
Quantum metamaterials: Electromagnetic waves in a Josephson qubit line

A. L. Rakhmanov,1,2 A. M. Zagoskin,1,3,4 Sergey Savel’ev,1,3 and Franco Nori1,5

1Frontier Research System, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198, Japan
2Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow, Russia

3Department of Physics, Loughborough University, Loughborough LE11 3TU, United Kingdom
4Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

5Department of Physics, Center for Theoretical Physics, Applied Physics Program, Center for the Study of Complex Systems,
The University of Michigan, Ann Arbor, Michigan 48109-1040, USA

�Received 21 October 2007; revised manuscript received 26 January 2008; published 4 April 2008�

We consider the propagation of a classical electromagnetic wave through a transmission line, formed by
identical superconducting charge qubits inside a superconducting resonator. Since the qubits can be in a
coherent superposition of quantum states, we show that such a system demonstrates interesting effects, such as
a “breathing” photonic crystal with an oscillating band gap and a “quantum Archimedean screw” that trans-
ports, at an arbitrary controlled velocity, Josephson plasma waves through a transmission line. The key ingre-
dient of these effects is that the optical properties of the Josephson transmission line are controlled by the
quantum coherent state of the qubits.
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I. INTRODUCTION

The development of superconducting electronics now al-
lows observations of quantum behavior, such as the coherent
superposition of different macroscopic states in mesoscopic
and macroscopic devices.1,2 While efforts in this field are
now mainly directed at the development of superconducting
quantum bits as elements of eventual quantum computers,
there are other interesting possibilities opened by the exis-
tence of such large controllable quantum coherent circuit el-
ements. In particular, analogies with cavity QED have led to
interesting theoretical and experimental results.3–8 There, qu-
bits play the role of artificial atoms, and high-quality super-
conducting resonance circuits mimic optical cavities. Differ-
ences from cavity QED include the fact that instead of
having a stream of identical atoms moving through the cav-
ity, the state of a single qubit that is permanently coupled to
the resonator could be periodically changed. In Ref. 9, the
results of an earlier experiment10 were considered from the
point of view of lasing in such a system.

Another recent surge of interest in the electrodynamics of
Josephson junction arrays is related to terahertz electromag-
netic waves propagating in such systems. Terahertz waves
are important for applications but are hardly controllable for
both optical and electronic devices. Thus, Josephson struc-
tures might be of importance for miniature terahertz genera-
tors, filters, detectors, and waveguides.11

In this paper, instead of considering a single or a few
qubits, we investigate the behavior of an infinite chain of
identical qubits inside a resonator from the point of view of
terahertz or subterahertz electromagnetic wave propagation
in such a quantum medium. We show that by placing the
qubits in a quantum superposition state, some interesting
possibilities can be realized, including “breathing” photonic
crystals and an “Archimedean screw” transport of classical
electromagnetic modes.

For lack of a better term, we call such qubit structures,
which are considered from the point of view of macroscopic

propagation of electromagnetic field, quantum metamateri-
als. This is because �classical� metamaterials allow addi-
tional ways to control the propagation of electromagnetic
fields, which are not available to standard materials. �Alter-
native approaches to superconducting metamaterials were in-
vestigated in Refs. 12–18.� Similarly, our proposed quantum
metamaterials allow additional ways of controlling the
propagation of electromagnetic waves, which are not pos-
sible with normal classical structures. Indeed, the coherent
quantum dynamics of qubits determines the terahertz “opti-
cal” properties in the system.

II. MODEL

As a model, we choose a set of identical charge qubits
placed at equal intervals l between two bulk superconductors
separated by a distance D �Fig. 1�. Each qubit is a small
superconducting island connected to each superconducting
bank by a Josephson junction. The superconducting phase on
the nth island is �n. When treated quantum mechanically,
such an island indeed constitutes a qubit if its total capaci-
tance is small enough.1,2 The magnetic field H is applied
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FIG. 1. �Color online� Geometry of the system. Identical charge
qubits are placed at equal intervals l between bulk superconductors
separated by a distance D.
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normal to the structure �in the y direction�, and the vector
potential A only has a z component. We denote the vector
potential between the nth and �n+1�th qubits by Azn.

The structure in Fig. 1 is a one-dimensional �1D� wave-
guide with the energy per unit,

E =
EJ

2�J
2��2 � DȦzn

�0
+ �̇n�2

+ �2 � DȦzn

�0
− �̇n�2�

− EJ�cos��n +
2 � DAzn

�0
� + cos��n −

2 � DAzn

�0
��

+
Dl

8�
�Azn+1 − Azn

l
�2

+ 2In�n. �1�

Here, the dot denotes � /�t. In is current through the nth
junction. EJ=�0Ic /2�c, �J

2=2eIc /�C, Ic, C, and �0
=hc /2e are the Josephson energy, Josephson frequency, criti-
cal current, junction capacity, and flux quantum, respectively.
We take into account the fact that in the presence of the
vector potential, the superconducting phase differences
across the junctions of the nth qubit ��n acquire a gauge
term, 	n=2�DAzn /�0. Introducing the dimensionless units
E=E /EJ and t→�Jt, we rewrite Eq. �1� as

E = �̇n
2 + 	̇n

2 − 2 cos 	n cos �n + 
2�	n+1 − 	n�2, �2�

where


2 =
1

8 � lDEJ
��0

2�
�2

	
EEM

EJ
�3�

characterizes the ratio �EEM /EJ� of electromagnetic �EM�
and Josephson energies.

In this paper, the electromagnetic field is treated as a clas-
sical wave. We also assume that its amplitude is small, i.e.,
	n�1. This means that the magnetic flux per unit cell area
HyD� l is much smaller than �0. Under such assumptions,
the Hamiltonian for a single qubit is

H = − � �

��n
�2

− 	n
2 2�cos �n + I/Ic� . �4�

We restrict the states of each qubit to either its ground
state 
0�, with energy E0, or its excited state 
1�, with energy
E1. This is justified due to the nonlinearity of the Josephson
potential.

We are not concerned here with decoherence effects in the
qubits. We concentrate exclusively on their interaction with
the electromagnetic wave in the system. This idealization is
justified as long as the coherence time exceeds the wave
propagation time across a significant number of unit cell pe-
riods, which is the case in some of the most recent experi-
ments. For example, in Ref. 19, the charge qubit coupled to a
strip line had a dephasing time in excess of 200 ns �i.e., a
dephasing rate of 5 MHz� and a photon loss rate from the
cavity of 0.57 MHz. Compared to the qubit transition fre-
quency of the order of the Josephson energy of �6 GHz,
which provides the scale for the effects we consider here,
these frequencies are very small. For this choice of param-
eters and for D� l�10 m, the dimensionless velocity 


�i.e., the number of unit cells the EM wave propagates per
time period 2� /�J� can be estimated from Eq. �3� as 

�30. Therefore, the effects of decoherence and decay can be
neglected for the purposes of this paper. Moreover, the re-
gime considered here also justifies the use of the continuum
approximation Eq. �8��.

In the absence of an EM field, the wave function of the
system �n is a sum,

�n = C0
n0
0�ei�t/2 + C1

n0
1�e−i�t/2, �5�

where Ck
n0 are constants and � is the dimensionless excitation

energy,

� =
E1 − E0

��J
.

In the presence of an EM field, the coefficients Ck
n become

time dependent, and, as follows from Eq. �4�, these obey the
relation20

i
dCk

n

dt
= 	n

2 �
m=1,2

Vkm
n �t�Cm

n �t� , �6�

with the initial condition Ck
n�t=0�=Ck

n0. Here,

Vkm
n �t� = �k
cos �n
m��EJ/��J�

are matrix elements of the field-qubit interaction, calculated
in the Heisenberg basis

�
0�exp�i � t/2�, 
1�exp�− i � t/2�� .

Later, we will also use the time-independent matrix elements
Vkm

n = �k
cos �n
m��EJ /��J� in the basis �
0� , 
1��.
By varying the energy Eq. �2��, we obtain the equation

for the electromagnetic field in the linear approximation as

	̈n − 
2�	n+1 + 	n−1 − 2	n� + 	n��n
cos �n
�n��EJ/��J� = 0.

�7�

The set of Eqs. �5�–�7� should be supplied by appropriate
initial and boundary conditions. By controlling the qubits in
Eq. �6�, we propose to change the transmission and reflection
of EM waves described in Eq. �7�.

We are interested in the case when the wavelength is large
compared to the size of the unit cell. Therefore, the qubit line
can be treated as a continuous 1D medium, with n · l replaced
by x. The difference Eq. �7�� for 	n�t� and �n�t� is thus
replaced by a differential equation for 	�x , t� and ��x , t�,

	̈ − 
2�2	

�x2 + V0 	 = 0,

V0 = ���x�
cos � �x�
��x���EJ/��J� . �8�

Within the perturbation theory approach, we present the elec-
tromagnetic wave as a sum of the larger incident wave 	0
and the smaller scattered wave 	1. A quantum state of the
system is described by the wave function

��x,t� = C0�x,t�
0�ei�t/2 + C1�x,t�
1�e−i�t/2. �9�

In the unperturbed state, the coefficients in this equation are
Ci=Ci

0�x�. We present the coefficients Ci�x , t� as a sum of the
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unperturbed solution Ci
0�x� and the small perturbation

Ci
1�x , t�, Ci�x , t�=Ci

0�x�+Ci
1�x , t�, with 
Ci

1
�1. Using Eq.
�6�, we derive the following:

iC0
1 = �

0

t

dt�	0
2�V00C0

0 + V01C1
0e−i�t�� ,

iC1
1 = �

0

t

dt�	0
2�V11C1

0 + V10
� C0

0ei�t�� , �10�

where Vik= �i
cos � 
k� are calculated using the unperturbed
wave functions, V� is the complex conjugate of V, and V10

�

=V01.
For the unperturbed EM wave 	0, we obtain the following

from Eq. �8�

	̈0 − 
2�2	0

�x2 + V0	0 = 0. �11�

Here, �V0�1/2 plays the role of the Josephson plasma fre-
quency, which is now controlled by the quantum state and
quantum dynamics of the qubits. For the matrix element V0,
we can derive the following expression:

V0 = 
C0
0
2V00 + 
C1

0
2V11 + C0
0C1

0�ei�tV10 + H.c. �12�

For simplicity, we assume that 	0 is a standing wave 	0
=A cos��t�cosk���x�.

III. ELECTROMAGNETIC WAVE PROPAGATION
THROUGH A UNIFORM QUBIT LINE

A. Qubits initially in the ground state �0‹

If all the qubits are in the ground state 
0�, then, initially,
C0

0=1 and C1
0=0. In this case, V0=V00, and the wave vector

is

k��� =
1



��2 − V00. �13�

Thus, the wave can propagate if its frequency exceeds
�V00�1/2, which can be interpreted as the “ground state”
plasma frequency of the medium. From Eq. �10�, we obtain
the following:

C0
1�x,t�
V00

= −
iA2 cos2�kx�

2
�t +

sin�2 � t�
2�

� ,

C1
1�x,t�
V01

= −
A2 cos2�kx�

2
� ei�t − 1

�

+
� + ei�t2i � sin�2 � t� − � cos�2 � t��

4�2 − �2 � .

�14�

The initial disturbance of the wave function produces a dis-
turbance 	1 in the propagating wave. For this perturbation,
using Eq. �8�, we derive

	̈1 − 
2�2	1

�x2 + V00	1 + � V0	0 = 0, �15�

where �V0 is the perturbation of the field-qubit coupling. By
means of Eq. �14�, we obtain

�V0�t� = − 
V01
2A2 cos2�kx�� 1

�

−
2�2�2 − �2�cos��t� + �2 cos�2 � t�

��4�2 − �2� � . �16�

We see that the electromagnetic wave is in resonance with
the qubit line if its frequency is one-half of the interlevel
distance, �= � /2. This is due to the term that is proportional
to 	2 in the Hamiltonian �4�. Near the resonance, the condi-
tion 
Ci

1
�1 is no longer valid and the usual perturbation
approach fails.

B. Qubits initially in the excited state �1‹

If all qubits are initially in the excited state 
1�, the solu-
tion will be in complete analogy to the previous case. As can
readily be seen, we should only exchange 0↔1 and
�↔−� in Eqs. �13�–�16�,

k��� =
1



��2 − V11, �17�

C1
1�x,t�
V11

= −
iA2 cos2�kx�

2
�t +

sin�2 � t�
2�

� ,

C0
1�x,t�
V10

= −
A2 cos2�kx�

2
�1 − e−i�t

�

+
− � + e−i�t2i � sin�2 � t� + � cos�2 � t��

4�2 − �2 � .

�18�

For the electromagnetic wave, we obtain

	̈1 − 
2�2	1

�x2 + V11	1 + � V1	0 = 0. �19�

In Eq. �19�,

�V1�t� = − � V0�t� ,

where �V0�t� is given by Eq. �16�.
The excited qubit line is an active medium, and one

should expect a resonance pumping of the electromagnetic
wave as it propagates along this medium. However, �V1
→0 at 2� →� �and �V0→0 at 2� →� as well�. This “para-
dox” only reflects the limitations of the first-order perturba-
tion approximation, where 
Ci

0+Ci
1
2= 
Ci

0
2. In other words,
to first order, the qubit energy does not change. To describe
the pumping effect, we must take into account the higher
order terms, which is beyond the scope of our current inves-
tigation.

In the case of C0=C1=1 /2, all qubits rotate between the
ground and excited states. The matrix element in Eq. �8� is
now
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V0�t� =
1

4
V00 + V11 + 2V01 cos��t�� . �20�

Let us now assume, for simplicity, that the frequency of
the electromagnetic wave is high, i.e., ���. Then, its wave
vector is a slowly oscillating function,

k�� ,t� ���2 −
V00 + V11 + 2
V01
cos��t�

4
2 . �21�

If the wave frequency � is close to the threshold value,

�c = �V00 + V11/�2 
 � ,

then the qubit line will alternate between transparent and
reflecting states with frequency � as the wave vector k�t�
switches between real and imaginary values. In addition, the
qubit line will produce electromagnetic waves with frequen-
cies � and ���.

IV. ELECTROMAGNETIC WAVE AT RESONANCE

Near the resonance, 2�−� 	 � � ��, we can use a reso-
nant perturbation approach20 instead of a first-order pertur-
bation approximation. In doing so, we drop all the terms in
Eq. �6� except the resonant ones. As a result, we have

iĊ0 = − � ei��tC1,

iĊ1 = − ��e−i��tC0, �22�

where

��x� = A2 cos2k���x�V01/4.

The solution of this system is

C0�t� =
ei��t/2

�� �g1��−
� �

2
�ei�t − g2�� +

� �

2
�e−i�t�

C1�t� = e−i��t/2�g1ei�t + g2e−i�t� , �23�

where

� = ��2 + �� ��2/4,

and g1 and g2 are constants. The coefficients Ci satisfy the
normalization condition 
C0
2+ 
C1
2=1. If at t=0 the system
were in the ground state, we would obtain

C0�t� = ei��t/2�cos��t� −
i � �

2�
sin��t�� ,

C1�t� = −
i
 � 


�
e−i��t/2 sin��t� . �24�

At resonance �� =0,

� = exp�i � t/2�cos�
 � 
t�
0� − i exp�− i � t/2�sin�
 � 
t�
1� ,

and each qubit periodically oscillates between its ground and
excited states. The frequency of these transitions varies with
the qubit position since �= � �x�. It can be considered as a

spatially dependent quantum beat frequency. If the system
were initially in its excited state, then we would have

C0�t� = −
i
 � 


�
ei��t/2 sin��t� ,

C1�t� = e−i��t/2�cos��t� −
i � �

2�
sin��t�� , �25�

and at �� =0,

� = − i exp�i � t/2�sin�
 � 
t�
0� + exp�− i � t/2�cos�
 � 
t�
1� .

Using these expressions for the wave functions, we find the
matrix element V0 in Eq. �12�. Assuming for simplicity that
Vik are real and ��2� 
� 
2, we obtain

V0�t� =
V00 + V11

2
�

V00 − V11

2
cos�2
 � 
t�

− V01 sin�2
 � 
t�sin��t + � �� , �26�

where the signs + and − correspond to the initial ground and
excited states for qubits, respectively. If the transitions be-
tween the ground and excited states are suppressed 
V01

� 
V00−V11
, then, in resonance, the electromagnetic wave 	0
will have a time-dependent wave vector,

k�� ,t� = ��2 − V0�t� ,

where V0�t� varies between V00 and V11. These results are
valid if the wave-qubit interaction does not distort too much,

	1

2
� 
	0
2
. In any case, the condition


 � 
 � A2
V01
 � � � � �27�

must be fulfilled.

V. QUANTUM METAMATERIAL PHOTONIC CRYSTAL

In analogy with photonic crystals,21 the interaction of the
electromagnetic wave with qubits can produce a frequency
gap in the spectrum of the propagating wave if the qubit
states are periodically modulated in space. For example, sup-
posing that the qubits are in the 
� � or 
� � state with a spatial
period 2L, the wave obeys

	̈ − 
2	xx + V�� 	 = 0 �28�

or

	̈ − 
2	xx + V�� 	 = 0. �29�

The 
� � and 
� � can be either stationary states �eigenstates
of the qubit Hamiltonian� or their superpositions. In the latter
case, the photonic crystal discussion makes sense only if the
quantum beat frequency is small compared to the frequency
of the propagating wave, that is, �2� 
V00
 and 
V11
.

Following the usual band-theory approach for electrons in
a crystal lattice, we seek the solution of Eqs. �28� and �29� in
the form of a Bloch wave 	�t ,x�=u�x ,k�exp�ikx− i� t�,
where u�x ,k� is a periodic function of x with the period 2L,
and the dimensionless wave vector k is in the first Brillouin
zone, −� /L�k� � /L. Consider the jth elementary cell of
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our periodic structure: All the qubits are in state 
� � for xj
�x�xj +L and in state 
� � for xj +L�x�xj +2L. In both
regions, the solution 	�t ,x� of Eqs. �28� and �29� is a sum of
exponential terms multiplied by constants Cj. By using the
continuity of 	 and �	 /�x at the boundaries of different
regions and the periodicity of the Bloch functions u�x ,k�, we
obtain a set of homogeneous linear equations for Cj. The
nontrivial solution of these equations exists only if the deter-
minant of the set of equations is zero. Then, after straight-
forward algebra, we obtain the dispersion equation for the
frequency ��k� in the form

cos���L�cos���L� −
��

2 + ��
2

2����

sin���L�sin���L� = cos�2kL� ,

�30�

where

��
2 =

�2 − V��


2 , ��
2 =

�2 − V��


2 . �31�

This equation predicts the spectrum ��k� with gaps if the
difference between �� and �� is large enough; that is, 
��

2

−��
2
�1 or


V�� − V��
 � 
2. �32�

Thus, in order to form a photonic crystal in the qubit line, the
Josephson energy EJ must be large compared to the magnetic
energy or, according to Eq. �3�, must be

EJ �
1

8�
� �0

�Dl
�2

. �33�

The characteristic dependence of ��k� is shown in Fig. 2.
Note that the gap value for the first zone is of the order of
unity if condition �32� is valid.

The gap depends on the quantum state of the qubits, mak-
ing this a quantum photonic crystal. Changing the micro-
scopic quantum state of the qubits changes the macroscopic
electromagnetic response of the system.

A more interesting situation arises if one or both of the
qubit states are not the eigenstate 
0� or 
1�. In this case, the
system would exhibit quantum beats between the two. Let,
e.g., 
� �= 
0� and


 � � = �
0�ei�t + 
1�e−i�t�/2,

then V��=V00 and

V���t� = V00 + V11 + 2V01 cos��t��/4.

In this case, the photonic crystal arises if any of the matrix
elements is of the order of unity. The frequency gap is modu-
lated by the value of V01 /2 with the period �t=2� /�. If
V01�1, then the modulation is significant. If


 � � = �
0�ei�t − 
1�e−i�t�/2

and


 � � = �
0�ei�t + 
1�e−i�t�/2,

then

V���t� = V00 + V11 − 2V01 cos��t��/4,

V���t� = V00 + V11 + 2V01 cos��t��/4. �34�

In this case, the photonic crystal appears if V01�1. The
gap is strongly modulated in time from zero, at t= �2n
+1�� /2�, to its maximum value when t=n� /� �here, n is
an integer�. Thus, we obtain an interesting uniformly breath-
ing photonic crystal, as shown in Fig. 3.

FIG. 2. �Color online� Photonic crystal spectrum obtained for a
qubit transmission line. The ��k� was calculated for a periodic array
of qubit states �ground and excited�. The ratio V00 /V11=5.

0 0.5 1 1.5 2 2.5 3
0

1

2

3
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6

�

�
t

FIG. 3. Breathing photonic crystal: contour curves of the wave
vector k as a function of � and �t in the situation described by Eq.
�34�. The parameters used here are V00=V01=1, V11=2 �units of the
qubit Josephson energy EJ�, 
=0.5, and L=2. The time-dependent
gaps in the spectrum are clearly seen.
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VI. QUANTUM ARCHIMEDEAN SCREW

Let an external source produce a slow “control wave”
propagating along the qubit line. That is, let the coefficients
Ci in the wave function be

C0�x,t� = sin��0t − k0x�, C1�x,t� = cos��0t − k0x� ,

�35�

where �0 and k0 are the frequency and the wave vector of the
control wave, respectively. Both these values are small com-
pared with the electromagnetic wave frequency and wave
vector. Such a wave can be produced, e.g., by applying an rf
signal to the qubits with a position-dependent phase and in-
ducing Rabi oscillations between their ground and excited
states. In order for us to neglect the decoherence effects in
the lowest approximation, the control signal frequency must
still be much higher than the decay and dephasing rates, i.e.,
realistically in excess of several megahertz see the discus-
sion after Eq. �4��.

The matrix element V0 in the wave equations then takes
the form

V0�x,t� =
V00 + V11

2
−

V00 − V11

2
cos2��0t − k0x��

+ V01 sin2��0t − k0x��cos � t , �36�

where we now assume that V01 is real. To simplify the prob-
lem, we now assume that 
V01
� 
V00�V11
, and the last
term, which describes the qubit relaxation, can be neglected.
Thus, V0=V0���, where �=�0t−k0x.

The function V0��� varies slowly and we can seek the
solution of Eq. �8� in the form

	�t, �� = A��� sin�0t − � ���� , �37�

where the wave amplitude A��� varies slowly and we can
neglect terms with A���� �here, f�	df /d��. By substituting
Eq. �37� into Eq. �8� and separating the terms with sin�0t
− � ���� and cos�0t− � ����, we derive two equations for the
wave amplitude A and the phase � in the following form:

2A�

A
= −

�
2k0
2 − �0

2���

�
2k0
2 − �0

2��� + � �0
,

����2 + 2��
��0


2k0
2 − �0

2 +
V0 − �2


2k0
2 − �0

2 = 0. �38�

These equations are valid if

�A�

A
� � ����2,

�A�

A
� �

��− �0���2

��0���2 . �39�

By integrating the first of these equations, we get

2 ln A = − ln��� +
��0


2k0
2 − �0

2� + const. �40�

The second equation is a quadratic equation for ��. By
choosing its positive root and substituting it into Eq. �40�, we
get

A

A0
= � �
2k0

2 − �0
2�2


2k0
2�2 − �
2k0

2 − �0
2�V0

�1/4

, �41�

where A0 is a constant defined by the boundary conditions.
The dependence A�x , t� /A0 is shown in Fig. 4 for parameters
chosen within the validity range Eq. �39��. It is easy to see
that the wave amplitude A�t� achieves its maximum if the
denominator in Eq. �41� becomes small at some moments in
time. The value 
2k0

2�2− �
2k0
2−�0

2�V0 should be positive.
Assuming that V00�V11, we can write the last condition in
the form

�2 � �c
2 = V11�1 −

�0
2


2k0
2� . �42�

The variation of A�x , t� /A0 is maximum if � is close to
�c; however, the conditions in Eq. �39� should be fulfilled.

Returning to Fig. 4, we see that the maxima of the fast-
oscillating electromagnetic field are transferred through the
system at a pace set by the much slower control frequency
�0, which reminds us of an Archimedean screw or a meat
grinder.

FIG. 4. �Color online� Quantum Archimedean screw: �top� sche-
matic diagram of how the wave amplitude A�x , t� /A0 varies with
position at a given moment in time and �bottom� the dependence of
the wave amplitude on time and position. V00+V11=2, V00−V11

=1 �units of the qubit Josephson energy EJ�, 
=0.15, k0=0.1, �0

=10−3, and �=1.23.
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VII. CONCLUSIONS

Here, we show that for a classical electromagnetic wave,
a line of qubits inside a superconducting cavity plays the role
of a 1D transmission line with interesting characteristics and
physics. In particular, the quantum superposition of qubit
states produces a breathing state with transparency changing
with the quantum beat frequency of a single qubit. More
interestingly, a periodic arrangement of qubit states yields a
quantum photonic crystal, which can also be put into a
breathing mode. A time-domain control of the qubits allows
us to realize an Archimedean screw state, where the incident
electromagnetic wave is periodically modulated, and the re-
gions of its maximum amplitude are carried along the qubit
line with a desired speed. The investigation of the action of
this system as an active medium requires a special treatment
beyond the lowest-order perturbation theory and will be the
subject of future research.
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