10,180 research outputs found

    Gravity Anomalies and Flexure of the Lithosphere along the Hawaiian-Emperor Seamount Chain

    Get PDF
    Simple models for the flexure of the lithosphere caused by the load of the Hawaiian-Emperor Seamount Chain have been determined for different values of the effective flexural rigidity of the lithosphere. The gravity effect of the models have been computed and compared to observed free-air gravity anomaly profiles in the vicinity of the seamount chain. The values of the effective flexural rigidity which most satisfactorily explain both the amplitude and wavelength of the observed profiles have been determined. Computations show that if the lithosphere is modelled as a continuous elastic sheet, a single effective flexural rigidity of about 5 × 10²⁹ dyne-cm can explain profiles along the Hawaiian-Emperor Seamount Chain. If the lithosphere is modelled as a discontinuous elastic sheet an effective flexural rigidity of about 2 × 10³⁰ dyne-cm is required. Since the age of the seamount chain increases from about 3 My near Hawaii to about 70 My near the northernmost Emperor seamount these results suggest there is apparently little decrease in the effective flexural rigidity of the lithosphere with increase in the age of loading. This suggests the lithosphere is rigid enough to support the load of the seamount chain for periods of time of at least several tens of millions of years. Thus the subsidence of atolls and guyots along the chain is most likely to be regional in extent and is unlikely to be caused by an inelastic behaviour of the lithosphere beneath individual seamounts

    Influence of supplemental protein versus energy level on intake, fill, passage, digestibility, and fermentation characteristics of beef steers consuming dormant bluestem range forage

    Get PDF
    Two trials were conducted to evaluate effects of protein versus energy level in milo/soybean meal supplements on intake and utilization of dormant, bluestem forage. Forage dry matter intake and utilization of dormant bluestem forage appears to increase at higher levels of supplemental protein. Increased supplemental energy may be associated with depressed intake and utilization, particularly when supplements are low in protein

    Forward and Inverse Processing in Electromagnetic NDE Using Squid

    Get PDF
    Electromagnetic NDE has been successfully applied to the detection of surface cracks and is routinely used to locate flaws in airframes, pipelines and in steel offshore oil platforms. However, there are still many problems to be solved, particularly in the aviation industry, which require the detection of deeper flaws such as corrosion in multi-layered structures and cracks around rivet holes which are obscured by the head of the rivet. Most systems use coils as detectors (though Hall probes are occasionally used), which have low sensitivity at low frequencies due to the fact that the induced voltage is proportional to the rate of change of magnetic flux through the coil. Unfortunately it is necessary to use low frequencies to detect deep subsurface flaws on account of the skin-depth effect, otherwise the electromagnetic field cannot propagate down to the depth of the flaw. SQUID (Superconducting Quantum Interference Device) sensors are ideally suited to overcome the deficiencies of coils, because they are primarily detectors of magnetic flux which, together with their high sensitivity, makes the detection of deep flaws more likely. SQUIDs have been successfully used for measuring very low magnetic fields, particularly in the field of biomagnetism, and it is hoped to exploit this sensitivity to detect flaws at large stand-off distances for example in pipelines which are surrounded by thick layers of cladding

    Direct and inverse spectral transform for the relativistic Toda lattice and the connection with Laurent orthogonal polynomials

    Full text link
    We introduce a spectral transform for the finite relativistic Toda lattice (RTL) in generalized form. In the nonrelativistic case, Moser constructed a spectral transform from the spectral theory of symmetric Jacobi matrices. Here we use a non-symmetric generalized eigenvalue problem for a pair of bidiagonal matrices (L,M) to define the spectral transform for the RTL. The inverse spectral transform is described in terms of a terminating T-fraction. The generalized eigenvalues are constants of motion and the auxiliary spectral data have explicit time evolution. Using the connection with the theory of Laurent orthogonal polynomials, we study the long-time behaviour of the RTL. As in the case of the Toda lattice the matrix entries have asymptotic limits. We show that L tends to an upper Hessenberg matrix with the generalized eigenvalues sorted on the diagonal, while M tends to the identity matrix.Comment: 24 pages, 9 figure

    Binding, Transcytosis and Biodistribution of Anti-PECAM-1 Iron Oxide Nanoparticles for Brain-Targeted Delivery

    Get PDF
    OBJECTIVE: Characterize the flux of platelet-endothelial cell adhesion molecule (PECAM-1) antibody-coated superparamagnetic iron oxide nanoparticles (IONPs) across the blood-brain barrier (BBB) and its biodistribution in vitro and in vivo. METHODS: Anti-PECAM-1 IONPs and IgG IONPs were prepared and characterized in house. The binding affinity of these nanoparticles was investigated using human cortical microvascular endothelial cells (hCMEC/D3). Flux assays were performed using a hCMEC/D3 BBB model. To test their immunospecificity index and biodistribution, nanoparticles were given to Sprague Dawley rats by intra-carotid infusion. The capillary depletion method was used to elucidate their distribution between the BBB and brain parenchyma. RESULTS: Anti-PECAM-1 IONPs were ~130 nm. The extent of nanoparticle antibody surface coverage was 63.6 ± 8.4%. Only 6.39 ± 1.22% of labeled antibody dissociated from IONPs in heparin-treated whole blood over 4 h. The binding affinity of PECAM-1 antibody (KD) was 32 nM with a maximal binding (Bmax) of 17 × 10(5) antibody molecules/cell. Anti-PECAM-1 IONP flux across a hCMEC/D3 monolayer was significantly higher than IgG IONP\u27s with 31% of anti-PECAM-1 IONPs in the receiving chamber after 6 h. Anti-PECAM-1 IONPs showed higher concentrations in lung and brain, but not liver or spleen, than IgG IONPs after infusion. The capillary depletion method showed that 17±12% of the anti-PECAM-1 IONPs crossed the BBB into the brain ten minutes after infusion. CONCLUSIONS: PECAM-1 antibody coating significantly increased IONP flux across the hCMEC/D3 monolayer. In vivo results showed that the PECAM-1 antibody enhanced BBB association and brain parenchymal accumulation of IONPs compared to IgG. This research demonstrates the benefit of anti-PECAM-1 IONPs for association and flux across the BBB into the brain in relation to its biodistribution in peripheral organs. The results provide insight into potential application and toxicity concerns of anti-PECAM-1 IONPs in the central nervous system

    Capsule-based ultrasound-mediated targeted gastrointestinal drug delivery

    Get PDF
    Diseases which are prevalent in the gastrointestinal (GI) tract, such as Crohn's disease, are a topic of increasing concern because diagnosis and specific treatment are difficult and may be ineffective. New techniques are therefore sought after and this paper describes a proof-of-concept tethered capsule for targeted drug delivery (TDD) in the GI tract. The capsule consists of a camera, illumination, a drug delivery channel and an ultrasound (US) transducer. The transducer is described in detail, including a comparison of different piezoceramic materials that has been carried out. It was found that PZ54 (Ferroperm Piezoceramics, Kvistgaard, Denmark) was the most suitable material for our application. When driven at 4 Vpp, the outer diameter 5 mm PZ54 transducer operates at a frequency f = 4.05 MHz providing an acoustic pressure, Pac = 125 kPa, with a beam diameter, BD = 0.75 mm at the focus. Pressures in the range 50 - 300 kPa have been previously reported as suitable for sonoporation, a process vital in many TDD applications, so this is a promising result. Basic functional testing of the capsule was performed by supplying glass microbubbles (MBs) through the drug delivery channel into the US focus, monitored via the onboard camera. It was found that the acoustic radiation forces have a clear influence on the MBs, significantly changing their direction at the US focus. This suggests that drugs may be targeted to specific tissue in the GI tract by the new capsule. The results translate into a capsule configuration with the potential to be clinically and biologically useful

    A Planetary Companion to gamma Cephei A

    Full text link
    We report on the detection of a planetary companion in orbit around the primary star of the binary system γ\gamma Cephei. High precision radial velocity measurements using 4 independent data sets spanning the time interval 1981--2002 reveal long-lived residual radial velocity variations superimposed on the binary orbit that are coherent in phase and amplitude with a period or 2.48 years (906 days) and a semi-amplitude of 27.5 m s1^{-1}. We performed a careful analysis of our Ca II H & K S-index measurements, spectral line bisectors, and {\it Hipparcos} photometry. We found no significant variations in these quantities with the 906-d period. We also re-analyzed the Ca II λ\lambda8662 {\AA} measurements of Walker et al. (1992) which showed possible periodic variations with the ``planet'' period when first published. This analysis shows that periodic Ca II equivalent width variations were only present during 1986.5 -- 1992 and absent during 1981--1986.5. Furthermore, a refined period for the Ca II λ\lambda8662 {\AA} variations is 2.14 yrs, significantly less than residual radial velocity period. The most likely explanation of the residual radial velocity variations is a planetary mass companion with MM sin ii = 1.7 MJupiterM_{Jupiter} and an orbital semi-major axis of a2a_2 == 2.13 AU. This supports the planet hypothesis for the residual radial velocity variations for γ\gamma Cep first suggested by Walker et al. (1992). With an estimated binary orbital period of 57 years γ\gamma Cep is the shortest period binary system in which an extrasolar planet has been found. This system may provide insights into the relationship between planetary and binary star formation.Comment: 19 pages, 15 figures, accepted in Ap. J. Includes additional data and improved orbital solutio

    Status of the profession

    Get PDF
    The number of astronomers has grown by about 40 percent over the past decade. The number of astronomers with jobs in industry, or with long-term, non-tenured, jobs has increased dramatically compared with traditional faculty positions. The increase in the number of astronomers and the declining share of the NSF budget going to astronomy has led to extreme difficulties in the NSF grant program and in support of the National Observatories. In 1989, direct NASA support of astronomers through the grants program exceeds that of NSF, although the total of the NSF grants program over decade far exceeds that of NASA. Access to major new telescopes will be important issue for the 1990s. US astronomers, who once had a monopoly on telescopes larger than 3 meters, will, by the year 2000, have access to just half of the world's optical telescope area

    Confirmation of the Planet Hypothesis for the Long-period Radial Velocity Variations of Beta Geminorum

    Get PDF
    We present precise stellar radial velocity measurements for the K giant star Beta Gem spanning over 25 years. These data show that the long period low amplitude radial velocity variations found by Hatzes & Cochran (1993) are long-lived and coherent. An examination of the Ca II K emission, spectral line shapes from high resolution data (R = 210,000), and Hipparcos photometry show no significant variations of these quantities with the RV period. These data confirm the planetary companion hypothesis suggested by Hatzes & Cochran (1993). An orbital solution assuming a stellar mass of 1.7 M_sun yields a period, P = 589.6 days, a minimum mass of 2.3 M_Jupiter, and a semi-major axis, and a = 1.6 AU. The orbit is nearly circular (e = 0.02). Beta Gem is the seventh intermediate mass star shown to host a sub-stellar companion and suggests that planet-formation around stars much more massive than the sun may common.Comment: 10 pages, 9 figures, Astronomy and Astrophysics, in pres
    corecore