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Energetic footprints of irreversibility in the
quantum regime
M. H. Mohammady1,2,3✉, A. Auffèves4✉ & J. Anders1,5✉

In classical thermodynamic processes the unavoidable presence of irreversibility, quantified

by the entropy production, carries two energetic footprints: the reduction of extractable work

from the optimal, reversible case, and the generation of a surplus of heat that is irreversibly

dissipated to the environment. Recently it has been shown that in the quantum regime an

additional quantum irreversibility occurs that is linked to decoherence into the energy basis.

Here we employ quantum trajectories to construct distributions for classical heat and

quantum heat exchanges, and show that the heat footprint of quantum irreversibility differs

markedly from the classical case. We also quantify how quantum irreversibility reduces the

amount of work that can be extracted from a state with coherences. Our results show that

decoherence leads to both entropic and energetic footprints which both play an important

role in the optimization of controlled quantum operations at low temperature.
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In recent years much effort has been made in extending the
laws of thermodynamics to the quantum regime1–4. Maximal
work extraction (or minimal work cost) has been discussed for

a range of protocols5–24, showing that energetic coherences can
be a resource for work extraction25–29 while quantum correla-
tions can reduce the work cost of erasing information30. How-
ever, many of these studies have focussed on the optimal limit of
reversible processes, i.e., unitary and quasi-static evolutions,
without discussing the limitations that irreversibility puts on
work extraction. On the other hand, the irreversibility of ther-
modynamic processes in the quantum regime has been explored
using stochastic thermodynamics31–39 leading to the notion of a
fluctuating quantum entropy production40 that obeys a fluctua-
tion theorem analogous to those of classical nonequilibrium
dynamics41–43. First experiments have now measured entropy
production rates in driven mesoscopic quantum systems for two
platforms, a micromechanical resonator and a Bose–Einstein
condensate44. Most recently, the average entropy production of a
quantum system that interacts with another (non-bath) system,
has been shown to include an additional information flow term45.

In classical thermodynamics irreversibility occurs whenever a
nonthermal system is brought into contact with a thermal
environment. The ensuing relaxation of the system leads to
exchanges of energy that cannot be reversed with the same
thermodynamic cost. In thermodynamics this irreversibility is
quantified by the positive “irreversible entropy production”
Sirr :¼ ΔS� Q

T ≥ 0, which measures the discrepancy between the
system’s entropy increase ΔS= Sfin− Sini during any thermo-
dynamic process and the heat Q absorbed by the system from the
environment divided by the environment’s temperature T. Hence
when a process with entropy change ΔS incurs a non-zero
entropy production Sirr this results in a surplus of heat46,

Qsur
diss ¼ T Sirr; ð1Þ

that is irreversibly dissipated from the system to the environment
(in comparison with a reversible process resulting in the same
entropy change ΔS). Irreversibility also puts a fundamental bound
on the amount of work Wext that can be extracted during iso-
thermal processes46,47,

Wext ¼ �ΔF � TSirr ≤ �ΔF; ð2Þ
where ΔF= Ffin− Fini is the system’s free energy increase. The
more irreversible a process is, the less work can be extracted and
the term Wirr= TSirr may be called the irreversible work, or non-
recoverable work48. Eqs. (1) and (2) link entropy production, Sirr
to a surplus in heat dissipation, Qsur

diss ≥ 0, and a reduction in work
extraction, Wext ≤−ΔF. These relationships are the well-known
energetic footprints of irreversibility in classical thermodynamics.

A quantum system can be out of equilibrium in two ways: by
maintaining energetic probabilities that are nonthermal, and by
maintaining coherences between energy levels. It has been shown
that contact with the thermal environment gives rise to a classical
and a quantum aspect of irreversibility34,35. Moreover, in addition
to the exchange of energy quanta between the quantum system and
the thermal environment—known as classical heat—whenever the
system has “energy coherence” it will exhibit a uniquely quantum
energy exchange known as “quantum heat”23,33,36,37,49,50. How-
ever, thus far the link between quantum entropy production and its
energetic footprints has remained opaque.

In this paper we establish the energetic footprints of irrever-
sibility in the quantum regime, arising whenever a system is
brought in contact with a thermal environment. For concreteness,
we here consider a specific protocol that extracts work from a
quantum system’s coherences in the energy basis27. We first
extend the protocol to capture irreversible steps that are una-
voidable in any experimental implementation and which will

affect heat and work exchanges. By employing the eigenstate
trajectory unraveling of the open system dynamics, where at the
start and end of each dynamical process the system is assumed to
be in one of the eigenstates of its time-local density matrix, we
identify the distributions of classical and quantum heat, and
evidence that purely quantum contributions to the entropy pro-
duction are not related to the average quantum heat, in stark
contrast to the classical regime, cf. Eq. (1). Instead, we show that
the average quantum entropy production, hsquirri, is linked with the
variance in quantum heat, VarðQquÞ, a quantity that has recently
been connected to entanglement generation51. Specifically, we
show that hsquirri ¼ 0 if and only if VarðQquÞ ¼ 0, while both hsquirri
and the lower bounds to VarðQquÞ monotonically decrease under
Hamiltonian-covariant channels. In the special case of qubits, this
relationship becomes stronger, and we show that: (i) for the
family of states ρ with the same spectrum, but different eigen-
bases, hsquirri and VarðQquÞ are co-monotonic with the energy
coherence of the eigenbasis of ρ; and (ii) both hsquirri and VarðQquÞ
monotonically decrease under the action of Hamiltonian-
covariant channels that are a combination of dephasing and
depolarization. Both of these strong monotonicity relationships
break down for systems with a larger Hilbert space, which we
illustrate with a simple example for a three-level system. We also
note that no such relationship exists between the average classical
entropy production hsclirri and the variance in classical heat
VarðQclÞ; even in the case of qubits one does not monotonically
increase with the other, and furthermore hsclirri ¼ 0 is neither
necessary nor sufficient for Var Qclð Þ ¼ 0, with the latter condi-
tion only being achieved in the limit of zero temperature. Finally,
we show that the classical and quantum entropy production
reduce the extractable work from coherence in equal measure, cf.
Eq. (2). The results show that when experimental imperfections
are unavoidable, any work-optimization strategy needs to con-
sider the trade-off between a system having a certain degree of
classical non-thermality or quantum coherence, or both. Besides
being of fundamental importance for the development of a gen-
eral quantum thermodynamics framework that includes irrever-
sibility, these relations will also be crucial for the assessment of
the energetic cost of quantum control protocols, that aim to
optimize performance of computation and communication in the
presence of decoherence and noise.

Results
Imperfect protocol for work extraction from coherences. We
here outline the protocol for optimal work extraction from
coherences introduced in ref. 27, and modify it so as to include
imperfections that result in both classical and quantum irrever-
sibility. This protocol can be implemented for any d-dimensional
system, but we shall pay special interest to the qubit case for
illustrative purposes. For a d-dimensional quantum system with
Hamiltonian H and quantum state ρ we denote by (ρ, H) any
nonequilibrium configuration of the system, and by (τ, H)T with
τ :¼ e�H=ðkBTÞ=Z and partition function Z :¼ tr½e�H=ðkBTÞ� its
equilibrium configuration at temperature T52. The protocol will
involve quenching of the system Hamiltonian in N discrete steps,
denoted H(0)↦H(1)↦ ···↦H(N). Moreover, H(j) for j=
0, 1, …, N are chosen diagonal in the same basis, i.e., only the
spectrum of the Hamiltonian varies during the protocol. Speci-

fically, HðjÞ :¼
Pd

k¼1 E
ðjÞ
k Π½ek�, where E

ðjÞ
k are energy eigenvalues,

and Π½ψ� � ψj i ψh j denotes the projection onto the pure state ψj i.
The system is initially prepared in an arbitrary mixed state

ρ :¼
Xd
l¼1

pl Π½ψl�; ð3Þ
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with pl > 0 for all l, ∑l pl= 1, and f ψl

�� �
g an arbitrary orthonormal

basis.
The protocol transfers ρ to the fixed final state η chosen to have

the same energetic probabilities as the initial state ρ but with the
energetic coherences removed27, i.e., the system’s final state is

η :¼
X
k

Π½ek� ρ Π½ek� �
X
k

rk Π½ek�; ð4Þ

with rk := 〈ek∣ρ∣ek〉 quantifying the projection of ρ onto the energy
eigenstate ekj i. The optimal, reversible, implementation of the ρ to η
transfer was proposed in ref. 27 and it was shown that the “average”
work extracted is Wexth i ¼ kBT ðSvNðηÞ � SvNðρÞÞ≥ 0, where SvN
is the Von Neumann entropy, defined as SvNðρÞ :¼ �tr½ρ log ρ�.
This is in agreement with equality in Eq. (2) assuming the free
energy of a quantum nonequilibrium configuration is defined as
Fðρ;HÞ :¼ tr½H ρ� � kBT SvNðρÞ46,47,53–55, and realizing that the
state change ρ to η carries no energy change, ΔU= 0, and hence
ΔF= −kBT ΔSvN. We remark that only the “average” work was
provided in ref. 27 but no distribution of work was given with
respect to which Wexth i is an “average”.

Generalizing first the steps of the optimal protocol27 to include
irreversibility will allow us to investigate the impact of entropy
production on distributions of work and heat below.

The new protocol consists of the following five steps, and the
state evolution is visualized for a qubit in Fig. 1: (I) Use a unitary
V to rotate the quantum system’s configuration (ρ, H(0)) into
configuration ð~ρ;Hð0ÞÞ where ~ρ :¼ VρVy ¼

P
lplΠ½~ψl�. In the

reversible protocol, V is chosen such that j ~ψli :¼ V ψl

�� �
is a

Hamiltonian eigenstate, i.e., ½~ρ;Hð0Þ� ¼ 027. Here we allow V to be
imperfect and hence ½~ρ;Hð0Þ�≠ 0; (II) Change the Hamiltonian
rapidly resulting in a quench from ð~ρ;Hð0ÞÞ to ð~ρ;Hð1ÞÞ. In the
reversible protocol, the energetic levels of H(1) are chosen such
that the configuration ð~ρ;Hð1ÞÞ is thermal at temperature T27.
This is possible because we assume that we can perform arbitrary
quenches of the Hamiltonian, and since the initial state ρ has full
rank, there exists some Hamiltonian with respect to which an
energy incoherent state ~ρ will be thermal. Here we consider the
case that the energetic levels of H(1) are adjusted imperfectly, and
hence configuration ð~ρ;Hð1ÞÞ is not necessarily thermal even if
½~ρ;Hð1Þ� ¼ 0; (III) Put the quantum system in thermal contact
with a heat bath at temperature T, and wait for a sufficiently long
time so that ð~ρ;Hð1ÞÞ is brought into the thermal configuration
ðτ1;Hð1ÞÞT ; (IV) Change the system’s Hamiltonian slowly from H
(1) to H(N), keeping the system in thermal contact with the heat
bath. The evolution is chosen quasi-static (i.e., very slow), such
that thermal equilibrium at T is maintained throughout this step.
The final Hamiltonian H(N) is chosen so that the system’s thermal
state is the desired final state, i.e., τN= η; (V) Decouple the
system from the thermal bath and quench the Hamiltonian back
to H(0), changing the system’s configuration from ðη;HðNÞÞT to
the desired configuration (η, H(0)).

Since Steps (I), (II), (IV), and (V) are either unitary or quasi-
static, they are thermodynamically reversible. The thermody-
namic irreversibility of the protocol occurs when the quantum
system is put in contact with the thermal bath in Step (III). The
irreversible thermalization ð~ρ;Hð1ÞÞ ! ðτ1;Hð1ÞÞT leads to a
reduction in free energy, i.e., ΔFðIIIÞ ¼ �kBT D½~ρjjτ1� where
D½~ρjjτ1� ¼ tr½~ρ log ~ρ� log τ1ð Þ�≥ 0 is the quantum relative
entropy between the state before thermalization, ~ρ, and the state
after thermalization, τ1, which vanishes if and only if ~ρ ¼ τ1.
Observing that no work is exchanged during thermalization
(Wext= 0), and based on the assumption that Eq. (2) holds in the

quantum regime, the term kBD½~ρjjτ1� is often identified with the

entropy SðIIIÞirr that is produced during the thermalization step35,56.
As recently discussed in ref. 34,35, the geometric measure of

irreversibility given by the relative entropy splits into a quantum
and a classical part,

D½~ρjjτ1� ¼ D½~ρjj~η� þ D½~ηjjτ1�; ð5Þ

where in analogy with Eq. (4), we define ~η :¼
P

kΠ½ek� ~ρ Π½ek�.
As we will show below, Eq. (5) can be obtained as averages over
the entropy produced along decoherence trajectories and classical
thermalization trajectories35. This splitting reflects the fact that
the quantum configuration ð~ρ;Hð1ÞÞ is out of equilibrium in two
distinct ways: it can have quantum coherences between energy
levels, and classical non-thermality due to non-Boltzmann
probabilities for the energies. In particular, D½~ρjj~η� � SvNð~ηÞ �
SvNð~ρÞ is known in the literature as the “relative entropy of
coherence” which quantifies the coherence (or asymmetry) of the
state ~ρ with respect to the Hamiltonian H(1)57,58. Similarly,
D½~ηjjτ1� can be seen as a measure of classical non-thermality.

A special case: qubits. For the special case of qubits, we may
provide an intuitive illustration of the protocol in a geometric
fashion by use of the Bloch sphere. Specifically, we shall denote
the jth Hamiltonians as HðjÞ :¼ 1

2 _ωjðΠ½eþ� � Π½e��Þ, and
represent the initial and unitarily evolved states, ρ and ~ρ, in terms
of angles θ and ~θ, respectively:

ρ � ρθ :¼ pΠ½θ�� þ ð1� pÞΠ½θþ�; ~ρ � ρ~θ :¼ pΠ½~θ�� þ ð1� pÞΠ½~θþ�;

ð6Þ

where 1> p> 1
2, and

jθ ± i :¼ cosðθ=2Þ e±j i± e±iϕ sinðθ=2Þ e�
�� �

;

j~θ ± i :¼ cosð~θ=2Þ e±j i± e±i~ϕ sinð~θ=2Þ e�
�� �

:
ð7Þ

Fig. 1 State evolution during work extraction protocol for qubits. Initially,
the system is prepared in state ρθ and is then unitarily evolved to ρ~θ (green
arrow) which has the eigenstates j~θ ± i. Following a Hamiltonian quench
that changes the splitting of the energetic levels but does not alter the
energy eigenstates e±j i, the system is put in thermal contact with a bath
and allowed to relax to the thermal state τ1. The full thermalization step
(purple arrow) can be split into quantum decoherence with respect to the
energy eigenbasis (blue arrow) ρ~θ 7!η~θ followed by classical thermalization
(red arrow) η~θ 7!τ1. Next, the state transfer τ1↦ ηθ (orange arrow) is
effected by a quasi-static isothermal process. Finally, the Hamiltonian is
quenched back to its initial configuration. This protocol realizes the
thermodynamic removal of coherences, i.e., transforming ρθ to ηθ, while
irreversibility arises due to the mismatches between ρ~θ and η~θ as well as η~θ
and τ1.
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We note that, without loss of generality, we may assume that
ϕ ¼ ~ϕ ¼ 0 due to the invariance of the work extraction protocol
with respect to unitary evolution generated by H, while θ and ~θ
may be assumed to fall in the range [−π/2, π/2], since angles
outside this range would be accounted for by changing the sign of
the Hamiltonian. The decohered state η is thus defined as ηθ=
rθΠ[e−]+ (1− rθ)Π[e+] with rθ := 〈e−∣ρθ∣e−〉, and η~θ is similarly
defined. The imperfect work extraction protocol for qubits is
depicted in Fig. 1.

As stated above, the geometric distance between ρ~θ and the
equilibrium state can be split into a coherence term and classical
non-thermality term as per Eq. (5). These are shown by the blue
and red arrows in Fig. 1, respectively. Below, we shall offer an
intuitive quantification of coherence and classical non-thermality
of the state ρ~θ, named coh and nonth respectively, so that
cohðρ~θÞ ¼ nonthðρ~θÞ ¼ 0 if and only if ρ~θ ¼ τ1. These will be
useful parameters in terms of which we may present our results
later in the paper.

The coherence of ρ~θ with respect to the Hamiltonian can be
quantified by the minimum overlap between the eigenstates of ρ~θ
and the eigenstates of H(1), i.e.,

cohðρ~θÞ :¼ min
k;l

jhekj~θlij
2 ¼ jheþj~θ�ij

2 ¼ sin2ð~θ=2Þ: ð8Þ

Hence cohðρ~θÞ ¼ 0 for ~θ ¼ 0, and it monotonically increases as
j~θj ! π=2, saturating at its maximum value of coh(ρπ/2)= 1/2.
The classical non-thermality of the qubit state ρ~θ compared with
the thermal state τ1 for H(1) can be quantified by the logarithm of
the ratio of ground state probabilities, i.e.,

nonthðρ~θÞ :¼ log
q1
r~θ
; ð9Þ

where q1 := 〈e−∣τ1∣e−〉 and r~θ ¼ he�jρ~θje�i ¼ he�jη~θje�i are the
ground state populations of τ1 and ρ~θ , respectively, see Fig. 1.
Hence nonthðρ~θÞ ¼ 0 when q1 ¼ r~θ , while a positive (negative)
nonthðρ~θÞ corresponds to a lower (higher) ground state popula-
tion in ρ~θ than that of the thermal state τ1, corresponding to a
down (up) red arrow in Fig. 1.

Stochastic quantum trajectories. Working on the level of density
matrices of the system during the protocol (see Fig. 1 for the qubit
example) limits the discussion of thermodynamic quantities to
macroscopic expectation values only. In contrast, stochastic
thermodynamics associates heat Q(Γ), work W(Γ), and entropy
production sirr(Γ) to individual microscopic trajectories Γ forming
the set of possible system evolutions59,60. In this more detailed
picture the macroscopic thermodynamic quantities Qh i; Wh i, and
Sh i arise as weighted averages over these trajectories. In the
quantum regime, quantum stochastic thermodynamics captures
the set of possible trajectories that, in addition to classical tra-
jectories, are determined by quantum coherences and nonthermal
sources of stochasticity36,38,61–64. These trajectories consist of
time-sequences of pure quantum states taken by an open system
in a single run of an experiment.

One way to experimentally “see” quantum trajectories is by
observing a sequence of stochastic outcomes of a generalized
measurement performed on a system65. Immense experimental
progress in the ability to measure quantum states with high
efficiency has enabled the observation of individual jumps in
photon number, and more recently the tracking of single
quantum trajectories of superconducting qubits33,66–68. The
natural set of quantum trajectories is a function of how the
system is measured, and various quantum trajectory sets have
been discussed in the literature each corresponding to different
measurement setups: the so-called “unravelings”69,70. Averaging

the system’s pure states over many experimental runs then gives
back the density matrix describing the system’s mixed state,
whose evolution is governed by completely positive, trace
preserving maps, also known as a quantum channel. Using the
methods of quantum stochastic thermodynamics we here access a
system’s fluctuations in work, heat, and entropy production,
when quantum coherences are involved and irreversibility occurs.
This allows us to expose the microscopic links between
irreversibility and energetic exchanges in the quantum regime.

We here use “eigenstate trajectories” that describe a system that
travels through a sequence of eigenstates of its time-local density
operators. Namely, the system is measured at instances in time
j= 1, 2,… in the instantaneous eigenbases of the states ρj that are
assumed to be known, for example, from a master equation that
describes the open system dynamics. We note that this is an
idealized scenario as in general one does not know what the
density operators ρj are and cannot guarantee to measure in the
correct eigenbases. The eigenstate trajectories are analytically
tractable, and provide a convenient analytical tool to investigate
the energetic footprints of irreversibility, as we will see below.

The ensemble of trajectories {Γ} taken by a quantum system
when undergoing the work extraction protocol outlined in the
previous section can be broken up into trajectories for each of the
Steps (see Fig. 2 for the qubit example). We will here focus on
discussing the thermalization of the system in Step (III), for
which the initial density matrix ~ρ can host coherences D½~ρjj~η�> 0
and classical non-thermality D½~ηjjτ1�> 0 at the point when it is
brought in contact with the thermal bath. The trajectories for the
full protocol are detailed in the “Methods”.

The thermalization process in Step (III) may be described by
the quantum channel ΛðρÞ :¼ trB½Vðρ� τBÞVy�, where τB :¼
expð�HB=kBTÞ=ZB is the initial thermal state of the bath with
Hamiltonian HB and partition function ZB, and V is a unitary
operator that commutes with Hð1Þ þ HB . Hence Λ is a thermal
operation71–73. We further demand that Λ is a fully thermalizing
map, i.e., Λ(ρ)= τ1 for all ρ. This map exists, for example, when
the bath is chosen as an infinite ensemble of identical particles,
each with the same Hamiltonian as the system, and with V
implementing a sequence of partial swaps between the system and
each bath particle, or a full swap with just a single particle74.
Minimal trajectories for the thermalization process can now be

constructed as ΓðIIIÞðl;nÞ � j ~ψli 7! enj i (see Fig. 2 for the specific case

where the system is a qubit, with j~ψli � j~θ ± i). The probability of
this transfer to occur is PðΓðIIIÞðl;nÞÞ ¼ h~ψlj~ρj~ψlihenjΛ Π½ ~ψl�

� �
jeni,

which is obtained by first projectively measuring the system with
respect to the eigenbasis j~ψli of ~ρ, then applying the thermaliza-
tion channel Λ, and finally measuring the system with respect to
the eigenbasis enj i of τ1. Since V commutes with the total
Hamiltonian while τB commutes with the bath Hamiltonian, it
can be shown (see Theorem 1 in ref. 75) that henjΛ Π½ ~ψl�

� �
jeni ¼P

mjhemj~ψlij
2henjΛ Π½em�ð Þjeni, where emj i are eigenstates of the

system Hamiltonian H(1). We may therefore “augment” our
trajectories by projecting the system onto the energy basis emj i
first before letting it thermalize classically64.

The augmented trajectories are denoted ΓðIIIÞðl;m;nÞ � j ~ψli 7!
emj i 7! enj i, with probabilities

P ΓðIIIÞðl;m;nÞ

� �
¼ h~ψlj~ρj~ψlijhemj~ψlij

2henjτ1jeni: ð10Þ

It can be shown that the minimal trajectories ΓðIIIÞðl;nÞ and the

augmented trajectories ΓðIIIÞðl;m;nÞ are thermodynamically equivalent,
as they result in the same entropy production (see “Methods” for
details). However, the augmented trajectories have the benefit of
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naturally splitting into a “decoherence trajectory” Γqðl;mÞ � j ~ψli 7!
emj i, followed by a “classical thermalization trajectory” Γclðm;nÞ �
emj i 7! enj i, as depicted in Fig. 2 for the qubit case. Their
probabilities to occur are

P Γqðl;mÞ

� �
¼
X
n

P ΓðIIIÞðl;m;nÞ

� �
¼ h~ψlj~ρj~ψlijhemj~ψlij

2; ð11Þ

and

P Γclðm;nÞ

� �
¼
X
l

P ΓðIIIÞðl;m;nÞ

� �
¼ hemj~ηjemihenjτ1jeni; ð12Þ

respectively which can be obtained as marginals of the probability
distribution given by Eq. (10) (see “Methods” for details). Here
Γqðl;mÞ are the trajectories the system undertakes as it undergoes

the decoherence process ~ρ 7! ~η, while Γclðm;nÞ are the trajectories
that the system undertakes as it undergoes the classical
thermalization process ~η 7! τ1.

We note that while ref. 35 also considered augmented trajectories
to separate the quantum and classical contributions to the stochastic
entropy production, these constituted of the initial and final energy
eigenstates of the bath, together with initial and final eigenstates of
the system, neither of which are assumed to be energy eigenstates.
In our approach, the assumption that Λð~ρÞ is energy incoherent
allows for the heat exchange of the process, in addition to the
entropy production, to be split into a quantum and classical
component, which we discuss below.

Stochastic quantum entropy production. Within quantum sto-
chastic thermodynamics the entropy production along a quantum
trajectory Γ is

sirrðΓÞ :¼ kB log
PðΓÞ
P�ðΓ�Þ ; ð13Þ

exposing the entropy production’s microscopic origin as the
imbalance between the probabilities P(Γ) and P*(Γ*) of a forward
trajectory Γ and its corresponding backward trajectory Γ*,
respectively38,64. The backward trajectory Γ* can be understood
as the time-reversed sequence of eigenstates which constitute the
forward trajectory Γ. In order to evaluate the probability for the
backward trajectory of the thermalization Step (III), we consider
the time-reversed process as one where the system and envir-
onment are initially in the compound state τ1 � τB , i.e., the
system starts in the average state that it took at the end of the

forward process, while the bath is in thermal equilibrium. On this
initial product state, the time-reverse of the forward evolution of
system and bath is applied, and projections are performed in
reversed order into the forward eigenstates j ~ψli and emj i. This
leads to Kraus operators given in (47) which describe the time-
reversed trajectories, see “Methods”.

We find that the stochastic entropy production for the
thermalization Step (III) can be expressed as

sirr ΓðIIIÞ
� �

¼ squirr Γqðl;mÞ

� �
þ sclirr Γclðm;nÞ

� �
; ð14Þ

where we identify

squirr Γqðl;mÞ

� �
¼ kBlog

h~ψlj~ρj~ψli
hemj~ηjemi

ð15Þ

as the stochastic quantum entropy production, and

sclirr Γclðm;nÞ

� �
¼ kBlog

hemj~ηjemi
hemjτ1jemi

ð16Þ

as the stochastic classical entropy production. Since the prob-

ability of the augmented trajectories, PðΓðIIIÞðl;m;nÞÞ, gives PðΓqðl;mÞÞ
and PðΓclðm;nÞÞ as marginals (see Eqs. (11) and (12)), the average
entropy production in Step (III) can also be split into an average
quantum entropy production hsquirri, and an average classical
entropy production, hsclirri. One finds, see “Methods”, that each of
these averages reduces to a relative entropy between two pairs of
system states,

hsquirri ¼
X
l;m

P Γqðl;mÞ

� �
squirr Γqðl;mÞ

� �
¼ kB D½~ρjj~η�; ð17Þ

hsclirri ¼
X
m;n

P Γclðm;nÞ

� �
sclirr Γclðm;nÞ

� �
¼ kB D½~ηjjτ1�: ð18Þ

This shows that the relative entropies D½~ρjj~η� and D½~ηjjτ1�, which
geometrically link density matrices, are physically meaningful as
the average entropy productions associated with the evolution of
the quantum system along ensembles of quantum trajectories.
The two separate contributions to the entropy production arise
because the system has two distinct nonequilibrium features,
coherence with reference to the Hamiltonian, and classical non-
thermality. Each is irreversibly removed when the system is
brought into contact with the thermal bath and undergoes
decoherence trajectories followed by classical thermalization
trajectories.

Fig. 2 Pure-state qubit trajectories for the work extraction protocol. Illustration of the evolution of the qubit during the work protocol on the trajectory
level and on the density matrix level. The qubit’s trajectories are deterministic during Steps (I) (unitary, green arrows), (II) (quench, black arrows), and (V)
(quench, black arrows), i.e., they take one state to a unique other state. In contrast, during the decoherence part in Step (III) (blue dashed arrows) the qubit
stochastically jumps from one of the states j~θ ± i to one of the energy eigenstates e±j i, thus losing any quantum coherence in an irreversible manner.
During the classical thermalization part in Step (III) (red arrows) the qubit stochastically jumps from one of the energy eigenstates to another energy
eigenstate, thus losing any classical non-thermality in an irreversible manner. The qubit’s trajectories during the classical quasi-static isothermal change of
H (Step (IV), orange arrows), are stochastic but reversible, due to infinitely small thermalizations taking place throughout.
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Finally, we show in “Methods” that the average entropy
production for the full protocol reduces to hsquirri þ hsclirri in the
limit where Step (IV) becomes a quasi-static process, i.e., in this
limit the average entropy production for the full protocol
coincides with the average entropy production for the therma-
lization step alone.

Classical and quantum heat distributions. We now analyze the
energetic fluctuations of the quantum decoherence and classical
thermalization trajectories, Γqðl;mÞ and Γclðm;nÞ, respectively. Since no
external control is applied during these trajectories, such as a
change of Hamiltonian, no work is done on the system and hence
the energetic changes of the system consist entirely of heat. But
since we identified two contributions to irreversibility, namely
quantum decoherence and classical thermalization, it stands to
reason that we should obtain two types of heat36,37.

The microscopic mechanisms associated with classical therma-
lization of the system with the bath are the quantum jumps from
emj i to enj i, which give rise to energetic fluctuations. The heat the
system absorbs from the bath is

Qcl Γclðm;nÞ

� �
¼ Eð1Þ

n � Eð1Þ
m ; ð19Þ

where EðjÞ
k :¼ hekjHðjÞjeki, which is the standard classical

stochastic heat. We note that Step (IV) also incurs classical heat,
but we do not discuss this contribution here, as the stochastic
thermodynamic description is well established for heat exchanges
during this classical quasi-static isothermal process59,60.

On the other hand, the microscopic mechanisms associated
with decoherence are the quantum jumps from j ~ψli to emj i,
which give rise to energetic fluctuations of the system that are
entirely quantum mechanical. The system’s energy increase due
to decoherence is

Qqu Γqðl;mÞ

� �
¼ Eð1Þ

m � ~ψl

� ��Hð1Þ ~ψl

�� �
: ð20Þ

It has no classical counterpart and is hence referred to as
quantum heat36,37. Contrary to the classical stochastic heat which
has fixed quantized values given by the Hamiltonian H(1) alone,
the stochastic quantum heat’s values vary as a function of the
eigenbasis of the state ~ρ. When this state has no quantum
coherences (D½~ρjj~η� ¼ 0) the only realized value of the stochastic
quantum heat is 0, i.e., in the absence of coherences, decoherence
has no effect on the system’s state and no energetic fluctuations
result from it. Fluctuations of the quantum heat take place as
soon as D½~ρjj~η�> 0. Histograms of the classical stochastic heat Qcl

and the quantum heat Qqu for the qubit model are shown in
Fig. 3a, b for states ρ~θ that have only classical non-thermality
while coh= 0, and states that have only coherences while nonth
= 0, respectively.

Note that we were able to split the energetic changes of the
thermalization process into Eqs. (19) and (20) by first augmenting

the minimal trajectories ΓðIIIÞðl;nÞ to ΓðIIIÞðl;m;nÞ, and then splitting these

into a decoherence trajectory Γqðl;mÞ followed by a classical

thermalization trajectory Γclðm;nÞ. While the minimal trajectories
only consider transitions between the system’s time-local
eigenbases, and the projective measurements which realize them
are therefore “non-invasive”, the same is not true for the
augmented trajectories which require a projective energy
measurement on the system prior to thermalization, which
destroys any coherence present. Notwithstanding, since this
energy measurement does not alter the stochastic entropy
production one can consider it as a “virtual process” that need

not be actually performed. But to physically observe the quantum
heat distribution would necessitate such an energy measurement,
and then the source of the quantum heat originates from the
projective energy measurement itself, and not from the thermal
bath, as first discussed in ref. 36.

Heat footprints of classical and quantum irreversibility. We are
now ready to discuss the energetic footprints of irreversibility in
the quantum regime. The energetic footprints of classical entropy
production during Step (III) are made immediately apparent
from the stochastic equation (16) which, in conjunction with the
classical heat value given by Eq. (19), can be re-expressed as

sclirr Γclðm;nÞ

� �
¼ kBlog

hemj~ηjemi
henjτ1jeni

�
Qcl Γclðm;nÞ

� �
T

: ð21Þ

When averaged over the classical thermalization trajectories
Γclðm;nÞ, the above expression links the average absorbed heat Qclh i
to the average entropy production hsclirri as

hsclirri ¼ kBðSvNðτ1Þ � SvNð~ηÞÞ �
Qclh i
T

: ð22Þ

This thermodynamic equality, going back to Clausius, is the well-
known energetic footprint of entropy production in the classical
regime. It can be used to define the irreversibly dissipated heat,

Qsur
diss

� �
:¼ � Qclh i þ TΔScl ¼ Thsclirri ¼ kBT D½~ηjjτ1�≥ 0; ð23Þ

which is strictly positive when the entropy production hsclirri is
non-zero, which arises when forward and backwards probabilities
of the process deviate, see Eq. (13). In other words, the energetic
footprint of non-zero Qsur

diss

� �
gives thermodynamic testament of

the arrow of time.
Meanwhile, the stochastic quantum entropy production

squirrðΓ
q
ðl;mÞÞ in Eq. (15) is given purely by a stochastic quantum

entropy change and does not appear to involve any contributions

Fig. 3 Heat distributions for a qubit undergoing the thermalization Step
(III). Histograms of classical heat Qcl (red circles) and quantum heat Qqu

(blue squares) for a an initial state ρ~θ that hosts classical non-thermality:
nonthðρ~θÞ ¼ log ð0:2=0:3Þ and cohðρ~θÞ ¼ 0, and for b an initial state ρ~θ that
hosts quantum coherence: cohðρ~θÞ ¼ sin2ðπ=6Þ ¼ 1=4 and nonthðρ~θÞ ¼ 0.
For comparison, gray circles and gray diamonds in both panels show the
classical and quantum heat histograms, respectively, for when Step (III) is
fully reversible, i.e., ρ~θ ¼ τ1 and hence cohðρ~θÞ ¼ 0 ¼ nonthðρ~θÞ. Note that
even then the system can exchange heat with the bath leading to a classical
heat distribution with non-zero but symmetrical values (dashed line) that
give a zero average classical heat. In a the only quantum heat value with
non-zero probability is 0 (no quantum heat when thermalizing a classical
state), while in b four nontrivial quantum heat values occur since
cohðρ~θÞ≠0.
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from the stochastic quantum heat Qqu whatsoever. When
averaged over all quantum decoherence trajectories, the quantum
heat in fact vanishes, see “Methods”,

hQquiΓq ¼ 0; ð24Þ

while the average quantum entropy production can formally be
rewritten as

ð25Þ

This quantum thermodynamic equality shows that the energetic
footprint of quantum entropy production, i.e., a fixed relationship
between average heat absorption and average entropy production,
is mute in the quantum regime. This indicates a fundamental
difference in how quantum and classical heat relate to the entropy
production.

While prima faciae Eq. (25) seems to suggest that the quantum
entropy production is completely dissociated from quantum heat,
such a conclusion is premature. Indeed, on closer examination we
discover that the average quantum entropy production hsquirri is
intimately linked with the variance in quantum heat, VarðQquÞ, a
quantity that has recently been connected to witnessing
entanglement generation51. Specifically, we shall show that
hsquirri ¼ 0 is both necessary and sufficient for VarðQquÞ ¼ 0, and
for the special case of qubits, they are co-monotonic with energy
coherence of the system’s state. Before discussing this, let us first
highlight that no such relationship exists between the average
classical entropy production hsclirri and the variance in classical
heat, Var Qclð Þ; as shown in “Methods”, the variance in classical
heat as the system thermalizes to τ1 takes the simple form of

Var Qclð Þ ¼ ΔðHð1Þ; ~ηÞ þ ΔðHð1Þ; τ1Þ � ΔðHð1Þ;~ρÞ þ ΔðHð1Þ; τ1Þ;
ð26Þ

where ΔðH; ρÞ :¼ tr½H2 ρ� � tr½Hρ�2 is the variance of H in state
ρ. Clearly, hsclirri ¼ 0 is neither necessary nor sufficient for
Var Qclð Þ ¼ 0: (i) hsclirri ¼ 0 if and only if ~η ¼ τ1, whereas in such
a case Var Qclð Þ ¼ 2ΔðHð1Þ; τ1Þ≥ 0 with equality being achieved
only in the limit of zero temperature; (ii) Var Qclð Þ ¼ 0 if and only
if ΔðHð1Þ; ~ηÞ ¼ ΔðHð1Þ; τ1Þ ¼ 0. This means that both ~η and τ1
only have support on a single energy subspace of the
Hamiltonian, such energy subspace of τ1 necessarily being the
lowest one. However, if the subspace of ~η is disjoint from that of
τ1, then hsclirri ¼ kBD½~ηjjτ1� ¼ 1.

As shown in “Methods”, the variance in quantum heat for the
state ~ρ ¼

P
lplΠ½~ψl� decohering with respect to the Hamiltonian

H(1) is the average variance of H(1) in the pure states j ~ψli, i.e.,

VarðQquÞ ¼
X
l

pl ΔðHð1Þ; ~ψlÞ �
X
l

pl IαðHð1Þ; ~ψlÞ; ð27Þ

where IαðH; ρÞ :¼ tr½H2 ρ� � tr½H ρα H ρ1�α� for α∈ (0, 1) is the
set of Wigner–Yanase–Dyson skew informations of the obser-
vable H in the state ρ76–78. This variance in quantum heat obeys
the inequalities

ΔðHð1Þ;~ρÞ≥Var Qqu

� �
≥ IαðHð1Þ;~ρÞ; ð28Þ

where the equalities in Eq. (28) are saturated when ~ρ is a
pure state.

Both IαðHð1Þ;~ρÞ and hsquirri=kB ¼ D½~ρjj~η� quantify the asymme-
try of the state ~ρ with reference to the Hamiltonian H(1), and are
thus linked with the resource theory of asymmetry57,58,79–82.
Specifically, both IαðHð1Þ; ~ρÞ and D½~ρjj~η� vanish if and only if ~ρ
commutes with H(1), and monotonically decrease under
Hamiltonian-covariant quantum channels, i.e., quantum channels

E which satisfy Eðe�itHð1Þ
ρeitH

ð1Þ Þ ¼ e�itHð1Þ EðρÞeitHð1Þ
for all t 2 R

and ρ. Therefore, by Eq. (27) we conclude that the average
quantum entropy production vanishes if and only if the variance
in quantum heat vanishes. In addition, given a pair of quantum
states ~ρ1 and ~ρ2 ¼ Eð~ρ1Þ, then: (a) the average quantum entropy
production as ~ρ1 decoheres to ~η1 is no smaller than that obtained
when ~ρ2 decoheres to ~η2; and (b) by Eq. (28), the lower bound to
the quantum heat variance as ~ρ1 decoheres to ~η1 is no smaller
than that obtained when ~ρ2 decoheres to ~η2. Of course, this
observation still allows for the existence of a pair of states ~ρ1 and
~ρ2 ¼ Eð~ρ1Þ such that the average quantum entropy production of
the former exceeds that of the latter, while the fluctuations in
quantum heat of the latter exceeds that of the former. In what
follows we shall show that, surprisingly, in the special case of
qubits, i.e., d= 2, the fluctuations in quantum heat are monotonic
with the average quantum entropy production. This link is
twofold: (i) for two states with the same probability spectrum, but
different eigenbases, the average quantum entropy production
and the variance in quantum heat are monotonically increasing
with the “energy coherence” of the eigenbasis; (ii) both the
average quantum entropy production and the variance in
quantum heat monotonically decrease under the action of
Hamiltonian-covariant channels that are a combination of
dephasing and depolarization. Both of these necessary links
break down for higher dimensions, which we illustrate with a
simple counter example for d= 3, see Fig. 4.

Let us first consider how VarðQquÞ and hsquirri are affected by the
relationship between the eigenbasis of the quantum state ~ρ, and
the eigenbasis of the Hamiltonian H(1). Specifically, we shall
consider a family of quantum states ~ρðΘÞ :¼ UðΘÞ~ρ UyðΘÞ for
Θ∈ [0, 1], where ~ρ ¼

P
lplΠ½el� commutes with the Hamiltonian,

with the one-parameter unitary operator

U : ½0; 1� 3 Θ7! expðΘlogFÞ; ð29Þ

being generated by the discrete quantum Fourier transform83

F defined as

F : elj i 7! ξ lj i :¼ 1ffiffiffi
d

p
Xd
k¼1

e2πiðl�1Þðk�1Þ ekj i: ð30Þ

It is simple to verify that f ekj ig and f ξ lj ig is a pair of mutually
unbiased bases, with the energy coherence of f ξ lj ig taking the
maximum value of coh :¼ mink;ljhekjξlij

2 ¼ 1=d. We shall denote
the eigenbasis of ~ρðΘÞ as BðΘÞ :¼ fjψΘ

l i � UðΘÞjelig, and the
probability spectrum of ~ρðΘÞ and ~ηðΘÞ :¼

P
kΠ½ek�~ρðΘÞΠ½ek� as

p :¼ ðplÞl and r(Θ), respectively. The Hamiltonian H(1) will map
BðΘÞ to the symmetric doubly stochastic matrixM(Θ), which has

the matrix elements MðΘÞ
k;l :¼ jhekjUðΘÞjelij

2. Both the quantum
heat variance and average quantum entropy production can
be computed by knowledge of these matrix elements: the
quantum entropy production can be computed as
hsquirri ¼ kB SvNð~ηðΘÞÞ � SvNð~ρðΘÞÞð Þ � kB HðrðΘÞÞ �HðpÞð Þ,
where H denotes the Shannon entropy, and r(Θ)=M(Θ)p; the
variance in quantum heat can be computed, as Eq. (27), by

ΔðHð1Þ;ψΘ
l Þ ¼

Xd
k¼1

MðΘÞ
k;l Eð1Þ

k �
Xd
k0¼1

MðΘÞ
k0;l E

ð1Þ
k0

 !2

: ð31Þ

When d= 2, we have MðΘÞ
k≠l;l ¼ 1

2 sin
2ðΘπ=2Þ � coh and

MðΘÞ
l;l ¼ 1� 1

2 sin
2ðΘπ=2Þ � 1� coh, where we recall that coh :¼

sin2ð~θ=2Þ for ~θ 2 ½�π=2; π=2� (see Eq. (8)). Consequently, by
Eqs. (27) and (31), the variance in quantum heat takes the simple
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form of

VarðQquÞ ¼ _ω1ð Þ2 coh� coh2
� �

� _ω1ð Þ2

4
sin2ð~θÞ; ð32Þ

for all probability spectrums p (see “Methods” for details). As
such, VarðQquÞ vanishes when Θ= 0= coh, and monotonically
increases with Θ, or equivalently with coh, for all p and
Hamiltonians H(1). As for the entropy production, we note that
D½~ρð0Þjj~ηð0Þ� ¼ 0, and that for any Θ2 ≥Θ1, there exists a Θ0 such
that MðΘ2Þ ¼ MðΘ0ÞMðΘ1Þ. Due to the properties of doubly
stochastic matrices and majorization, this is a sufficient condition
for HðrðΘ2ÞÞ �HðrðΘ1ÞÞ≥ 0, which implies that hsquirri also
monotonically increases with Θ, or equivalently with coh, for all p
and H(1)84–87. The co-monotonic relationship between VarðQquÞ
and hsquirri with Θ for qubits is demonstrated in Fig. 4a. Conversely,
when d= 3 we see that while hsquirri monotonically increases with
Θ, the same is not necessarily true for VarðQquÞ which in this
instance takes a maximum value at Θ ≈ 0.8. Here, we have chosen
the Hamiltonian to have a uniform spectral gap, i.e.,

Eð1Þ
kþ1 � Eð1Þ

k ¼ _ω1, with the nondegenerate probability spectrum
p concentrated around ψΘ

1

�� �
and ψΘ

3

�� �
. The reason for this is that

ΔðHð1Þ;ψΘ
l Þ is maximized when the probability distribution

ðMðΘÞ
k;l Þk is concentrated around the smallest and largest energy

eigenvalues Eð1Þ
1 and Eð1Þ

d
88. While this is certainly achieved at Θ

= 1 for qubits, this is no longer the case for larger systems, where

ðMð1Þ
k;l Þk ¼ ð1=d; ¼ ; 1=dÞ.
Next, we consider how VarðQquÞ and hsquirri are affected by a

Hamiltonian-covariant quantum channel E. As stated previously,
hsquirri is known to monotonically decrease with applications of E,
i.e., for ρ2 ¼ Eðρ1Þ, D[ρ1∣∣η1] ≥D[ρ2∣∣η2]. Moreover, as shown in
“Methods”, so long as E is a convex combination of pure
dephasing with respect to the Hamiltonian eigenbasis, and a
depolarization channel which takes the system to the complete
mixture, then for qubits cohðρÞ≥ cohðEðρÞÞ for all ρ. Conse-
quently, by Eq. (32) the fluctuations in quantum heat for EðρÞ will
be smaller than that of ρ. We demonstrate this in Fig. 4b for the
Hamiltonian-covariant, Markovian dephasing channels

EðρÞ ¼ etLðρÞ, where

LðρÞ ¼
X
k

Π½ek�ρΠ½ek� �
1
2

X
k

ðΠ½ek�ρþ ρΠ½ek�Þ: ð33Þ

It is simple to verify that hekjetLðρÞjeli ¼ e�tð1�δl;kÞhekjρjeli, and so
e�iHt0etLðρÞeiHt0 ¼ etLðe�iHt0ρeiHt

0 Þ. As can be seen, for d= 2 both
VarðQquÞ and hsquirri monotonically decrease with t. For d= 3,
however, while hsquirri monotonically decreases with t, VarðQquÞ
does not.

For the qubit case, Fig. 5 puts in perspective the two drastically
different energetic footprints of irreversibility in the classical and
quantum regime. On the well-known classical side, see Fig. 5a, the
average entropy production hsclirri is equal to the difference
between the fixed entropy change ΔScl associated with the transfer
η~θ ! τ1, and an absorbed heat Qclh i when this transfer is
achieved by an irreversible thermalization process, divided by the
temperature T. The classical heat footprint Qclh i scales as the
thermal energy kBT, an energy scale set by the temperature of the
bath that thermalizes the qubit. The more nonthermal the initial
(diagonal) qubit state η~θ is, the more irreversibility will occur
during its thermalization. Hence the classical entropy production
hsclirri increases as the classical non-thermality parameter
nonthðη~θÞ deviates from 0. Moreover, Var Qclð Þ is dissociated
from hsclirri, since as nonthðη~θÞ approaches zero from below, hsclirri
becomes vanishingly small, while Var Qclð Þ grows larger.

On the quantum side, see Fig. 5b, the average entropy
production hsquirri equals the entropy change ΔSqu ¼ kBðSvNðη~θÞ �
SvNðρ~θÞÞ associated with the decoherence ρ~θ ! η~θ and does not
link to an absorbed quantum heat hQqui, as this is always zero.
However, both hsquirri and the quantum heat fluctuations VarðQquÞ
vanish when cohðρ~θÞ ¼ 0, and monotonously increase with
cohðρ~θÞ, showing the implicit link between quantum entropy
production and quantum heat for qubits. This behavior differs
markedly from the classical counterpart. Finally, we remark that
unlike the classical case, the heat footprint does not scale with
temperature but with the system energy gap, here ℏω1, an energy
scale set by the quantum character of the system rather than the
thermodynamics implied by the bath.

Fundamental bounds for work extraction. Finally, we check the
validity of the work footprint of entropy production, Eq. (2), in

Fig. 4 Breakdown of monotonic relationship between quantum entropy production and fluctuations in quantum heat for dimensions greater than two.
Here, we choose Hamiltonians with uniformly gapped spectra, i.e., Eð1Þkþ1 � Eð1Þk ¼ _ω1. The probability spectra for the states ~ρðΘÞ are chosen to be
nondegenerate, but concentrated around ψΘ

1

�� �
and ψΘ

d

�� �
. For d= 2, p= (0.9, 0.1), while for d= 3, p= (0.49, 0.04, 0.47). a Variance in quantum heat and

average quantum entropy production as a function of Θ defined in Eq. (29). For d= 2, both VarðQquðΘÞÞ and hsquirrðΘÞi monotonically increase as Θ→ 1. For
d= 3, however, while hsquirrðΘÞimonotonically increases with Θ, VarðQquðΘÞÞ takes a maximum value at Θ≈ 0.8, after which it decreases. b Here we choose
the initial states ~ρðΘÞ with Θ= 0.3, and evaluate VarðQquðΘ; tÞÞ and hsquirrðΘ; tÞi for the states etLð~ρðΘÞÞ with L defined in Eq. (33). For d= 2, both
VarðQquðΘ; tÞÞ and hsquirrðΘ; tÞi monotonically decrease with t, while for d= 3, VarðQquðΘ; tÞÞ takes its maximum value at t≈ 1.
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the quantum regime. From the stochastic first law of thermo-
dynamics, we observe that for each trajectory Γ of the full pro-
tocol (see “Methods” for details) the stochastic extracted work is

WextðΓÞ ¼ ΔUprotðΓÞ þ QquðΓqÞ þ QclðΓclÞ þ QðIVÞ
cl ðΓðIVÞÞ;

ð34Þ

where ΔUprotðΓÞ :¼ tr½Hð0ÞðΠ½ψl� � Π½enN �Þ� is the decrease in
internal energy along the trajectory Γ for the full protocol;
Qqu(Γq) and Qcl(Γcl) are the quantum and classical heat absorbed

during the thermalization process in Step (III); and QðIVÞ
cl ðΓðIVÞÞ is

the heat absorbed during the quasi-static process of Step (IV).
Since ΔUproth i ¼ tr½Hð0Þðρ� ηÞ� ¼ 0, while hQqui ¼ tr½Hð1Þð~η�
~ρÞ� ¼ 0, the average extracted work reduces to

Wexth i ¼ Qclh iΓcl þ QðIVÞ
cl

D E
ΓðIVÞ

¼ �Thsclirri þ TΔScl þ TΔSðIVÞ:

ð35Þ
Here we have assumed quasi-static isothermal trajectories Γ(IV) in

Step (IV) with sðIVÞirr

D E
¼ 0 and thus

QðIVÞ
cl

D E
ΓðIVÞ

¼ T ΔSðIVÞ ¼ T kBðSvNðηÞ � SvNðτ1ÞÞ:

Substituting the entropy change across the entire protocol

ΔSprot ¼ ΔSqu þ ΔScl þ ΔSðIVÞ;

and using ΔFprot=−TΔSprot=−kBT(SvN(η)− SvN(ρ)) since
ΔUproth i ¼ 0, the result is

Wexth i ¼ �ΔFprot � T ðhsclirri þ hsquirriÞ: ð36Þ

Clearly, the optimum work value −ΔFprot is obtained when
neither classical nor quantum entropy production are present and
the process is run fully reversibly, as discussed in ref. 27. Equation
(36) now shows how the work is reduced when irreversible steps
are included. It is evident that the classical and quantum entropy
productions, hsclirri and hsquirri, limit work extraction in a completely
symmetrical manner and when these two contributions are
combined Eq. (36) becomes identical to the well-known work
footprint of irreversibility, captured by Eq. (2). This footprint is
shown in Fig. 6 for the qubit model, where Wexth i is plotted as a
function of the two parameters that give rise to irreversibility, the
quantum coherence coh and classical non-thermality nonth of the
state ρ~θ before thermal contact.

While work extraction is mathematically limited in a
symmetrical manner, the physical mechanism is drastically
different depending on if the irreversibility of the protocol is of
classical or of quantum nature. In the classical regime the
irreversibly dissipated heat Qsur

diss

� �
is the physical cause of

nonoptimal work extraction and exactly compensates the non-
recoverable work, i.e., the term T hsclirri ¼ Qsur

diss

� �
in Eq. (36). This

energetic footprint of irreversibility equals the average energy
change of the qubit during the irreversible thermalization step.
But the quantum decoherence step does not give rise to any
average energy change—the work extraction is here reduced
solely because the system entropy increases, reducing the
extracted work by a proportional amount T hsquirri ¼ T ΔSqu.

To conclude, when a quantum system loses its energetic
coherences in a perfectly reversible manner, such as during a
quasi-static thermodynamic protocol with a bath at temperature
T, the energetic footprint is coherence work27 while no quantum
heat occurs. On the other hand, when a quantum system loses its
energetic coherences in a fully irreversible manner, such as during
a quantum measurement, the energetic footprint is quantum
heat36 while no coherence work occurs. We here found that when
a quantum system loses its energetic coherences in a partially
reversible process, see Fig. 1, then the coherence work is in
general non-zero, see Fig. 5, albeit reduced from the reversible
case by a term proportional to the irreversible (quantum) entropy
production, while the quantum heat distribution is also non-zero,
see Fig. 3b. Surprisingly, it turned out that these two energetic
footprints of irreversibility are not linked through entropy
production in the same way as in classical physics.

Discussion
The notion of irreversibility, and how it affects heat and work
exchanges, is the core theme of thermodynamics. This paper
brings together several strands of recent research in quantum
thermodynamics, including stochastic thermodynamics and
quantum work extraction protocols, to provide a comprehensive
picture of when irreversibility arises in the quantum regime and
details the ensuing energetic footprints of irreversibility. Specifi-
cally, we have shown that the geometric entropy production as a
quantum system in state ~ρ thermalizes to τ1, kB D½~ρjjτ1�, which
can be calculated using density matrices, can be understood as
arising from the time-reversal asymmetry of quantum stochastic
trajectories, Eqs. (17) and (18), in a similar way to classical sto-
chastic thermodynamics. In addition, the quantum eigenstate

Fig. 5 Heat footprints of irreversibility for a qubit during Step (III). a Positive (negative) non-thermality nonth corresponds to a lower (higher) ground
state population in η~θ than that of the thermal state τ1. Qubit spacing vs thermal energy (ℏω1/kBT) is here set such that q1= 〈e−∣τ1∣e−〉= 0.85 while p∈
[0.5, 1]. Classical entropy production hsclirri plus the absorbed heat divided by the temperature, Qclh i=T, gives the entropy change ΔScl for any classical non-
thermality parameter nonthðη~θÞ. At nonth= 0, hsclirri ¼ 0 while the variance in classical heat, Var Qclð Þ, is strictly positive. Moreover, as nonth grows more
negative, hsclirri increases while Var Qclð Þ decreases. This demonstrates that the two quantities have no connection. b coh= 0 implies that j~θ ± i are energy
eigenstates, while as coh→ 0.5, j~θ ± i become equal superpositions of energy eigenstates. Initial state mixing probability is here set to p= 0.95 while
~θ 2 ½0; π=2�. Quantum entropy production hsquirri plus zero average quantum heat hQqui equals the entropy change ΔSqu for any quantum coherence
parameter coh of initial states ρ~θ . Also shown is the quantum heat variance VarðQquÞ in natural units ð_ω1Þ

2. Both, VarðQquÞ and hsquirri, increase
monotonously as coh tends to its maximum value of 0.5.
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trajectories allowed for a detailed assessment of work and heat
exchanges of a quantum system that can host coherences. While
reversible work extraction from quantum coherences has been
found27 to give an “average” work of Wexth irev ¼ �ΔFprot, no
distribution of work was provided with respect to which Wexth irev
is an “average”. Here we showed that quantum trajectories
naturally give rise to heat as well as work distributions, for which
moments, such as the work “average”, can be readily calculated.
By here including irreversible steps in the work extraction pro-
tocol, the reduction of work due to irreversibility has been
quantified in Eq. (36). Understanding how imperfect experi-
mental control—which leaves either quantum coherences, or
classical non-thermality, or both present in a quantum system
before thermal contact—reduces work extraction is important for
identifying experimental protocols that are optimal within rea-
listic technical constraints.

While the first moments of heat and work coincide with the
values obtained on the density matrix level, the trajectories
approach allows access to higher moments. This proved insightful
for the discussion of the footprint of quantum irreversibility. We
found that the average classical entropy production is linked to
the surplus of dissipated heat, see Eq. (23), which is fully analo-
gous to the classical regime, see Eq. (1). Conversely, no such link
can be made in regards to quantum entropy production, see Eq.
(25). Instead, we show that the quantum entropy production is
linked with the fluctuations in quantum heat. Specifically, we
show that the average quantum entropy production vanishes if
and only if the variance in quantum heat vanishes, while both the
average quantum entropy production and the lower bounds to
the variance in quantum heat monotonically decrease under
Hamiltonian-covariant channels. In the specific case of qubits, we
further show that: (i) for a family of states with the same spec-
trum but different eigenbases, both the fluctuations in quantum
heat and the average quantum entropy production monotonically
increase with the energy coherence of the eigenbasis; (ii) both the
fluctuations in quantum heat and the average quantum entropy
production monotonically decrease under the action of
Hamiltonian-covariant channels that are a mixture of pure
dephasing and depolarization. For higher dimensions, however,
this necessary link breaks down in general. We note that a
comparable link does not exist in the classical regime where a
vanishing classical entropy production is neither necessary nor
sufficient for a vanishing variance in classical heat, and even for
qubits the two quantities have no monotonic relationship.

It would be interesting to see if the same conclusions hold true
when the eigenstate trajectories are replaced by experimentally
measured trajectories and their probabilities, for which the ana-
lysis presented here can be implemented in an analogous manner.
Another open problem is to establish a unique measure of the
fluctuations in quantum heat for degenerate states. It is known
that if a quantum state has degenerate eigenvalues, then it offers
infinitely many eigenstate decompositions, and hence the var-
iance in quantum heat as quantified by Eq. (27) will not be
uniquely defined by the quantum state alone. While the lower and
upper bounds in Eq. (28) are independent of such an eigenstate
decomposition, it would be interesting to introduce an opera-
tional procedure for measuring the fluctuations in quantum heat
which are independent of the eigenstate decomposition of the
system’s state.

Methods
In this section we provide detailed technical calculations for our main results,
presented in the main text above. First, we describe the eigenstate trajectories for
the full work extraction protocol, and the resulting entropy productions; Next we
evaluate the variances in quantum and classical heat as a quantum system ther-
malizes, both for general d-dimensional systems and for qubits; Finally we show
that the energy coherence for all qubit states decreases under quantum channels
that are a convex combination of dephasing with respect to the energy eigenbasis,
and depolarization to the complete mixture.

Trajectories for the full work extraction protocol. We now introduce the full
trajectories of the protocol, with expressions for their probabilities, and evaluate the
stochastic entropy production associated with each trajectory. We shall show that
the full entropy production can be split into entropy production terms associated
for each step. Next, we show that the average entropy production for the full
protocol reduces to the average entropy production for Step (III) in the limit that
the evolution in Step (IV) becomes quasi-static.

Recall that the work extraction protocol can be split as follows. Step (I): unitary
evolution ρ 7!~ρ; Step (II): Hamiltonian quench H(0)↦H(1); Step (III): decoherence
~ρ 7! ~η followed by classical thermalization ~η 7! τ1; Step (IV): quasi-static evolution
τ1 ···↦ τN≡ η; and Step (V): Hamiltonian quench H(N)↦H(0). Since Steps (II) and
(V) are only Hamiltonian quenches, and do not alter the state, we shall not include
these when constructing our trajectories.

Each thermalization process that the system undertakes is described by the
channels Λi : ρ7!trBi

½V iðρ� τBi
ÞVy

i �, where B1 � B and V1 � V are the bath and
unitary used in Step (III), while B2; ¼ ;BN and V2; ¼ ;VN are the baths and
unitaries used in Step (IV). We shall decompose each thermalization channel into

their Kraus operators Kμi ;νi
:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hμijτBi

jμii
q

hνijV ijμii, where μi
�� � and νij i are

eigenstates of bath Hamiltonian HBi
, with energy eigenvalues ϵμ(i) and ϵν(i),

respectively. Such Kraus operators are constructed if, before and after the bath’s
joint unitary evolution with the system, we subject it to projective energy
measurements.

The full trajectory that the system takes during the protocol, therefore, can be
expressed as

Γ ¼ Γðl;n0 ;:::;nN Þ;ðμ1 ;ν1Þ;ðμ2 ;ν2Þ;:::ðμN ;νN Þ ; ð37Þ

where ΓS :¼ ðl; n0; :::; nN Þ � jψli 7! j ~ψli 7! jen0 i 7! � � � 7!jenN i is the sequence of
time-local eigenstates of the system during the protocol. Note that, here, we
identify n0≡m and n1≡ n as the eigenstate labels during Step (III). The bath
indices (μi, νi) merely indicate the sequence of energy measurement outcomes on
the baths, and they only contribute to the probabilities of the system trajectories ΓS .
The probability of the trajectory Γ is evaluated to be

PðΓÞ ¼ h~ψlj~ρj~ψlijjKΓk
2;

¼ h~ψlj~ρj~ψli jh~ψl jen0 ij
2
YN
i¼1

hμijτBi
jμii jheniνijV ijeni�1

μiij
2;

ð38Þ

where we have introduced the full Kraus operator for the protocol,

KΓ :¼ Π½enN �KμN ;νN
¼Π½en1 �Kμ1 ;ν1

Π½en0 �Π½~ψl�; ð39Þ

with jjKΓ k:¼ maxϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hϕjKy

ΓKΓjϕi
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h~ψl jK

y
ΓKΓj~ψli

q
denoting the operator norm

of KΓ . Averaging over all the measurement outcomes on the bath, meanwhile,
yields the probabilities for the system-only trajectories ΓS , given as

PðΓSÞ ¼ h~ψl j~ρj~ψli jh~ψl jen0 ij
2
YN
i¼1

heni jτijeni i: ð40Þ

Fig. 6 Average work extraction from a qubit as a function of coh and
nonth. Work (gray) for the full protocol is optimal when neither quantum
coherence nor classical non-thermality is present, i.e., coh= 0= nonth, and
the protocol is run reversibly27. Wexth i decreases monotonously with
increasing cohðρ~θÞ (blue line for nonth= 0) and increasing and decreasing
nonthðρ~θÞ (red line for coh= 0). At large deviations from the reversible
protocol, Wexth i becomes negative (crosses yellow plane at zero) and work
would need to be invested to run the protocol. Parameter choices for initial
qubit state ρθ are p= 0.8 and θ= π/3.
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Note that we may recover the probability for any sub-trajectory of the system by
summing over all other indices of Eq. (40). For example, summing over the indices
of Steps (I) and (IV), and the classical thermalization of Step (III), the probabilities
for the system’s quantum decoherence trajectories Γqðl;mÞ are obtained asX

ni > 0

PðΓSÞ ¼ h~ψlj~ρj~ψli jh~ψl jen0 ij
2 ¼ P Γqðl;mÞ

� �
: ð41Þ

Summing instead over the indices of Steps (I) and (IV), and the quantum
decoherence of Step (III), the probabilities for the system’s classical thermalization
trajectories Γclðm;nÞ areX

l;ni > 1

PðΓSÞ ¼
X
l

h~ψl j~ρj~ψli jh~ψljen0 ij
2hen1 jτ1jen1 i;

¼ hemj~ηjemihenjτ1jeni ¼ P Γclðm;nÞ

� �
:

ð42Þ

We may also reconstruct the full density operator for the system, at any point
along the trajectory, see Fig. 2, by weighting the pure states by the total trajectory
probabilities that include this term. For example, the average state after the
decoherence process in Step (III) is indeedX

m

emj i emh j
X

l;n1 ;:::;nN

PðΓSÞ ¼
X
m

emj i emh j hemj~ηjemi ¼ ~η: ð43Þ

The time-reversed trajectories can be defined by reversing the order of the
protocol. Here we have Step (IV): quasi-static reversed isothermal jumps
jenN i 7! � � � 7! jen1 i; Step (III) reversed thermalization jen1 i 7! jen0 i followed by
reversed decoherence jen0 i 7! j ~ψli; and Step (I): reversed unitary evolution
~ψl

�� �
7! ψl

�� �
. Moreover, we shall consider the time-reversed thermalization maps

Λ�
i : ρ 7! trBi

½Vy
i ðρ� τBÞV i�. Note that the only difference between Λi and Λ�

i is
that we have applied the time-reversal operation on the unitaries Vi , transforming
them to Vy

i . But since the sequence of measurements on the bath during the
forward protocol was (μi, νi), we shall take the time-reversal sequence of these
outcomes, namely, (νi, μi). As such, the corresponding time-reversed Kraus
operators for the thermalization channels will be

K�
νi ;μi

:¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hνijτBi

jνii
q

hμijV
y
i jνii ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hνijτBi

jνii
hμijτBi

jμii

s
Ky

μi ;νi
¼

ffiffiffiffiffiffiffiffiffi
qðiÞni�1

qðiÞni

vuut Ky
μi ;νi

;

where qðjÞni :¼ heni jτjjeni i. Here we have used the fact that, given the energy
conservation of the thermalization unitary V i , it follows that

hνijτBi
jνii

hμijτBi
jμii

¼ eðϵμðiÞ�ϵν ðiÞÞ=kBT ¼ eðE
ðiÞ
ni
�EðiÞni�1

Þ=kBT ¼
heni�1

jτijeni�1
i

heni jτijeni i
¼

qðiÞni�1

qðiÞni
; ð44Þ

where EðjÞ
ni

:¼ heni jH
ðjÞjeni i. Finally, the time-reversed trajectories can be denoted as

Γ� ¼ Γ�ðnN ;¼ ;n0 ;lÞ;ðν1 ;μ1Þ;ðν2 ;μ2Þ;¼ ;ðνN ;μN Þ; ð45Þ

which occur with the probability

P�ðΓ�Þ ¼ henN jτN jenN ijjKΓ� jj
2; ð46Þ

where we introduce the time-reversed Kraus operators for the full protocol,

KΓ� :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQN
i¼1 q

ðiÞ
ni�1QN

i¼1 q
ðiÞ
ni

vuut Ky
Γ: ð47Þ

Now we may evaluate the entropy production for the full protocol, which is
given by Eqs. (38) and (46) to be

sirrðΓÞ :¼ kB log
PðΓÞ
P�ðΓ�Þ ¼ kB log

h~ψl j~ρj~ψlijjKΓk
2

henN jτN jenN ijjKΓ� k
2

¼ kB log
h~ψl j~ρj~ψli

henN jτN jenN i
þ kB

XN
i¼1

log
qðiÞni
qðiÞni�1

;

ð48Þ

where we have used the fact that jjKΓk
2 ¼k Ky

Γk
2. Note that the entropy

production is independent of the bath measurement results. In other words, the
entropy production can be purely determined by the system trajectories ΓS .

It is trivial to show that this entropy production can be split into the three terms

sirrðΓÞ ¼ squirr Γqðl;mÞ

� �
þ sclirr Γclðm;nÞ

� �
þ sclirr ΓðIVÞ

� �
; ð49Þ

where squirrðΓ
q
ðl;mÞÞ and sclirrðΓclðm;nÞÞ are defined in Eqs. (15) and (16), respectively, and

sclirr ΓðIVÞ
� �

:¼ kB log
qð1Þn1

qðNÞ
nN

þ kB
XN
i¼2

log
qðiÞni
qðiÞni�1

¼
XN
i¼2

kBlog
qði�1Þ
ni�1

qðiÞni�1

ð50Þ

is the entropy production of Step (IV).
Since the average entropy production is additive, i.e.,

sirrh iΓ ¼ hsquirri þ hsclirri þ sclirr
� �

ΓðIVÞ
, we will compute each term separately. Let us first

turn to the last term, namely, the entropy production in Step (IV). We verify that

averaging over the trajectory probabilities, one obtains

sclirr
� �

ΓðIVÞ

kB
¼
XN
i¼2

X
ni�1

qði�1Þ
ni�1

log
qði�1Þ
ni�1

qðiÞni�1

¼
XN
i¼2

D½τi�1jjτi�: ð51Þ

When Step (IV) approaches the quasi-static limit, we will havePN
i¼2 D½τi�1jjτi� ! 0, and so sirrh iΓ ¼ hsquirri þ hsclirri.
Now we turn to the average entropy production during Step (III). Using Eqs.

(11) and (15), and introducing the labels pl :¼ h~ψl j~ρj~ψli and rm :¼ hemj~ηjemi, the
average quantum entropy production can be shown to be

hsquirri ¼
X
l;m

P Γqðl;mÞ

� �
squirr Γqðl;mÞ

� �
;

¼ kB
X
l;m

pl jhemj~ψlij
2 log

pl
rm

¼ kB D½~ρjj~η�;
ð52Þ

as stated in the main text. Here, we used the fact thatP
lpljhemj~ψlij

2 log rm ¼ rmlog rm, and that tr½~η log ~η� ¼ tr½~ρ log ~η�. Meanwhile, the
average classical entropy production is given by Eqs. (12) and (16) as

hsclirri ¼
X
m;n

P Γclðm;nÞ

� �
sclirr Γclðm;nÞ

� �
¼ kB

X
m

rm log
rm
qm

¼ kBD½~ηjjτ1�; ð53Þ

where here qm := 〈em∣τ1∣em〉.

Fluctuations in quantum and classical heat. Here, we shall provide expressions
for the fluctuations in quantum and classical heat during the thermalization pro-
cess in Step (III) of the work extraction protocol. For notational simplicity, we shall
denote the Hamiltonian as H ¼

Pd
m¼1 EmΠ½em�, the initial state of the system as

ρ ¼
Pd

l¼1 plΠ½ψl �, its state after decoherence as η := ∑mrmΠ[em], and its thermal
state as τ:= ∑nqnΠ[en].

As the system decoheres with respect to the Hamiltonian, we obtain trajectories
Γqðl;mÞ :¼ ψl

�� �
7! emj i, with probabilities PðΓqðl;mÞÞ ¼ pl jhψl jemij

2 and quantum heat

QquðΓ
q
ðl;mÞÞ :¼ hemjHjemi � hψljHjψli. The average quantum heat for a

decoherence process is always zero,

hQqui :¼
X
l;m

PðΓqðl;mÞÞ QquðΓ
q
ðl;mÞÞ ¼

X
m

hemjρjemi hemjHjemi � tr½H ρ� ¼ 0:

ð54Þ

Hence the variance in quantum heat is equal to its second moment:

VarðQquÞ :¼ hQ2
qui � hQqui

2 ¼ hQ2
qui :¼

X
l;m

PðΓqðl;mÞÞ Q
2
quðΓ

q
ðl;mÞÞ;

¼
X
l;m

pl jhψljemij
2hemjH2jemi þ

X
l

plhψl jHjψli
2

� 2
X
l;m

pl jhψl jemij
2hψljHjψlihemjHjemi:

ð55Þ

Noting that ∑m∣〈ψl∣em〉∣2〈em∣Hk∣em〉 = 〈ψl∣Hk∣ψl〉, the variance in quantum heat
reduces to

VarðQquÞ ¼
X
l

pl hψl jH2jψli � hψljHjψli
2� �

¼
X
l

pl ΔðH;ψlÞ; ð56Þ

where ΔðH; ρÞ :¼ tr½H2ρ� � tr½Hρ�2 is the variance of the Hamiltonian H in state ρ.
In other words, the variance in quantum heat is the average variance of the
Hamiltonian in the pure-state components of the initial state ρ.

We now give upper and lower bounds to the variance in quantum heat. For the
upper bound we have

ΔðH; ρÞ � VarðQquÞ ¼
X
l

plhψl jHjψli
2 � tr½Hρ�2 ¼

X
l

plðhψl jHjψli � tr½Hρ�Þ2 ≥ 0:

ð57Þ

To obtain a lower bound, we use the fact that Δ(H, ρ)= Iα(H, ρ) whenever ρ is a
pure state, where IαðH; ρÞ ¼ tr½H2ρ� � tr½HραHρ1�α� for α∈ (0, 1) is the
Wigner–Yanase–Dyson skew information of the observable H in ρ76. Using the
Lieb concavity theorem77 it follows that

VarðQquÞ ¼
X
l

pl IαðH;ψlÞ≥ IαðH; ρÞ: ð58Þ

Combining Eqs. (57) and (58) shows that the variance in quantum heat obeys

ΔðH; ρÞ≥VarðQquÞ≥ IαðH; ρÞ; ð59Þ

where the equalities are saturated if ρ is pure.
As the system thermalizes, we obtain trajectories Γclðm;nÞ :¼ emj i 7! enj i, with

probabilities PðΓclðm;nÞÞ ¼ rmqn and classical heat
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QclðΓclðm;nÞÞ :¼ henjHjeni � hemjHjemi. The average classical heat is therefore

Qclh i :¼
X
m;n

PðΓclðm;nÞÞQclðΓclðm;nÞÞ ¼
X
m;n

rmqntr½HðΠ½en� � Π½em�Þ�

¼ tr½Hðτ � ηÞ� � tr½Hðτ � ρÞ�;
ð60Þ

while the second moment is

Q2
cl

� �
: ¼

X
m;n

PðΓclðm;nÞÞQclðΓclðm;nÞÞ
2
;

¼
X
m;n

rmqnðtr½HΠ½en��
2 þ tr½HΠ½em��

2 � 2tr½HΠ½en��tr½HΠ½em��Þ;

¼ tr½H2ðτ þ ηÞ� � 2tr½Hτ�tr½Hη�
� tr½H2ðτ þ ρÞ� � 2tr½Hτ�tr½Hρ�:

ð61Þ

Note that here we have used the fact that tr½Hkη� ¼
P

ntr½HkΠ½en�ρΠ½en�� ¼
tr½Hkρ�.

The variance in classical heat, therefore, is

Var Qclð Þ :¼ Q2
cl

� �
� Qclh i2 ¼ ΔðH; ηÞ þ ΔðH; τÞ � ΔðH; ρÞ þ ΔðH; τÞ: ð62Þ

Quantum and classical heat variances for a qubit. Let us first consider the
variance in quantum heat for the decoherence trajectories Γq of a qubit in state
ρ~θ ¼ pΠ½~θ�� þ ð1� pÞΠ½~θþ� and with Hamiltonian Hð1Þ ¼ _ω1

2 ðΠ½eþ� � Π½e��Þ.
One finds that when d= 2, the matrix elements of the doubly stochastic matrix M

(Θ) are MðΘÞ
k≠l;l ¼ 1

2 sin
2ðΘπ=2Þ, and MðΘÞ

l;l ¼ 1� 1
2 sin

2ðΘπ=2Þ. By solving the

equation j~θj ¼ 2 sin�1ð sinðΘπ=2Þ=
ffiffiffi
2

p
Þ, we may equivalently write these as

Mð~θÞ
k≠l;l ¼ sin2ð~θ=2Þ � coh, and Mð~θÞ

l;l ¼ 1� sin2ð~θ=2Þ � 1� coh, as defined in Eq.
(8). We may therefore rewrite Eq. (31) as

ΔðHð1Þ; ~θ ± Þ ¼ coh
X
k2±

ðEð1Þ
k � Eð1Þ

± Þ2 � coh2
X

k2±
Eð1Þ
k � Eð1Þ

±

� �� �2
;

¼ _ω1ð Þ2 coh� coh2
� �

� _ω1ð Þ2

4
sin2ð~θÞ:

ð63Þ

In the second line, we have used the fact that for the qubit model,

Eð1Þ
k � Eð1Þ

± 2 f0; ± _ω1g. Since the variance of the Hamiltonian is the same for
both eigenstates of the qubit, it follows that the variance in quantum heat is always

VarðQquÞ ¼ ΔðHð1Þ; ~θ ± Þ ¼
_ω1ð Þ2

4
sin2ð~θÞ; ð64Þ

which monotonically increases as j~θj increases from 0 to π/2.
Let us now consider the variance in classical heat for the thermalization

trajectories Γcl. Note that there are only two trajectories which contribute
nonvanishing values of classical heat: e�j i7! eþ

�� �
, with absorbed heat ℏω1,

occurring with probability r~θð1� q1Þ with q1 ≥ 1/2; and eþ
�� �

7! e�j i, with absorbed
heat −ℏω1, occurring with probability ð1� r~θÞq1. From Eq. (62), we can obtain
the simplified expression for the classical heat variance as

Var Qclð Þ ¼ ΔðHð1Þ; η~θÞ þ ΔðHð1Þ; τ1Þ;
¼ ð_ω1Þ

2 ðr~θ � r2~θÞ þ ð_ω1Þ
2ðq1 � q21Þ;

ð65Þ

where r~θ ¼ q1 expð�nonthðρ~θÞÞ≥ 1=2 is a function of the non-thermality of the
state ρ~θ . Hence Var Qclð Þ monotonously increases with nonthðρ~θÞ, see also Fig. 5.

Hamiltonian-covariant channels and energy coherence for qubits. In order to
see how Hamiltonian-covariant channels affect the energy coherence of the
eigenbasis of ρ, it will be useful to work in the geometric picture of the Bloch
sphere, where ρ ¼ 1

2 ð1þ n!: σ!Þ and H ¼ _ω
2 σ3. Here n! :¼ ðn1; n2; n3Þ is the Bloch

vector such that ni 2 R and j n!j≤ 1, and σ! :¼ ðσ1; σ2; σ3Þ with σi the Pauli
matrices. As such, the spectral projections of H and ρ can be expressed as

Π½e± � :¼
1
2

1± σ3ð Þ; Π½θ ± � :¼
1
2

1±
n!

j n!j
: σ!


 �
; ð66Þ

which give the energy coherence of the eigenbasis of ρ as

cohðρÞ :¼ mini;jtr½Π½ei�Π½θk�� ¼
1
2

1� jn3j
j n!j


 �
: ð67Þ

In other words, the energy coherence decreases as the fraction of the Bloch vector
along the Hamiltonian axis x3 := (0, 0, 1) increases, where we note that here, we
define 0=0 :¼ lim x!0x=x ¼ 1, meaning that the energy coherence of the complete
mixture is zero. Now let us consider the two states ρ ¼ 1

2 ð1þ n!: σ!Þ and
EðρÞ ¼ 1

2 ð1þ m!: σ!Þ. We therefore have

cohðρÞ � cohðEðρÞÞ ¼ 1
2

jm3j
jm!j

� jn3j
j n!j


 �
≥ 0 () jm3j

2

jm!j2
≥
jn3j

2

j n!j2
: ð68Þ

Now we wish to see what subset of Hamiltonian-covariant channels E will guar-
antee that cohðρÞ � cohðEðρÞÞ≥ 0 for all ρ.

Due to the convex structure of quantum channels89, any quantum channel that
maps from a d-dimensional Hilbert space to itself can be constructed as a convex
combination of “extremal” quantum channels fEig where extremality of Ei is
defined as Ei ¼ λEj þ ð1� λÞEk , with λ∈ [0, 1], only if Ej ¼ Ek ¼ Ei . In the special
case of d= 2, as shown in Corollary 15 of ref. 90, a quantum channel E i is extremal
if either Ei is unitary, or it is not a convex combination of unitary channels and the
rank of its corresponding Choi-state is 2. The Choi-state associated with a qubit
quantum channel E is defined as

ρE :¼ ðE � 1ÞΠ½Φþ�; ð69Þ

where jΦþi :¼ 1ffiffi
2

p ðjφþ;φþi þ jφ�;φ�iÞ with fjφ± ig any orthonormal basis of

C2. Therefore, we may always write a qubit channel E as

EðρÞ ¼ λ UðρÞ þ ð1� λÞT ðρÞ; ð70Þ
where λ∈ [0, 1] and

UðρÞ ¼
X
j

pj U jðρÞ; T ðρÞ ¼
X
k

qk T kðρÞ; ð71Þ

with pj, qk > 0 and ∑jpj= ∑kqk= 1. Moreover, U jðρÞ :¼ UjρUj with Uj unitary

operators, and T kðρÞ ¼
P

l2±Kl;kρK
y
l;k , with Kraus operators

Kþ;k ¼ jψkihφþj;K�;k ¼ jψ0
kihφ�j, where fjψki; jψ0

kig are any pair of pure states,
not necessarily orthogonal. It is simple to verify, by Eq. (69) and the definition
of the Kraus operators above, that T k have the Choi states ρT k

¼ 1
2 ðΠ½ψk;φþ�þ

Π½ψ0
k;φ��Þ, which are rank-2 and thus satisfy the extremality condition.
Now let us assume that E is covariant with respect to the Hamiltonian H, i.e.,

for any ρ and t 2 R, we have e�itHEðρÞeitH ¼ Eðe�itHρeitHÞ. Of course, this means
that U j and T k are also Hamiltonian-covariant, implying that Uj ¼ eiϕjσ3 , so that U
is a probabilistic rotation about the Hamiltonian axis x3. As for T , let us note that

e�itHT kðρÞeitH ¼ T kðe�itHρeitHÞ
) e�itH ψk

�� �
ψk

� ��eitHhφþjρjφþi þ e�itH ψ0
k

�� �
ψ0
k

� ��eitHhφ�jρjφ�i
¼ ψk

�� �
ψk

� ��hφþje�itHρeitH jφþi þ ψ0
k

�� �
ψ0
k

� ��hφ�je�itHρeitH jφ�i;
ð72Þ

implies that f φ±

�� �
g � f e ±j ig, while ψk

�� �
; ψ0

k

�� �
must also be eigenstates of H

although, as stated before, they may be the same eigenstate. Therefore, there are
only three extremal channels T k : T 1ðρÞ ¼ 1

2 ð1þ σ3Þ, T 2ðρÞ ¼ 1
2 ð1� σ3Þ, and

T 3ðρÞ ¼ 1
2 ð1� n3σ3Þ. Consequently, T ðρÞ ¼ 1

2 ð1þ vσ3Þ, with v= q1− q2− q3n3.
It trivially follows that

jm3j
2 ¼ jtr½σ3EðρÞ�j

2 ¼ jλtr½σ3UðρÞ� þ ð1� λÞtr½σ3T ðρÞ�j2

¼ jλn3 þ ð1� λÞvj2 ¼ λ2β2jn3j
2;

ð73Þ

where

β ¼ 1þ 1� λ

λ

v
n3


 �
: ð74Þ

Moreover, denoting m⊥= (m1, m2, 0) as the component of m! that is orthogonal to
x3, so that jm!j2 ¼ jm3j

2 þ jm?j
2, and similarly with n⊥, we obtain

jm?j
2 ¼ jtr½ðσ1 þ iσ2ÞEðρÞ�j

2 ¼ λ2jtr½ðσ1 þ iσ2ÞUðρÞ�j
2 ¼ δλ2jtr½ðσ1 þ iσ2Þρ�j

2

¼ δλ2jn?j
2;

ð75Þ

where δ∈ [0, 1], with δ= 1 if UðρÞ ¼ eiϕσ3ρe�iϕσ3 , and δ= 0 when UðρÞ ¼R
½0;2πÞdμðϕÞeiϕσ3ρ�iϕσ3 �

P
k2±Π½ek�ρΠ½ek� with μ the Haar measure over [0, 2π].

As such, we may write

jm3j
2

jm!j2
¼ jm3j

2

jm3j
2 þ jm?j

2 ¼
jm3j

2

jm3j
2 þ δλ2jn?j

2 ¼
β2jn3j

2

β2jn3j
2 þ δjn?j

2 : ð76Þ

Consequently, as long as β2 ≥ δ, we have

jm3j
2

jm!j2
≥

jn3j
2

j n!3j
2 ) cohðρÞ≥ cohðEðρÞÞ: ð77Þ

A sufficient condition to ensure that cohðρÞ≥ cohðEðρÞÞ for all ρ, irrespective of
the value of λ and δ, is if T is a depolarizing channel, i.e., T ðρÞ ¼ 1

2 1 for all ρ. In
this case, v= 0 and so β2= 1 ≥ δ.

Code availability
The code used to produce the figures in this article is available from the corresponding
author upon reasonable request.
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