94 research outputs found
Ultrafast QND measurements based on diamond-shape artificial atom
We propose a Quantum Non Demolition (QND) read-out scheme for a
superconducting artificial atom coupled to a resonator in a circuit QED
architecture, for which we estimate a very high measurement fidelity without
Purcell effect limitations. The device consists of two transmons coupled by a
large inductance, giving rise to a diamond-shape artificial atom with a logical
qubit and an ancilla qubit interacting through a cross-Kerr like term. The
ancilla is strongly coupled to a transmission line resonator. Depending on the
qubit state, the ancilla is resonantly or dispersively coupled to the
resonator, leading to a large contrast in the transmitted microwave signal
amplitude. This original method can be implemented with state of the art
Josephson parametric amplifier, leading to QND measurements in a few tens of
nanoseconds with fidelity as large as 99.9 %.Comment: 5 pages, 4 figure
Measurement back-action and spin noise spectroscopy in a charged cavity-QED device in the strong coupling regime
We study theoretically the spin-induced and photon-induced fluctuations of
optical signals from a singly-charged quantum dot-microcavity structure. We
identify the respective contributions of the photon-polariton interactions, in
the strong light-matter coupling regime, and of the quantum back-action induced
by photon detection on the spin system. Strong spin projection by a single
photon is shown to be achievable, allowing the initialization and measurement
of a fully-polarized Larmor precession. The spectrum of second-order
correlations is deduced, displaying information on both spin and quantum
dot-cavity dynamics. The presented theory thus bridges the gap between the
fields of spin noise spectroscopy and quantum optics.Comment: 12 pages, 8 figure
Probing quantum fluctuation theorems in engineered reservoirs
Fluctuation Theorems are central in stochastic thermodynamics, as they allow
for quantifying the irreversibility of single trajectories. Although they have
been experimentally checked in the classical regime, a practical demonstration
in the framework of quantum open systems is still to come. Here we propose a
realistic platform to probe fluctuation theorems in the quantum regime. It is
based on an effective two-level system coupled to an engineered reservoir, that
enables the detection of the photons emitted and absorbed by the system. When
the system is coherently driven, a measurable quantum component in the entropy
production is evidenced. We quantify the error due to photon detection
inefficiency, and show that the missing information can be efficiently
corrected, based solely on the detected events. Our findings provide new
insights into how the quantum character of a physical system impacts its
thermodynamic evolution.Comment: 9 pages, 4 figure
Universal optimal broadband photon cloning and entanglement creation in one dimensional atoms
We study an initially inverted three-level atom in the lambda configuration
embedded in a waveguide, interacting with a propagating single-photon pulse.
Depending on the temporal shape of the pulse, the system behaves either as an
optimal universal cloning machine, or as a highly efficient deterministic
source of maximally entangled photon pairs. This quantum transistor operates
over a wide range of frequencies, and can be implemented with today's
solid-state technologies.Comment: 5 pages, 3 figure
A Fabry-Perot interferometer with quantum mirrors: nonlinear light transport and rectification
Optical transport represents a natural route towards fast communications, and
it is currently used in large scale data transfer. The progressive
miniaturization of devices for information processing calls for the microscopic
tailoring of light transport and confinement at length scales appropriate for
the upcoming technologies. With this goal in mind, we present a theoretical
analysis of a one-dimensional Fabry-Perot interferometer built with two highly
saturable nonlinear mirrors: a pair of two-level systems. Our approach captures
non-linear and non-reciprocal effects of light transport that were not reported
previously. Remarkably, we show that such an elementary device can operate as a
microscopic integrated optical rectifier
Giant Optical Non-linearity induced by a Single Two-Level System interacting with a Cavity in the Purcell Regime
A two-level system that is coupled to a high-finesse cavity in the Purcell
regime exhibits a giant optical non-linearity due to the saturation of the
two-level system at very low intensities, of the order of one photon per
lifetime. We perform a detailed analysis of this effect, taking into account
the most important practical imperfections. Our conclusion is that an
experimental demonstration of the giant non-linearity should be feasible using
semiconductor micropillar cavities containing a single quantum dot in resonance
with the cavity mode.Comment: 40 pages, 16 figures, accepted in Phys. Rev.
Monitoring stimulated emission at the single photon level in one-dimensional atoms
We theoretically investigate signatures of stimulated emission at the single
photon level for a two-level atom interacting with a one-dimensional light
field. We consider the transient regime where the atom is initially excited,
and the steady state regime where the atom is continuously driven with an
external pump. The influence of pure dephasing is studied, clearly showing that
these effects can be evidenced with state of the art solid state devices. We
finally propose a scheme to demonstrate the stimulation of one optical
transition by monitoring another one, in three-level one-dimensional atoms.Comment: 4 pages, 4 figures. Improved introduction; Comments adde
Optimal irreversible stimulated emission
We studied the dynamics of an initially inverted atom in a semi-infinite
waveguide, in the presence of a single propagating photon. We show that atomic
relaxation is enhanced by a factor of 2, leading to maximal bunching in the
output field. This optimal irreversible stimulated emission is a novel
phenomenon that can be observed with state-of-the-art solid-state atoms and
waveguides. When the atom interacts with two one-dimensional electromagnetic
environments, the preferential emission in the stimulated field can be
exploited to efficiently amplify a classical or a quantum state.Comment: 9 pages, 6 figure
Properties of a single photon generated by a solid-state emitter: effects of pure dephasing
We investigate the properties of a single photon generated by a solid-state
emitter subject to strong pure dephasing. We employ a model in which all the
elements of the system, including the propagating fields, are treated quantum
mechanically. We analytically derive the density matrix of the emitted photon,
which contains full information about the photon, such as its pulse profile,
power spectrum, and purity. We visualize these analytical results using
realistic parameters and reveal the conditions for maximizing the purity of
generated photons.Comment: 25pages(one column), 10 figure
Controlling the dynamics of a coupled atom-cavity system by pure dephasing : basics and potential applications in nanophotonics
The influence of pure dephasing on the dynamics of the coupling between a
two-level atom and a cavity mode is systematically addressed. We have derived
an effective atom-cavity coupling rate that is shown to be a key parameter in
the physics of the problem, allowing to generalize the known expression for the
Purcell factor to the case of broad emitters, and to define strategies to
optimize the performances of broad emitters-based single photon sources.
Moreover, pure dephasing is shown to be able to restore lasing in presence of
detuning, a further demonstration that decoherence can be seen as a fundamental
resource in solid-state cavity quantum electrodynamics, offering appealing
perspectives in the context of advanced nano-photonic devices.Comment: 10 pages, 7 figure
- …
