1,991 research outputs found
Excitation transport through Rydberg dressing
We show how to create long range interactions between alkali-atoms in
different hyper-fine ground states, allowing coherent electronic quantum state
migration. The scheme uses off resonant dressing with atomic Rydberg states,
exploiting the dipole-dipole excitation transfer that is possible between
those. Actual population in the Rydberg state is kept small. Dressing offers
large advantages over the direct use of Rydberg levels: It reduces ionisation
probabilities and provides an additional tuning parameter for life-times and
interaction-strengths. We present an effective Hamiltonian for the ground-state
manifold and show that it correctly describes the full multi-state dynamics for
up to 5 atoms.Comment: 22 pages + 6 pages appendices, 8 figures, replaced with revised
version, added journal referenc
Evaluation of on-board hydrogen storage methods for hypersonic vehicles
Hydrogen is the foremost candidate as a fuel for use in high speed transport. Since any aircraft moving at hypersonic speeds must have a very slender body, means of decreasing the storage volume requirements below that for liquid hydrogen are needed. The total performance of the hypersonic plane needs to be considered for the evaluation of candidate fuel and storage systems. To accomplish this, a simple model for the performance of a hypersonic plane is presented. To allow for the use of different engines and fuels during different phases of flight, the total trajectory is divided into three phases: subsonic-supersonic, hypersonic and rocket propulsion phase. The fuel fraction for the first phase is found be a simple energy balance using an average thrust to drag ratio for this phase. The hypersonic flight phase is investigated in more detail by taking small altitude increments. This approach allowed the use of flight profiles other than the constant dynamic pressure flight. The effect of fuel volume on drag, structural mass and tankage mass was introduced through simplified equations involving the characteristic dimension of the plane. The propellant requirement for the last phase is found by employing the basic rocket equations. The candidate fuel systems such as the cryogenic fuel combinations and solid and liquid endothermic hydrogen generators are first screened thermodynamically with respect to their energy densities and cooling capacities and then evaluated using the above model
Dephasing of Mollow Triplet Sideband Emission of a Resonantly Driven Quantum Dot in a Microcavity
Detailed properties of resonance fluorescence from a single quantum dot in a
micropillar cavity are investigated, with particular focus on emission
coherence in dependence on optical driving field power and detuning.
Power-dependent series over a wide range could trace characteristic Mollow
triplet spectra with large Rabi splittings of GHz. In
particular, the effect of dephasing in terms of systematic spectral broadening
of the Mollow sidebands is observed as a strong fingerprint
of excitation-induced dephasing. Our results are in excellent agreement with
predictions of a recently presented model on phonon-dressed QD Mollow triplet
emission in the cavity-QED regime
Adiabatic entanglement transport in Rydberg aggregates
We consider the interplay between excitonic and atomic motion in a regular,
flexible chain of Rydberg atoms, extending our recent results on entanglement
transport in Rydberg chains [W\"uster et al., Phys.Rev.Lett 105 053004 (2010)].
In such a Rydberg chain, similar to molecular aggregates, an electronic
excitation is delocalised due to long range dipole-dipole interactions among
the atoms. The transport of an exciton that is initially trapped by a chain
dislocation is strongly coupled to nuclear dynamics, forming a localised pulse
of combined excitation and displacement. This pulse transfers entanglement
between dislocated atoms adiabatically along the chain. Details about the
interaction and the preparation of the initial state are discussed. We also
present evidence that the quantum dynamics of this complex many-body problem
can be accurately described by selected quantum-classical methods, which
greatly simplify investigations of excitation transport in flexible chains
Newton's cradle and entanglement transport in a flexible Rydberg chain
In a regular, flexible chain of Rydberg atoms, a single electronic excitation
localizes on two atoms that are in closer mutual proximity than all others. We
show how the interplay between excitonic and atomic motion causes electronic
excitation and diatomic proximity to propagate through the Rydberg chain as a
combined pulse. In this manner entanglement is transferred adiabatically along
the chain, reminiscent of momentum transfer in Newton's cradle.Comment: 4 pages, 3 figures. Revised versio
Near-field light localization using subwavelength apertures incorporated with metamaterials
Cataloged from PDF version of article.We report strong near-field electromagnetic localization by using subwavelength apertures and metamaterials that operate at microwave frequencies. We designed split ring resonators with distinct configurations in order to obtain extraordinary transmission results. Furthermore, we analyzed the field localization and focusing characteristics of the transmitted evanescent waves. The employed metamaterial configurations yielded an improvement on the transmission efficiency on the order of 27 dB and 50 dB for the deep subwavelength apertures. The metamaterial loaded apertures are considered as a total system that offered spot size conversion ratios as high as 7.12 and 9.11 for the corresponding metamaterial configurations. The proposed system is shown to intensify the electric fields of the source located in the near-field. It also narrows down the electromagnetic waves such that a full width at half maximum value of λ/29 is obtained. © 2012 Elsevier B.V. All rights reserved
Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity
We demonstrate a single-photon collection efficiency of from
a quantum dot in a low-Q mode of a photonic-crystal cavity with a single-photon
purity of recorded above the saturation power. The high
efficiency is directly confirmed by detecting up to kilocounts per
second on a single-photon detector on another quantum dot coupled to the cavity
mode. The high collection efficiency is found to be broadband, as is explained
by detailed numerical simulations. Cavity-enhanced efficient excitation of
quantum dots is obtained through phonon-mediated excitation and under these
conditions, single-photon indistinguishability measurements reveal long
coherence times reaching ns in a weak-excitation regime. Our work
demonstrates that photonic crystals provide a very promising platform for
highly integrated generation of coherent single photons including the efficient
out-coupling of the photons from the photonic chip.Comment: 13 pages, 8 figures, submitte
Experimental demonstration of the enhanced transmission through circular and rectangular sub-wavelength apertures using omega-like split-ring resonators
Cataloged from PDF version of article.Enhanced transmission through circular and rectangular sub-wavelength apertures using omega-shaped split-ring resonator is
numerically and experimentally demonstrated at microwave frequencies. We report a more than 150,000-fold enhancement through
a deep sub-wavelength aperture drilled in a metallic screen. To the authors’ best knowledge, this is the highest experimentally
obtained enhancement factor reported in the literature. In the paper, we address also the origins and the physical reasons behind the
enhancement results. Moreover, we report on the differences occurring when using circular, rectangular apertures as well as doublesided
and single-sided omega-like split ring resonator structures.
(C) 2012 Elsevier B.V. All rights reserve
Indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity
We demonstrate purely resonant continuous-wave optical laser excitation to
coherently prepare an excitonic state of a single semiconductor quantum dot
(QDs) inside a high quality pillar microcavity. As a direct proof of QD
resonance fluorescence, the evolution from a single emission line to the
characteristic Mollow triplet10 is observed under increasing pump power. By
controlled utilization of weak coupling between the emitter and the fundamental
cavity mode through Purcell-enhancement of the radiative decay, a strong
suppression of pure dephasing is achieved, which reflects in close to Fourier
transform-limited and highly indistinguishable photons with a visibility
contrast of 90%. Our experiments reveal the model-like character of the coupled
QD-microcavity system as a promising source for the generation of ideal photons
at the quantum limit. From a technological perspective, the vertical cavity
symmetry -- with optional dynamic tunability -- provides strongly directed
light emission which appears very desirable for future integrated emitter
devices.Comment: 24 pages, 6 figure
Measurements of Radiative Vacancy Transfer Probabilities for Some Elements Irradiated with Photons of 0.0208 Nanometer Wavelengths
The radiative vacancy transfer probabilities of K to L2, L3, M2, M3 sub-shells were calculated using the
experimental K level widths and theoretical partial radiative transitions. The targets were irradiated with
photons of 0.0208 nm wavelength. It has been observed that the obtained values in the present study agree
with theoretical results, theoretical predictions and the other available experimental values.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3544
- …
