Among the different lessons learned, the paper stresses the importance of selecting and verifying parts that are appropriate for space applications, as well as what happens when these parts are not accurately characterized by their datasheets. Additionally, the paper discusses what analysis needs to be performed when deciding system frequencies and filters. The presentation also covers how to prepare for thermal vacuum testing, and problems that may arise during vibration testing. It also contains what criteria should be considered when determining which portions of a design to create in-house, and which portions to license from a third party. Finally, the paper shows techniques which have proven to be extraordinarily helpful in debugging and analysis

    Tendinopathy—from basic science to treatment

    Get PDF
    Chronic tendon pathology (tendinopathy), although common, is difficult to treat. Tendons possess a highly organized fibrillar matrix, consisting of type I collagen and various 'minor' collagens, proteoglycans and glycoproteins. The tendon matrix is maintained by the resident tenocytes, and there is evidence of a continuous process of matrix remodeling, although the rate of turnover varies at different sites. A change in remodeling activity is associated with the onset of tendinopathy. Major molecular changes include increased expression of type III collagen, fibronectin, tenascin C, aggrecan and biglycan. These changes are consistent with repair, but they might also be an adaptive response to changes in mechanical loading. Repeated minor strain is thought to be the major precipitating factor in tendinopathy, although further work is required to determine whether it is mechanical overstimulation or understimulation that leads to the change in tenocyte activity. Metalloproteinase enzymes have an important role in the tendon matrix, being responsible for the degradation of collagen and proteoglycan in both healthy patients and those with disease. Metalloproteinases that show increased expression in painful tendinopathy include ADAM (a disintegrin and metalloproteinase)-12 and MMP (matrix metalloproteinase)-23. The role of these enzymes in tendon pathology is unknown, and further work is required to identify novel and specific molecular targets for therapy

    Cost-effectiveness of monitoring glaucoma patients in shared care: an economic evaluation alongside a randomized controlled trial

    Get PDF
    Background. Population aging increases the number of glaucoma patients which leads to higher workloads of glaucoma specialists. If stable glaucoma patients were monitored by optometrists and ophthalmic technicians in a glaucoma follow-up unit (GFU) rather than by glaucoma specialists, the specialists' workload and waiting lists might be reduced. We compared costs and quality of care at the GFU with those of usual care by glaucoma specialists in the Rotterdam Eye Hospital (REH) in a 30-month randomized clinical trial. Because quality of care turned out to be similar, we focus here on the costs. Methods. Stable glaucoma patients were randomized between the GFU and the glaucoma specialist group. Costs per patient year were calculated from four perspectives: those of patients, the Rotterdam Eye Hospital (REH), Dutch healthcare system, and society. The outcome measures were: compliance to the protocol; patient satisfaction; stability according to the practitioner; mean difference in IOP; results of the examinations; and number of treatment changes. Results. Baseline characteristics (such as age, intraocular pressure and target pressure) were comparable between the GFU group (n = 410) and the glaucoma specialist group (n = 405). Despite a higher number of visits per year, mean hospital costs per patient year were lower in the GFU group (€139 vs. €161). Patients' time and travel costs were similar. Healthcare costs were significantly lower for the GFU group (€230 vs. €251), as were societal costs (€310 vs. €339) (p < 0.01). Bootstrap-, sensitivity- and scenario-analyses showed that the costs were robust when varying hospital policy and the duration of visits and tests. Conclusion. We conclude that this GFU is cost-effective and deserves to be considered for implementation in other hospitals

    The design and implementation of a study to investigate the effectiveness of community vs hospital eye service follow-up for patients with neovascular age-related macular degeneration with quiescent disease

    Get PDF
    IntroductionStandard treatment for neovascular age-related macular degeneration (nAMD) is intravitreal injections of anti-VEGF drugs. Following multiple injections, nAMD lesions often become quiescent but there is a high risk of reactivation, and regular review by hospital ophthalmologists is the norm. The present trial examines the feasibility of community optometrists making lesion reactivation decisions.MethodsThe Effectiveness of Community vs Hospital Eye Service (ECHoES) trial is a virtual trial; lesion reactivation decisions were made about vignettes that comprised clinical data, colour fundus photographs, and optical coherence tomograms displayed on a web-based platform. Participants were either hospital ophthalmologists or community optometrists. All participants were provided with webinar training on the disease, its management, and assessment of the retinal imaging outputs. In a balanced design, 96 participants each assessed 42 vignettes; a total of 288 vignettes were assessed seven times by each professional group.The primary outcome is a participant's judgement of lesion reactivation compared with a reference standard. Secondary outcomes are the frequency of sight threatening errors; judgements about specific lesion components; participant-rated confidence in their decisions about the primary outcome; cost effectiveness of follow-up by optometrists rather than ophthalmologists.DiscussionThis trial addresses an important question for the NHS, namely whether, with appropriate training, community optometrists can make retreatment decisions for patients with nAMD to the same standard as hospital ophthalmologists. The trial employed a novel approach as participation was entirely through a web-based application; the trial required very few resources compared with those that would have been needed for a conventional randomised controlled clinical trial

    Effect of Strain Magnitude on the Tissue Properties of Engineered Cardiovascular Constructs

    Get PDF
    Mechanical loading is a powerful regulator of tissue properties in engineered cardiovascular tissues. To ultimately regulate the biochemical processes, it is essential to quantify the effect of mechanical loading on the properties of engineered cardiovascular constructs. In this study the Flexercell FX-4000T (Flexcell Int. Corp., USA) straining system was modified to simultaneously apply various strain magnitudes to individual samples during one experiment. In addition, porous polyglycolic acid (PGA) scaffolds, coated with poly-4-hydroxybutyrate (P4HB), were partially embedded in a silicone layer to allow long-term uniaxial cyclic mechanical straining of cardiovascular engineered constructs. The constructs were subjected to two different strain magnitudes and showed differences in biochemical properties, mechanical properties and organization of the microstructure compared to the unstrained constructs. The results suggest that when the tissues are exposed to prolonged mechanical stimulation, the production of collagen with a higher fraction of crosslinks is induced. However, straining with a large strain magnitude resulted in a negative effect on the mechanical properties of the tissue. In addition, dynamic straining induced a different alignment of cells and collagen in the superficial layers compared to the deeper layers of the construct. The presented model system can be used to systematically optimize culture protocols for engineered cardiovascular tissues

    Tendon Is Covered by a Basement Membrane Epithelium That Is Required for Cell Retention and the Prevention of Adhesion Formation

    Get PDF
    The ability of tendons to glide smoothly during muscle contraction is impaired after injury by fibrous adhesions that form between the damaged tendon surface and surrounding tissues. To understand how adhesions form we incubated excised tendons in fibrin gels (to mimic the homeostatic environment at the injury site) and assessed cell migration. We noticed cells exiting the tendon from only the cut ends. Furthermore, treatment of the tendon with trypsin resulted in cell extravagation from the shaft of the tendons. Electron microscopy and immunolocalisation studies showed that the tendons are covered by a novel cell layer in which a collagen type IV/laminin basement membrane (BM) overlies a keratinised epithelium. PCR and western blot analyses confirmed the expression of laminin β1 in surface cells, only. To evaluate the cell retentive properties of the BM in vivo we examined the tendons of the Col4a1+/Svc mouse that is heterozygous for a G-to-A transition in the Col4a1 gene that produces a G1064D substitution in the α1(IV) chain of collagen IV. The flexor tendons had a discontinuous BM, developed fibrous adhesions with overlying tissues, and were acellular at sites of adhesion formation. In further experiments, tenotomy of wild-type mice resulted in expression of laminin throughout the adhesion. In conclusion, we show the existence of a novel tendon BM-epithelium that is required to prevent adhesion formation. The Col4a1+/Svc mouse is an effective animal model for studying adhesion formation because of the presence of a structurally-defective collagen type IV-containing BM

    Effect of training and sudden detraining on the patellar tendon and its enthesis in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different conditions may alter tendon characteristics. Clinical evidence suggests that tendon injuries are more frequent in athletes that change type, intensity and duration of training. Aim of the study was the assessment of training and especially detraining on the patellar tendon (PT) and its enthesis.</p> <p>Methods</p> <p>27 male adult Sprague-Dawley rats were divided into 3 groups: 20 rats were trained on a treadmill for 10 weeks. Of these, 10 rats were euthanized immediately after training (trained group), and 10 were caged without exercise for 4 weeks before being euthanized (de-trained group). The remaining 7 rats were used as controls (untrained rats). PT insertion, structure (collagen fiber organization and proteoglycan, PG, content), PT thickness, enthesis area, and subchondral bone volume at the enthesis were measured by histomorphometry and microtomography.</p> <p>Results</p> <p>Both PG content and collagen fiber organization were significantly lower in untrained and detrained animals than in trained ones (<it>p </it>< 0.05 and <it>p </it>< 0.0001). In the detrained group, fiber organization and PG content were worse than that of the untrained groups and the untrained group showed a significantly higher score than the detrained group (<it>p </it>< 0.05). In the trained group, the PT was significantly thicker than in untrained group (<it>p </it>< 0.05). No significant differences in the enthesis area and subchondral bone volume among the three groups were seen.</p> <p>Conclusions</p> <p>Moderate exercise exerts a protective effect on the PT structure while sudden discontinuation of physical activity has a negative effect on tendons. The present results suggest that after a period of sudden de-training (such as after an injury) physical activity should be restarted with caution and with appropriate rehabilitation programs.</p
    corecore