292 research outputs found

    The variable internal structure of the Mycoplasma penetrans attachment organelle revealed by biochemical and microscopic analyses: implications for attachment organelle mechanism and evolution

    Get PDF
    Although mycoplasmas have small genomes, many of them, including the HIV-associated opportunist Mycoplasma penetrans, construct a polar attachment organelle (AO) that is used for both adherence to host cells and gliding motility. However, the irregular phylogenetic distribution of similar structures within the mycoplasmas, as well as compositional and ultrastructural differences among these AOs, suggests that AOs have arisen several times through convergent evolution. We investigated the ultrastructure and protein composition of the cytoskeleton-like material of the M. penetrans AO with several forms of microscopy and biochemical analysis, to determine whether the M. penetrans AO was constructed at the molecular level on principles similar to those of other mycoplasmas, such as Mycoplasma pneumoniae and Mycoplasma mobile. We found that the M. penetrans AO interior was generally dissimilar from that of other mycoplasmas, in that it exhibited considerable heterogeneity in size and shape, suggesting a gel-like nature. In contrast, several of the 12 potential protein components identified by mass spectrometry of M. penetrans detergent-insoluble proteins shared certain distinctive biochemical characteristics with M. pneumoniae AO proteins, although not with M. mobile proteins. We conclude that convergence between M. penetrans and M. pneumoniae AOs extends to the molecular level, leading to the possibility that the less organized material in both M. pneumoniae and M. penetrans is the substance principally responsible for the organization and function of the AO

    Adamantane-Resistant Influenza Infection During the 2004–05 Season

    Get PDF
    Adamantane-resistant influenza A is an emerging problem, but infections caused by resistant and susceptible viruses have not been compared. We identified adamantane resistance in 47% of 152 influenza A virus (H3N2) isolates collected during 2005. Resistant and susceptible viruses caused similar symptoms and illness duration. The prevalence of resistance was highest in children

    The influence of date and place of birth on youth player selection to a National Football Association elite development programme

    Get PDF
    Aim: This study sought to examine whether the place and date of birth of elite youth Irish footballers influences their selection onto the Football Association of Ireland's primary development pathway; 12 regional centres of excellences called the “Emerging Talent Programme” (ETP). The proposed hypothesis was that players born earlier in the year would be over-represented compared to those born later in their age band. A secondary hypothesis was that access to the ETP would be independent of place of birth. Methods: The dates and place of birth of all elite youth footballers (n = 1936) selected onto the ETP since its inception were examined. χ2 tests were used to establish if the dates of birth differed from the expected population distribution. Odds ratios were used to identify spatial variation in relation to place of birth and talent production. Results: The results showed that admission to the ETP is not independent of quarter of birth (P .05, χ2 = 256.817, w = .388). Place of birth analysis showed an unequal geographical distribution of players gaining selection onto the ETP. Selection onto the ETP was not independent of place of birth (P < .05, χ2 = 149.457, w = .278). Footballers developed in counties that had an ETP centre were almost 50% more likely to gain selection than those without a centre (OR 1.455, 95% CI 1.314 -1.612). Conclusion: The current programme demonstrates inequitable distribution of opportunities to access elite development pathways due to biases related to date and place of birth

    No Evidence of Avian Influenza A H5N1 among Returning US Travelers

    Get PDF
    We reviewed reports to the Centers for Disease Control and Prevention of US travelers suspected of having avian influenza A H5N1 virus infection from February 2003 through May 2006. Among the 59 reported patients, no evidence of H5N1 virus infection was found; none had had direct contact with poultry, but 42% had evidence of human influenza A

    Variable phenotypes of enterocolitis in interleukin 10-deficient mice monoassociated with two different commensal bacteria

    Get PDF
    BACKGROUND & AIMS: To explore the hypothesis that selective immune responses to distinct components of the intestinal microflora induce intestinal inflammation, we characterized disease kinetics and bacterial antigen-specific T-cell responses in ex germ-free interleukin 10 -/- and wild-type control mice monoassociated with Enterococcus faecalis , Escherichia coli , or Pseudomonas fluorescens . METHODS: Colitis was measured by using blinded histological scores and spontaneous interleukin 12 secretion from colonic strip culture supernatants. Interferon gamma secretion was measured from mesenteric or caudal lymph node CD4 + T cells stimulated with bacterial lysate-pulsed antigen-presenting cells. Luminal bacterial concentrations were measured by culture and quantitative polymerase chain reaction. RESULTS: Escherichia coli induced mild cecal inflammation after 3 weeks of monoassociation in interleukin 10 -/- mice. In contrast, Enterococcus faecalis-monoassociated interleukin 10 -/- mice developed distal colitis at 10-12 weeks that was progressively more severe and associated with duodenal inflammation and obstruction by 30 weeks. Neither bacterial strain induced inflammation in wild-type mice, and germ-free and Pseudomonas fluorescens-monoassociated interleukin 10 -/- mice remained disease free. CD4 + T cells from Enterococcus faecalis- or Escherichia coli-monoassociated interleukin 10 -/- mice selectively produced higher levels of interferon gamma and interleukin 4 when stimulated with antigen-presenting cells pulsed with the bacterial species that induced disease; these immune responses preceded the onset of histological inflammation in Enterococcus faecalis -monoassociated mice. Luminal bacterial concentrations did not explain regional differences in inflammation. CONCLUSIONS: Different commensal bacterial species selectively initiate immune-mediated intestinal inflammation with distinctly different kinetics and anatomic distribution in the same host

    Instructional Models for Course-Based Research Experience (CRE) Teaching

    Get PDF
    The course-based research experience (CRE) with its documented educational benefits is increasingly being implemented in science, technology, engineering, and mathematics education. This article reports on a study that was done over a period of 3 years to explicate the instructional processes involved in teaching an undergraduate CRE. One hundred and two instructors from the established and large multi-institutional SEA-PHAGES program were surveyed for their understanding of the aims and practices of CRE teaching. This was followed by large-scale feedback sessions with the cohort of instructors at the annual SEA Faculty Meeting and subsequently with a small focus group of expert CRE instructors. Using a qualitative content analysis approach, the survey data were analyzed for the aims of inquiry instruction and pedagogical practices used to achieve these goals. The results characterize CRE inquiry teaching as involving three instructional models: 1) being a scientist and generating data; 2) teaching procedural knowledge; and 3) fostering project ownership. Each of these models is explicated and visualized in terms of the specific pedagogical practices and their relationships. The models present a complex picture of the ways in which CRE instruction is conducted on a daily basis and can inform instructors and institutions new to CRE teaching

    α-Enolase, an Adhesion-Related Factor of Mycoplasma bovis

    Get PDF
    Mycoplasma bovis is the causative agent of Mycoplasma bovis-associated disease (MbAD). Although the mechanisms underlying M. bovis adherence to host cells is not clear, recent studies have shown that the cell surface protein α-enolase facilitates bacterial invasion and dissemination in the infected host. In this study, we cloned, expressed and purified recombinant M. bovis α-enolase and induced polyclonal anti-α-enolase antibodies in rabbits. M. bovis α-enolase was detected in the cytoplasmic and membrane protein fractions by these antibodies. Triple immunofluorescence labeling combined with confocal laser scanning microscopy (CLSM) revealed that the plasminogen (Plg) enhanced the adherence of M. bovis to embryonic bovine lung (EBL) cells; the values obtained for adherence and inhibition are consistent with this finding. Interestingly, we found that trace amounts of trypsin acted as a more effective enhancer of cell adherence than Plg. Hence, our data indicate that surface-associated M. bovis α-enolase is an adhesion-related factor of M. bovis that contributes to adherence by binding Plg

    T-cell Subsets and Antifungal Host Defenses

    Get PDF
    It has been long appreciated that protective immunity against fungal pathogens is dependent on activation of cellular adaptive immune responses represented by T lymphocytes. The T-helper (Th)1/Th2 paradigm has proven to be essential for the understanding of protective adaptive host responses. Studies that have examined the significance of regulatory T cells in fungal infection, and the recent discovery of a new T-helper subset called Th17 have provided crucial information for understanding the complementary roles played by the various T-helper lymphocytes in systemic versus mucosal antifungal host defense. This review provides an overview of the role of the various T-cell subsets during fungal infections and the reciprocal regulation between the T-cell subsets contributing to the tailored host response against fungal pathogens

    Identification of Loci Controlling Restriction of Parasite Growth in Experimental Taenia crassiceps Cysticercosis

    Get PDF
    Human neurocysticercosis (NC) caused by Taenia solium is a parasitic disease of the central nervous system that is endemic in many developing countries. In this study, a genetic approach using the murine intraperitoneal cysticercosis caused by the related cestode Taenia crassiceps was employed to identify host factors that regulate the establishment and proliferation of the parasite. A/J mice are permissive to T. crassiceps infection while C57BL/6J mice (B6) are comparatively restrictive, with a 10-fold difference in numbers of peritoneal cysticerci recovered 30 days after infection. The genetic basis of this inter-strain difference was explored using 34 AcB/BcA recombinant congenic strains derived from A/J and B6 progenitors, that were phenotyped for T. crassiceps replication. In agreement with their genetic background, most AcB strains (A/J-derived) were found to be permissive to infection while most BcA strains (B6-derived) were restrictive with the exception of a few discordant strains, together suggesting a possible simple genetic control. Initial haplotype association mapping using >1200 informative SNPs pointed to linkages on chromosomes 2 (proximal) and 6 as controlling parasite replication in the AcB/BcA panel. Additional linkage analysis by genome scan in informative [AcB55xDBA/2]F1 and F2 mice (derived from the discordant AcB55 strain), confirmed the effect of chromosome 2 on parasite replication, and further delineated a major locus (LOD = 4.76, p<0.01; peak marker D2Mit295, 29.7 Mb) that we designate Tccr1 (T. crassiceps cysticercosis restrictive locus 1). Resistance alleles at Tccr1 are derived from AcB55 and are inherited in a dominant fashion. Scrutiny of the minimal genetic interval reveals overlap of Tccr1 with other host resistance loci mapped to this region, most notably the defective Hc/C5 allele which segregates both in the AcB/BcA set and in the AcB55xDBA/2 cross. These results strongly suggest that the complement component 5 (C5) plays a critical role in early protective inflammatory response to infection with T. crassiceps
    corecore