119 research outputs found

    Quantum metamaterials: Electromagnetic waves in a Josephson qubit line

    Get PDF
    We consider the propagation of a classical electromagnetic wave through a transmission line, formed by identical superconducting charge qubits inside a superconducting resonator. Since the qubits can be in a coherent superposition of quantum states, we show that such a system demonstrates interesting new effects, such as a ``breathing'' photonic crystal with an oscillating bandgap, and a ``quantum Archimedean screw'' that transports, at an arbitrary controlled velocity, Josephson plasma waves through the transmission line. The key ingredient of these effects is that the optical properties of the Josephson transmission line are controlled by the quantum coherent state of the qubits.Comment: References adde

    Generation of tunable Terahertz out-of-plane radiation using Josephson vortices in modulated layered superconductors

    Full text link
    We show that a moving Josephson vortex in spatially modulated layered superconductors generates out-of-plane THz radiation. Remarkably, the magnetic and in-plane electric fields radiated are of the same order, which is very unusual for any good-conducting medium. Therefore, the out-of-plane radiation can be emitted to the vacuum without the standard impedance mismatch problem. Thus, the proposed design can be more efficient for tunable THz emitters than previous proposals, for radiation only propagating along the ab-plane.Comment: 7 pages, 1 figure. Phys. Rev. B (2005), in pres

    Proton transport and torque generation in rotary biomotors

    Full text link
    We analyze the dynamics of rotary biomotors within a simple nano-electromechanical model, consisting of a stator part and a ring-shaped rotor having twelve proton-binding sites. This model is closely related to the membrane-embedded F0_0 motor of adenosine triphosphate (ATP) synthase, which converts the energy of the transmembrane electrochemical gradient of protons into mechanical motion of the rotor. It is shown that the Coulomb coupling between the negative charge of the empty rotor site and the positive stator charge, located near the periplasmic proton-conducting channel (proton source), plays a dominant role in the torque-generating process. When approaching the source outlet, the rotor site has a proton energy level higher than the energy level of the site, located near the cytoplasmic channel (proton drain). In the first stage of this torque-generating process, the energy of the electrochemical potential is converted into potential energy of the proton-binding sites on the rotor. Afterwards, the tangential component of the Coulomb force produces a mechanical torque. We demonstrate that, at low temperatures, the loaded motor works in the shuttling regime where the energy of the electrochemical potential is consumed without producing any unidirectional rotation. The motor switches to the torque-generating regime at high temperatures, when the Brownian ratchet mechanism turns on. In the presence of a significant external torque, created by ATP hydrolysis, the system operates as a proton pump, which translocates protons against the transmembrane potential gradient. Here we focus on the F0_0 motor, even though our analysis is applicable to the bacterial flagellar motor.Comment: 24 pages, 5 figure

    Current-Controlled Negative Differential Resistance due to Joule Heating in TiO2

    Full text link
    We show that Joule heating causes current-controlled negative differential resistance (CC-NDR) in TiO2 by constructing an analytical model of the voltage-current V(I) characteristic based on polaronic transport for Ohm's Law and Newton's Law of Cooling, and fitting this model to experimental data. This threshold switching is the 'soft breakdown' observed during electroforming of TiO2 and other transition-metal-oxide based memristors, as well as a precursor to 'ON' or 'SET' switching of unipolar memristors from their high to their low resistance states. The shape of the V(I) curve is a sensitive indicator of the nature of the polaronic conduction.Comment: 13 pages, 2 figure

    Collective shuttling of attracting particles in asymmetric narrow channels

    Get PDF
    The rectification of a single file of attracting particles subjected to a low frequency ac drive is proposed as a working mechanism for particle shuttling in an asymmetric narrow channel. Increasing the particle attraction results in the file condensing, as signalled by the dramatic enhancement of the net particle current. Magnitude and direction of the current become extremely sensitive to the actual size of the condensate, which can then be made to shuttle between two docking stations, transporting particles in one direction, with an efficiency much larger than conventional diffusive models predict

    Diffusion-controlled generation of a proton-motive force across a biomembrane

    Full text link
    Respiration in bacteria involves a sequence of energetically-coupled electron and proton transfers creating an electrochemical gradient of protons (a proton-motive force) across the inner bacterial membrane. With a simple kinetic model we analyze a redox loop mechanism of proton-motive force generation mediated by a molecular shuttle diffusing inside the membrane. This model, which includes six electron-binding and two proton-binding sites, reflects the main features of nitrate respiration in E. coli bacteria. We describe the time evolution of the proton translocation process. We find that the electron-proton electrostatic coupling on the shuttle plays a significant role in the process of energy conversion between electron and proton components. We determine the conditions where the redox loop mechanism is able to translocate protons against the transmembrane voltage gradient above 200 mV with a thermodynamic efficiency of about 37%, in the physiologically important range of temperatures from 250 to 350 K.Comment: 26 pages, 4 figures. A similar model is used in arXiv:0806.3233 for a different biological system. Minor changes in the Acknowledgements sectio

    Large temperature dependence of the Casimir force at the metal-insulator transition

    Full text link
    The dependence of the Casimir force on material properties is important for both future applications and to gain further insight on its fundamental aspects. Here we derive a general theory of the Casimir force for low-conducting compounds, or poor metals. For distances in the micrometer range, a large variety of such materials is described by universal equations containing a few parameters: the effective plasma frequency, dissipation rate of the free carriers, and electric permittivity in the infrared range. This theory can also describe inhomogeneous composite materials containing small regions with different conductivity. The Casimir force for mechanical systems involving samples made with compounds that have a metal-insulator transition shows an abrupt large temperature dependence of the Casimir force within the transition region, where metallic and dielectric phases coexist.Comment: 23 pages, 9 figure

    Nonuniform Self-Organized Dynamical States in Superconductors with Periodic Pinning

    Get PDF
    We consider magnetic flux moving in superconductors with periodic pinning arrays. We show that sample heating by moving vortices produces negative differential resistivity (NDR) of both N and S type (i.e., N- and S-shaped) in the voltage-current characteristic (VI curve). The uniform flux flow state is unstable in the NDR region of the VI curve. Domain structures appear during the NDR part of the VI curve of an N type, while a filamentary instability is observed for the NDR of an S type. The simultaneous existence of the NDR of both types gives rise to the appearance of striking self-organized (both stationary and non-stationary) two-dimensional dynamical structures.Comment: 4 pages, 2 figure

    A generalized spherical version of the Blume-Emery-Griffits model with ferromagnetic and antiferromagnetic interactions

    Full text link
    We have investigated analitycally the phase diagram of a generalized spherical version of the Blume-Emery-Griffiths model that includes ferromagnetic or antiferromagnetic spin interactions as well as quadrupole interactions in zero and nonzero magnetic field. We show that in three dimensions and zero magnetic field a regular paramagnetic-ferromagnetic (PM-FM) or a paramagnetic-antiferromagnetic (PM-AFM) phase transition occurs whenever the magnetic spin interactions dominate over the quadrupole interactions. However, when spin and quadrupole interactions are important, there appears a reentrant FM-PM or AFM-PM phase transition at low temperatures, in addition to the regular PM-FM or PM-AFM phase transitions. On the other hand, in a nonzero homogeneous external magnetic field HH, we find no evidence of a transition to the state with spontaneous magnetization for FM interactions in three dimensions. Nonethelesss, for AFM interactions we do get a scenario similar to that described above for zero external magnetic field, except that the critical temperatures are now functions of HH. We also find two critical field values, Hc1H_{c1}, at which the reentrance phenomenon dissapears and Hc2H_{c2} (Hc1≈0.5Hc2H_{c1}\approx 0.5H_{c2}), above which the PM-AFM transition temperature vanishes.Comment: 21 pages, 6 figs. Title changed, abstract and introduction as well as section IV were rewritten relaxing the emphasis on spin S=1 and Figs. 5 an 6 were improved in presentation. However, all the results remain valid. Accepted for publication in Phys. Rev.

    Electrodynamics of Abrikosov vortices: the Field Theoretical Formulation

    Full text link
    Electrodynamic phenomena related to vortices in superconductors have been studied since their prediction by Abrikosov, and seem to hold no fundamental mysteries. However, most of the effects are treated separately, with no guiding principle. We demonstrate that the relativistic vortex worldsheet in spacetime is the object that naturally conveys all electric and magnetic information, for which we obtain simple and concise equations. Breaking Lorentz invariance leads to down-to-earth Abrikosov vortices, and special limits of these equations include for instance dynamic Meissner screening and the AC Josephson relation. On a deeper level, we explore the electrodynamics of two-form sources in the absence of electric monopoles, in which the electromagnetic field strength itself acquires the characteristics of a gauge field. This novel framework leaves room for unexpected surprises.Comment: LaTeX, 23 pages, 5 figure
    • …
    corecore