209 research outputs found

    Analysis of the hippocampal proteome in ME7 prion disease reveals a predominant astrocytic signature and highlights the brain-restricted production of clusterin in chronic neurodegeneration

    No full text
    Prion diseases are characterized by accumulation of misfolded protein, gliosis, synaptic dysfunction, and ultimately neuronal loss. This sequence, mirroring key features of Alzheimer disease, is modeled well in ME7 prion disease. We used iTRAQ(TM)/mass spectrometry to compare the hippocampal proteome in control and late-stage ME7 animals. The observed changes associated with reactive glia highlighted some specific proteins that dominate the proteome in late-stage disease. Four of the up-regulated proteins (GFAP, high affinity glutamate transporter (EAAT-2), apo-J (Clusterin), and peroxiredoxin-6) are selectively expressed in astrocytes, but astrocyte proliferation does not contribute to their up-regulation. The known functional role of these proteins suggests this response acts against protein misfolding, excitotoxicity, and neurotoxic reactive oxygen species. A recent convergence of genome-wide association studies and the peripheral measurement of circulating levels of acute phase proteins have focused attention on Clusterin as a modifier of late-stage Alzheimer disease and a biomarker for advanced neurodegeneration. Since ME7 animals allow independent measurement of acute phase proteins in the brain and circulation, we extended our investigation to address whether changes in the brain proteome are detectable in blood. We found no difference in the circulating levels of Clusterin in late-stage prion disease when animals will show behavioral decline, accumulation of misfolded protein, and dramatic synaptic and neuronal loss. This does not preclude an important role of Clusterin in late-stage disease, but it cautions against the assumption that brain levels provide a surrogate peripheral measure for the progression of brain degeneration

    Osmotic behaviour of human mesenchymal stem cells: implications for cryopreservation

    Get PDF
    Aimed at providing a contribution to the optimization of cryopreservation processes, the present work focuses on the osmotic behavior of human mesenchymal stem cells (hMSCs). Once isolated from the umbilical cord blood (UCB) of three different donors, hMSCs were characterized in terms of size distribution and their osmotic properties suitably evaluated through the exposure to hypertonic and isotonic aqueous solutions at three different temperatures. More specifically, inactive cell volume and cell permeability to water and di-methyl sulfoxide (DMSO) were measured, being cell size determined using impedance measurements under both equilibrium and dynamic conditions. Experimental findings indicate that positive cell volume excursions are limited by the apparent increase of inactive volume, which occurs during both the shrink-swell process following DMSO addition and the subsequent restoration of isotonic conditions in the presence of hypertonic solutions of impermeant or permeant solutes. Based on this evidence, hMSCs must be regarded as imperfect osmometers, and their osmotic behavior described within a scenario no longer compatible with the simple two-parameter model usually utilized in the literature. In this respect, the activation of mechano-sensitive ion-channels seemingly represents a reasonable hypothesis for rationalizing the observed osmotic behavior of hMSCs from UCB

    Chronic stress induces NPD-like behavior in APPPS1 and WT mice with subtle differences in gene expression

    Get PDF
    Neuropsychiatric disturbances (NPDs) are considered hallmarks of Alzheimer's disease (AD). Nevertheless, treatment of these symptoms has proven difficult and development of safe and effective treatment options is hampered by the limited understanding of the underlying pathophysiology. Thus, robust preclinical models are needed to increase knowledge of NPDs in AD and develop testable hypotheses and novel treatment options. Abnormal activity of the hypothalamic–pituitary–adrenal (HPA) axis is implicated in many psychiatric symptoms and might contribute to both AD and NPDs development and progression. We aimed to establish a mechanistic preclinical model of NPD‐like behavior in the APPPS1 mouse model of AD and wildtype (WT) littermates. In APPPS1 and WT mice, we found that chronic stress increased anxiety‐like behavior and altered diurnal locomotor activity suggestive of sleep disturbances. Also, chronic stress activated the HPA axis, which, in WT mice, remained heightened for additional 3 weeks. Chronic stress caused irregular expression of circadian regulatory clock genes (BMAL1, PER2, CRY1 and CRY2) in both APPPS1 and WT mice. Interestingly, APPPS1 and WT mice responded differently to chronic stress in terms of expression of serotonergic markers (5‐HT(1A) receptor and MAOA) and inflammatory genes (IL‐6, STAT3 and ADMA17). These findings indicate that, although the behavioral response to chronic stress might be similar, the neurobiochemical response was different in APPPS1 mice, which is an important insight in the efforts to develop safe and effective treatments options for NPDs in AD patients. Further work is needed to substantiate these findings

    Antioxidant peroxiredoxin 6 protein rescues toxicity due to oxidative stress and cellular hypoxia in vitro, and attenuates prion-related pathology in vivo

    No full text
    Protein misfolding, mitochondrial dysfunction and oxidative stress are common pathomechanisms that underlie neurodegenerative diseases. In prion disease, central to these processes is the post-translational transformation of cellular prion protein (PrPc) to the aberrant conformationally altered isoform; PrPSc. This can trigger oxidative reactions and impair mitochondrial function by increasing levels of peroxynitrite, causing damage through formation of hydroxyl radicals or via nitration of tyrosine residues on proteins. The 6 member Peroxiredoxin (Prdx) family of redox proteins are thought to be critical protectors against oxidative stress via reduction of H2O2, hydroperoxides and peroxynitrite. In our in vitro studies cellular metabolism of SK-N-SH human neuroblastoma cells was significantly decreased in the presence of H2O2 (oxidative stressor) or CoCl2 (cellular hypoxia), but was rescued by treatment with exogenous Prdx6, suggesting that its protective action is in part mediated through a direct action. We also show that CoCl2-induced apoptosis was significantly decreased by treatment with exogenous Prdx6. We proposed a redox regulator role for Prdx6 in regulating and maintaining cellular homeostasis via its ability to control ROS levels that could otherwise accelerate the emergence of prion-related neuropathology. To confirm this, we established prion disease in mice with and without astrocyte-specific antioxidant protein Prdx6, and demonstrated that expression of Prdx6 protein in Prdx6 Tg ME7-animals reduced severity of the behavioural deficit, decreased neuropathology and increased survival time compared to Prdx6 KO ME7-animals. We conclude that antioxidant Prdx6 attenuates prion-related neuropathology, and propose that augmentation of endogenous Prdx6 protein represents an attractive adjunct therapeutic approach for neurodegenerative diseases

    Immunotherapy Targeting Pathological Tau Conformers in a Tangle Mouse Model Reduces Brain Pathology with Associated Functional Improvements

    Full text link
    Immunotherapies for various neurodegenerative diseases have recently emerged as a promising approach for clearing pathological protein conformers in these disorders. This type of treatment has not been assessed in models that develop neuronal tau aggregates as observed in frontotemporal dementia and Alzheimer's disease. Here, we present that active immunization with a phosphorylated tau epitope, in P301L tangle model mice, reduces aggregated tau in the brain and slows progression of the tangle-related behavioral phenotype. Females had more tau pathology than males but were also more receptive to the immunotherapy. The tau antibodies generated in these animals recognized pathological tau on brain sections. Performance on behavioral assays that require extensive motor coordination correlated with tau pathology in corresponding brain areas, and antibody levels against the immunogen correlated inversely with tau pathology. Interestingly, age-dependent autoantibodies that recognized recombinant tau protein but not the immunogen were detected in the P301L mice. To confirm that anti-tau antibodies could enter the brain and bind to pathological tau, FITC-tagged antibodies purified from a P301L mouse, with a high antibody titer against the immunogen, were injected into the carotid artery of P301L mice. These antibodies were subsequently detected within the brain and colocalized with PHF1 and MC1 antibodies that recognize pathological tau. Currently, no treatment is available for clearing tau aggregates. Our present findings may lead to a novel therapy targeting one of the major hallmarks of Alzheimer's disease and frontotemporal dementia

    Chronic Intermittent Ethanol Regulates Hippocampal GABA(A) Receptor Delta Subunit Gene Expression.

    Get PDF
    Chronic ethanol consumption causes structural and functional reorganization in the hippocampus and induces alterations in the gene expression of gamma-aminobutyric acid type A receptors (GABAARs). Distinct forced intermittent exposure models have been used previously to investigate changes in GABAAR expression, with contrasting results. Here, we used repeated cycles of a Chronic Intermittent Ethanol paradigm to examine the relationship between voluntary, dependence-associated ethanol consumption, and GABAAR gene expression in mouse hippocampus. Adult male C57BL/6J mice were exposed to four 16-h ethanol vapor (or air) cycles in inhalation chambers alternated with limited-access two-bottle choice between ethanol (15%) and water consumption. The mice exposed to ethanol vapor showed significant increases in ethanol consumption compared to their air-matched controls. GABAAR alpha4 and delta subunit gene expression were measured by qRT-PCR at different stages. There were significant changes in GABAAR delta subunit transcript levels at different time points in ethanol-vapor exposed mice, while the alpha4 subunit levels remained unchanged. Correlated concurrent blood ethanol concentrations suggested that GABAAR delta subunit mRNA levels fluctuate depending on ethanol intoxication, dependence, and withdrawal state. Using a vapor-based Chronic Intermittent Ethanol procedure with combined two-bottle choice consumption, we corroborated previous evidences showing that discontinuous ethanol exposure affects GABAAR delta subunit expression but we did not observe changes in alpha4 subunit. These findings indicate that hippocampal GABAAR delta subunit expression changes transiently over the course of a Chronic Intermittent Ethanol paradigm associated with voluntary intake, in response to ethanol-mediated disturbance of GABAergic neurotransmission

    Blocking the apoE/Aβ interaction ameliorates Aβ-related pathology in APOE ε2 and ε4 targeted replacement Alzheimer model mice

    Get PDF
    Accumulation of β-amyloid (Aβ) in the brain is essential to Alzheimer’s disease (AD) pathogenesis. Carriers of the apolipoprotein E (APOE) ε4 allele demonstrate greatly increased AD risk and enhanced brain Aβ deposition. In contrast, APOE ε2 allele carries show reduced AD risk, later age of disease onset, and lesser Aβ accumulation. However, it remains elusive whether the apoE2 isoform exerts truly protective effect against Aβ pathology or apoE2 plays deleterious role albeit less pronounced than the apoE4 isoform. Here, we characterized APP(SW)/PS1(dE9)/APOE ε2-TR (APP/E2) and APP(SW)/PS1(dE9)/APOE ε4-TR (APP/E4) mice, with targeted replacement (TR) of the murine Apoe for human ε2 or ε4 alleles, and used these models to investigate effects of pharmacological inhibition of the apoE/Aβ interaction on Aβ deposition and neuritic degeneration. APP/E2 and APP/E4 mice replicate differential effect of human apoE isoforms on Aβ pathology with APP/E4 mice showing a several-fold greater load of Aβ plaques, insoluble brain Aβ levels, Aβ oligomers, and density of neuritic plaques than APP/E2 mice. Furthermore, APP/E4 mice, but not APP/E2 mice, exhibit memory impairment on object recognition and radial arm maze tests. Between the age of 6 and 10 months APP/E2 and APP/E4 mice received treatment with Aβ12-28P, a non-toxic, synthetic peptide homologous to the apoE binding motif within the Aβ sequence, which competitively blocks the apoE/Aβ interaction. In both lines, the treatment significantly reduced brain Aβ accumulation, co-accumulation of apoE within Aβ plaques, and neuritic degeneration, and prevented memory deficit in APP/E4 mice. These results indicate that both apoE2 and apoE4 isoforms contribute to Aβ deposition and future therapies targeting the apoE/Aβ interaction could produce favorable outcome in APOE ε2 and ε4 allele carriers. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40478-014-0075-0) contains supplementary material, which is available to authorized users

    Ecological correlates of Golden eagle (Aquila chrysaetos) breeding occurrence in Sardinia (Italy).

    Get PDF
    Capsule Golden Eagles Aquila chrysaetos in Sardinia are clustered across the main mountain ranges of the island, with a preference for undisturbed and homogeneous inland habitats. Aims To analyse habitat preferences of the Golden Eagle in Sardinia, Italy, at the landscape and home range spatial scales. Methods Landscape scale habitat preferences were analysed using the 10 × 10 km Universal Transverse Mercator grid and the home range scale was based on the spatial distribution of breeding territories. Generalized linear models were fitted with three different sets of environmental predictors (topographic, bioclimatic and land use variables) to analyse the spatial distribution of Golden Eagles with a case-control design. Results Eagles showed a preference for rugged and elevated areas, characterized by a certain degree of humidity and surrounded by areas of forest. The distribution of Golden Eagles on this Mediterranean island was negatively affected by the occurrence of arable farmland and coastal areas, as well as by the effects of habitat fragmentation. Conclusions The results of this study could contribute to future management strategies and conservation projects aimed to protect this species, and may be used to identify the most suitable conservation areas for this and other competing species, such as the Bonelli's Eagle Aquila fasciata, which is currently the subject of a reintroduction project in Sardinia

    Preventing β-amyloid fibrillization and deposition: β-sheet breakers and pathological chaperone inhibitors

    Get PDF
    Central to the pathogenesis of Alzheimer's disease (AD) is the conversion of normal, soluble β-amyloid (sAβ) to oligomeric, fibrillar Aβ. This process of conformational conversion can be influenced by interactions with other proteins that can stabilize the disease-associated state; these proteins have been termed 'pathological chaperones'. In a number of AD models, intervention that block soluble Aβ aggregation, including β-sheet breakers, and compounds that block interactions with pathological chaperones, have been shown to be highly effective. When combined with early pathology detection, these therapeutic strategies hold great promise as effective and relatively toxicity free methods of preventing AD related pathology
    corecore