818 research outputs found
Lifespan differences between queens and workers are not explained by rates of molecular damage.
The biological processes that underlie senescence are of universal biological importance, yet they remain poorly understood. A popular theory proposes that senescence is the result of limited investment into mechanisms involved in the prevention and repair of molecular damage, leading to an accumulation of molecular damage with age. In ants, queen and worker lifespans differ by an order of magnitude, and this remarkable difference in lifespan has been shown to be associated with differences in the expression of genes involved in DNA and protein repair. Here we use the comet assay and Western Blotting for poly-ubiquitinated proteins to explore whether these differences in expression lead to differences in the accumulation of DNA damage (comet assay) or protein damage (protein ubiquitination) with age. Surprisingly, there was no difference between queens and workers in the rate of accumulation of DNA damage. We also found that levels of ubiquitinated proteins decreased with age, as previously reported in honeybees. This is in contrast to what has been found in model organisms such as worms and flies. Overall, these results reveal that the link between investment into macromolecular repair, age-related damage accumulation and lifespan is more complex than usually recognised
Particle detection experiment for Applications Technology Satellite 1 /ATS-1/ Final report
Applications technology satellite particle detection experiment for measuring energy spectra of earth magnetic fiel
Performance evaluation of novel square-bordered position-sensitive silicon detectors with four-corner readout
We report on a recently developed novel type of large area (62 mm x 62 mm)
position sensitive silicon detector with four-corner readout. It consists of a
square-shaped ion-implanted resistive anode framed by additional
low-resistivity strips with resistances smaller than the anode surface
resistance by a factor of 2. The detector position linearity, position
resolution, and energy resolution were measured with alpha-particles and heavy
ions. In-beam experimental results reveal a position resolution below 1 mm
(FWHM) and a very good non-linearity of less than 1% (rms). The energy
resolution determined from 228Th alpha source measurements is around 2% (FWHM).Comment: 13 pages, 10 figures, submitted to Nucl. Instr. and Meth.
Spin tune mapping as a novel tool to probe the spin dynamics in storage rings
Precision experiments, such as the search for electric dipole moments of
charged particles using storage rings, demand for an understanding of the spin
dynamics with unprecedented accuracy. The ultimate aim is to measure the
electric dipole moments with a sensitivity up to 15 orders in magnitude better
than the magnetic dipole moment of the stored particles. This formidable task
requires an understanding of the background to the signal of the electric
dipole from rotations of the spins in the spurious magnetic fields of a storage
ring. One of the observables, especially sensitive to the imperfection magnetic
fields in the ring is the angular orientation of stable spin axis. Up to now,
the stable spin axis has never been determined experimentally, and in addition,
the JEDI collaboration for the first time succeeded to quantify the background
signals that stem from false rotations of the magnetic dipole moments in the
horizontal and longitudinal imperfection magnetic fields of the storage ring.
To this end, we developed a new method based on the spin tune response of a
machine to artificially applied longitudinal magnetic fields. This novel
technique, called \textit{spin tune mapping}, emerges as a very powerful tool
to probe the spin dynamics in storage rings. The technique was experimentally
tested in 2014 at the cooler synchrotron COSY, and for the first time, the
angular orientation of the stable spin axis at two different locations in the
ring has been determined to an unprecedented accuracy of better than
rad.Comment: 32 pages, 15 figures, 7 table
Phase Measurement for Driven Spin Oscillations in a Storage Ring
This paper reports the first simultaneous measurement of the horizontal and
vertical components of the polarization vector in a storage ring under the
influence of a radio frequency (rf) solenoid. The experiments were performed at
the Cooler Synchrotron COSY in J\"ulich using a vector polarized, bunched
deuteron beam. Using the new spin feedback system, we
set the initial phase difference between the solenoid field and the precession
of the polarization vector to a predefined value. The feedback system was then
switched off, allowing the phase difference to change over time, and the
solenoid was switched on to rotate the polarization vector. We observed an
oscillation of the vertical polarization component and the phase difference.
The oscillations can be described using an analytical model. The results of
this experiment also apply to other rf devices with horizontal magnetic fields,
such as Wien filters. The precise manipulation of particle spins in storage
rings is a prerequisite for measuring the electric dipole moment (EDM) of
charged particles
Search for eta-mesic 4He in the dd->3He n pi0 and dd->3He p pi- reactions with the WASA-at-COSY facility
The search for 4He-eta bound states was performed with the WASA-at-COSY
facility via the measurement of the excitation function for the dd->3He n pi0
and dd->3He p pi- processes. The beam momentum was varied continuously between
2.127 GeV/c and 2.422 GeV/c, corresponding to the excess energy for the dd->4He
eta reaction ranging from Q=-70 MeV to Q=30 MeV. The luminosity was determined
based on the dd->3He n reaction and quasi-free proton-proton scattering via
dd->pp n_spectator n_spectator reactions. The excitation functions determined
independently for the measured reactions do not reveal a structure which could
be interpreted as a narrow mesic nucleus. Therefore, the upper limits of the
total cross sections for the bound state production and decay in
dd->(4He-eta)_bound->3He n pi0 and dd->(4He-eta)_bound->3He p pi- processes
were determined taking into account the isospin relation between both the
channels considered. The results of the analysis depend on the assumptions of
the N* momentum distribution in the anticipated mesic-4He. Assuming as in the
previous works, that this is identical with the distribution of nucleons bound
with 20 MeV in 4He, we determined that (for the mesic bound state width in the
range from 5 MeV to 50 MeV) the upper limits at 90% confidence level are about
3 nb and about 6 nb for npi0 and ppi- channels, respectively. However, based on
the recent theoretical findings of the N*(1535) momentum distribution in the
N*-3He nucleus bound by 3.6 MeV, we find that the WASA-at-COSY detector
acceptance decreases and hence the corresponding upper limits are 5 nb and 10
nb for npi0 and ppi- channels respectively.Comment: This article will be submitted to JHE
Cross section ratio and angular distributions of the reaction p + d -> 3He + eta at 48.8 MeV and 59.8 MeV excess energy
We present new data for angular distributions and on the cross section ratio
of the p + d -> 3He + eta reaction at excess energies of Q = 48.8 MeV and Q =
59.8 MeV. The data have been obtained at the WASA-at-COSY experiment
(Forschungszentrum J\"ulich) using a proton beam and a deuterium pellet target.
While the shape of obtained angular distributions show only a slow variation
with the energy, the new results indicate a distinct and unexpected total cross
section fluctuation between Q = 20 MeV and Q = 60 MeV, which might indicate the
variation of the production mechanism within this energy interval.Comment: 9 pages, 9 figure
Phase locking the spin precession in a storage ring
This letter reports the successful use of feedback from a spin polarization
measurement to the revolution frequency of a 0.97 GeV/ bunched and polarized
deuteron beam in the Cooler Synchrotron (COSY) storage ring in order to control
both the precession rate ( kHz) and the phase of the horizontal
polarization component. Real time synchronization with a radio frequency (rf)
solenoid made possible the rotation of the polarization out of the horizontal
plane, yielding a demonstration of the feedback method to manipulate the
polarization. In particular, the rotation rate shows a sinusoidal function of
the horizontal polarization phase (relative to the rf solenoid), which was
controlled to within a one standard deviation range of rad. The
minimum possible adjustment was 3.7 mHz out of a revolution frequency of 753
kHz, which changes the precession rate by 26 mrad/s. Such a capability meets a
requirement for the use of storage rings to look for an intrinsic electric
dipole moment of charged particles
- …
