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Alzheimer’s disease (AD) is the most common form of dementia worldwide. It is mostly
known for its devastating effect on memory and learning but behavioral alterations
commonly known as neuropsychiatric disturbances (NPDs) are also characteristics of
the disease. These include apathy, depression-like behavior, and sleep disturbances, and
they all contribute to an increased caregiver burden and earlier institutionalization. The
interaction between NPDs and AD pathology is not well understood, but the consensus
is that they contribute to disease progression and faster decline. Consequently,
recognizing and treating NPDs might improve AD pathology and increase the quality
of life for both patients and caregivers. In this review article, we examine previous
and current literature on apathy, depressive symptoms, and sleep disturbances in AD
patients and preclinical AD mechanistic models. We hypothesize that tau accumulation,
beta-amyloid (Aβ) aggregation, neuroinflammation, mitochondrial damage, and loss
of the locus coeruleus (LC)-norepinephrine (NE) system all collectively impact the
development of NPDs and contribute synergistically to AD pathology. Targeting more
than one of these processes might provide the most optimal strategy for treating NPDs
and AD. The development of such clinical approaches would be preceded by preclinical
studies, for which robust and reliable mechanistic models of NPD-like behavior are
needed. Thus, developing effective preclinical research models represents an important
step towards a better understanding of NPDs in AD.

Keywords: Alzheimer’s disease, sleep disturbance, apathy, depression, neuropsychiatric disturbances, preclinical
animal models

INTRODUCTION

Alzheimer’s disease (AD) remains a major cause of morbidity and mortality worldwide and is
substantially burdensome to affected persons and their caregivers. It has been estimated that
47 million people worldwide were living with AD in 2015 (Alzheimer’s Disease International, 2015)
and by 2060 15 million people will be diagnosed with AD in the US alone (Brookmeyer et al., 2018);
thus, AD is a large social and financial burden to society.
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The characteristic hallmarks of AD include β-amyloid (Aβ)
plaques, neurofibrillary tangles (NFT), and neuroinflammation,
and as the disease progresses almost all brain regions become
affected with cell death and neuronal degeneration in the
terminal stages eventually leading to substantial brain shrinkages
and death. In addition to cognitive impairment, 80–97% of
AD patients experience at least one non-mnemonic symptom
at least once during the course of the disease (Gauthier
et al., 2010; Van Dam et al., 2016; Tiel et al., 2019).
These are denoted neuropsychiatric disturbances (NPDs) and
include symptoms like apathy, depression-like behavior, sleep
disturbances, aggression, and anxiety (Zhao et al., 2016). We
have focused the discussion in this review on the three most
common NPDs: apathy, depression-like behavior, and sleep
disturbances. The factors that mediate the transition from
prodromal AD to full-blown AD are not well characterized, but
it is suggested that the onset, tempo, and rate of pathogenesis is
impacted by significant contributions from NPDs (Geda et al.,
2013; Zhao et al., 2016). Additionally, NPDs can appear before
the prodromal phase of AD (Bartolini et al., 2004; Bidzan
and Bidzan, 2014; Peters et al., 2015) and thus increase and
prolong the caregiver burden; eventually, leading to earlier
institutionalization (Steffens et al., 2005; Rea et al., 2014), which
in turn increases the financial burden to society.

The diagnosing of AD is based on general health status,
cognitive tests, cerebrospinal fluid (CSF) based biomarker
assessment, magnetic resonance imaging (MRI), and positron
emission tomography (PET) imaging. A CSF biomarker profile
for AD includes low levels of Aβ42, reflecting Aβ plaque deposits,
and high levels of total tau (T-tau) and hyperphosphorylated tau
(P-tau), reflecting increased axonal damage and tau pathology,
but other biomarkers have also been investigated to aid in early
diagnosis, prognosis, and progression of AD (Blennow et al.,
2010; Snyder et al., 2014; Tan et al., 2014). As NPDs have been
shown to precede cognitive symptoms (Masters et al., 2015),
they may represent additional biomarkers of early-stage AD and
could enhance and accelerate the diagnosis of AD. However,
few commonly accepted diagnostic tools for NPDs in AD exists.
The Neuropsychiatric Inventory (NPI; Cummings et al., 1994;
Cummings, 1997), and modifications of this (de Medeiros et al.,
2010; Guercio et al., 2015; Morganti et al., 2018), is widely used
to assess NPDs but it is not specific to AD and thus makes
it difficult to use NPDs as biomarkers for early AD. The early
and effective intervention of AD will improve quality of life for
both patients and caregivers; therefore, recognizing and treating
NPDs that may also contribute to AD pathophysiology (Geda
et al., 2013; Zhao et al., 2016) is crucial. For this reason, we
need to understand the underlying pathological mechanisms
of NPDs and establish molecular biomarkers that will help in
identifying and discriminating NPDs in early AD to support the
development of better diagnostic tools and novel therapies.

THE UNMET NEED FOR ADDRESSING
NPDs

The Alzheimer’s Association Research Roundtable gathered in
2010 and 2016 to address the issue of NPDs in AD and improve

the understanding of the underlining mechanisms (Lyketsos
et al., 2011; Lanctôt et al., 2017). NPDs decrease quality of
life (Robert et al., 2010), increase caregiver burden (D’Onofrio
et al., 2015), and are associated with faster decline and earlier
institutionalization (Steffens et al., 2005; Rea et al., 2014). Thus,
the conclusion of the gathering was that better treatments of
NPDs in AD patients are of the highest importance and that
adequate research is necessary to support such developments.
In spite of this, clinical trials for treating NPDs report
conflicting results, no superiority of drug over placebo, and/or
accompanying higher risk of adverse events (Banerjee et al.,
2011; Brandt and Pythtila, 2013; Wang et al., 2015; Leyhe et al.,
2017). The use of antipsychotics in the elderly can additionally
increase the risk of mortality; moreover, dementia accelerates
this risk which has led to an FDA black-box warning (Maust
et al., 2015; Schmedt et al., 2016). AD patients, in particular,
experience psychotropic-related adverse events when compared
to age-matched non-AD patients (Sepassi and Watanabe, 2019).
This suggests that different molecular circuits are involved in the
development of non-mnemonic symptoms in AD patients when
compared to younger patients experience similar symptoms. It
further underlines the urgency for better understandings of the
etiology and pathology of NPDs in AD.

Model organisms have been important tools in the studies of
AD (Hall and Roberson, 2012) but unlike memory and learning,
which are reasonably well modeled in AD transgenic rodents
(Webster et al., 2014), NPD-like behavioral changes are less
characterized in such models. Thus, valid preclinical models for
NPDs need to be developed to support drug discovery research
and allow us to expand the knowledge of NPD pathology.

Apathy and Depression-Like Behavior in
AD
Apathy and depression can be difficult to distinguish and have
overlapping symptomatology, like retarded executive function,
and will be explored in parallel in this review. Apathy is the most
common NPD in AD patients (Van Dam et al., 2016; Zhao et al.,
2016; Lanctôt et al., 2017) with an overall estimated prevalence
of 49%, while depressive behavior has an estimated prevalence of
42% (Zhao et al., 2016). Despite their similarities, symptoms like
guilt, sadness or hopelessness are only associated with depressive
behavior (Nobis and Husain, 2018).

Apathy is classified as a neurocognitive disturbance and
defined as a reduced motivation for at least 4 weeks
complemented by two of the following behaviors: reduced
goal-directed behavior, reduced goal-directed cognitive activity,
and emotional flattening (Van Dam et al., 2016). Meanwhile,
apathy correlates with the severity of AD (Tschanz et al., 2011)
and has been shown to persist if left untreated with a stronger
association with mortality (van der Linde et al., 2017). On the
other hand, depressive symptoms are more closely associated
with reduced activity of daily living (ADL) and more serious
aggression and wandering in AD patients compared to AD
patients without depressive symptoms (Lyketsos et al., 1997).
Finally, depressive symptoms accelerate cognitive decline in mild
cognitive impairment (MCI; Brendel et al., 2015), while apathy
predicts the transition from cognitively normal to MCI to AD
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(Guercio et al., 2015). In combination, patients with both apathy
and depressive behavior are less independent and have lower
ADL compared to AD patients with only apathy, depressive
behavior, or none of the symptoms (Benoit et al., 2012). Thus,
recognizing, discriminating, and treating apathy and depressive
behavior are important but in AD pharmacological treatment of
apathy (Rea et al., 2014) and depressive symptoms (Orgeta et al.,
2017) have proven difficult; most likely, explained by the lack of
knowledge about circuits involved in the symptom development.

Pharmacologic Interventions
Methylphenidate, which increases dopamine, norepinephrine
(NE), and other catecholamines in the brain, ameliorates apathy
in both mild (Padala et al., 2018) and moderate (Herrmann
et al., 2008; Rosenberg et al., 2013) stages of AD compared to
placebo. Although the studies differed on apathy rating scales
and length of treatment, it suggests that dopamine and/or NE
are relevant for the molecular circuits involved in apathy in AD.
Supporting this, several studies have mapped apathy to specific
brain regions with abnormalities including the anterior cingulate
cortex, the prefrontal cortex, and the basal ganglia (Stella et al.,
2014; Theleritis et al., 2014; Le Heron et al., 2017), all of which
are innervated by dopaminergic pathways. 11C-PiB-PET imaging
revealed correlations between Aβ deposits and apathy in the
right anterior cingulate cortex and the bilateral frontal cortex in
apathetic AD patients (Mori et al., 2014), suggesting a direct link
between Aβ pathology and apathy which might be further linked
to loss of homeostasis in dopamine and/or NE. Lastly, Padala
et al. (2018) reported cognitive and emotional improvements
after methylphenidate treatment, which highlights the need to
treat NPDs in AD. Cumulatively, these findings indicate that
apathy is closely linked to the worsening of AD parameters and
that ameliorating apathy by targeting the dopaminergic and/or
norepinephrinergic circuits might improve core AD pathology.

Depressive symptoms in AD associate with cortical thinning
which has been specified to the temporal and parietal regions
(Lebedeva et al., 2014) and lower gray matter volume of the
left middle frontal cortex (Hu et al., 2015). Reduced cerebral
blood flow in the dorsolateral prefrontal area (middle frontal
gyrus) has also been documented in AD patients with depressive
symptoms (Akiyama et al., 2008; Levy-Cooperman et al., 2008;
Terada et al., 2014). Most of these regions are innervated
by projections of serotonergic neurons from the raphe nuclei
(Charnay and Léger, 2010), and considering the role of serotonin
in mood (Yohn et al., 2017) these structural damages to brain
areas sensitive to serotonin might explain depressive symptoms.
However, using selective serotonin reuptake inhibitors (SSRIs)
to treat depressive symptoms in AD has had limited success.
A recent meta-analysis of randomized controlled trials (RCT)
for the use of antidepressants in AD patients indicated that
antidepressants have no effect over placebo (Orgeta et al., 2017).
This indicates that dysregulation of serotonin alone cannot
explain the development of depressive symptoms in AD.

The structural brain changes observed in AD patients with
depressive symptoms might also be explained by mitochondrial
dysfunction. Studies using a rodent model of depression have
shown impairment of oxidative phosphorylation (OXPHOS)

possibly caused by changes in mitochondrial membrane integrity
(Rezin et al., 2008; Gong et al., 2011) which ultimately can
lead to apoptosis (Wang, 2001) and neuronal cell death and
thereby structural brain changes. Mitochondrial damage has
been reported in both AD (Swerdlow, 2018) and depression
(Bansal and Kuhad, 2016) and both patient groups show reduced
glucose metabolism using fluorodeoxyglucose (FDG) PET (Hunt
et al., 2007; Wei et al., 2016; Rice and Bisdas, 2017; Fu et al.,
2018). Supporting this, a Ginkgo biloba extract (GBE) that
has free radical scavenging properties, enhances mitochondrial
membrane potential, and increase ATP production (Lejri et al.,
2019) revealed a significant effect on apathy and other NPDs
in AD patients (Scripnikov et al., 2007). On the contrary, a
recent RCT found no effect on NPDs when patients were
treated with resveratrol which acts on several proteins important
for mitochondrial function (Zhu et al., 2018). This indicates
that specific mitochondrial pathways may, at least partly, drive
depressive and apathetic symptoms in AD but more studies
are needed to unravel these specific pathways. The positive
effect of GBE might be driven by the free radical scavenging
properties because reactive oxygen species (ROS) produced
during electron transport chain and OXPHOS increase during
mitochondrial damage and can induce neuroinflammation via
NF-κB signaling pathways which in turn increases AD pathology
(Kaur et al., 2015).

Lebedeva et al. (2014) found a negative correlation between
cortical thickness and levels of CSF T-tau and P-tau in AD
patients with depressive symptoms which were not observed
for CSF Aβ42 and suggests that only tau pathology is linked to
depressive symptoms in AD. Although studies on tau pathology
and depressive symptoms in AD are limited, a recent study
reported that Braak stage I/II scores (NFT in entorhinal cortex
and hippocampus) in post-mortem AD patients was significantly
associated with depressive behavior along with other NPDs
(Ehrenberg et al., 2018). On the other hand, MCI patients
with depressive symptoms had higher amyloid pathology in
frontotemporal and insular cortices compared to MCI patients
without depressive symptoms which further correlated to a faster
cognitive decline (Brendel et al., 2015). Altogether, these studies
indicate that depressive symptoms in AD might be unrelated to
the serotonergic system and that AD-related pathology causes
damage to specific brain regions resulting in the development of
depressive symptoms. Mapping how such pathological damage
is mediated in relation to depressive symptoms represents an
important task in the development of novel treatment options
for depression in AD.

Sleep Disturbances in AD
Thirty-nine percent of AD patients experience sleep disturbances
(Zhao et al., 2016) and these cover a broad range of
altered sleep-wake patterns including fragmented sleep, excessive
daytime sleepiness, trouble falling asleep or maintaining
sleep, and early morning awakening (Suzuki et al., 2017).
Although it is unclear what drives sleep disturbances in AD,
substantial evidence suggest that they significantly contribute
to early pathological development (Spira et al., 2014; Kabeshita
et al., 2017) and progression of disease (Mander et al.,
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2016; Musiek and Holtzman, 2016) and for this reason sleep
disturbances have been investigated as a possible target for AD
interventions (Mander et al., 2016).

Sleep disturbances can occur years before clinical AD
symptoms (Spira et al., 2014; Kabeshita et al., 2017). Recently,
a large systemic meta-analysis on sleep disturbances and risk of
dementia showed that people with sleep disturbances at baseline
have a 1.49 fold higher risk of developing AD compared to
subjects without sleep disturbances (Shi et al., 2018). Alterations
in sleep duration were also associated with an increased
risk of cognitive decline (Chen et al., 2016) and ultimately
dying from dementia (Benito-León et al., 2014). Similarly,
Musiek et al. (2018) found that altered sleep patterns were
associated with positive PiB-PET scanning in non-demented
participants, underlining the link between sleep disturbances and
AD pathology. However, age was also associated with circadian
disruption and thus both age and AD pathology independently
contributed to the association with sleep disturbances (Musiek
et al., 2018). Supporting the link between age, sleep disturbances,
and AD, Benedict et al. (2015) showed that 70-year old
men with sleep disturbances have a 3-fold higher risk of
developing AD compared to 70-year old men without sleep
disturbances, while the risk of developing AD in 50-year
old men was independent on sleep disturbances. Most AD
patients are elderly and sleep disturbances are common in
cognitively normal elder people too (Li et al., 2018); therefore,
sleep disturbances in AD might be driven by age-dependent
factors. The ‘‘mitochondrial cascade hypothesis’’ of sporadic AD
postulate that mitochondrial dysfunction is the major cause of
AD pathology and that Aβ accumulation is a secondary event
(Swerdlow and Khan, 2004; Swerdlow et al., 2014; Swerdlow,
2018). Mitochondria are sensitive to aging due to lack of DNA
repair mechanisms and thus mutations in mitochondrial DNA
(mtDNA) accumulate over time (Grimm and Eckert, 2017).
Consequently, mitochondrial dysfunction will increase with age
and may represent one explanation for sleep disturbances in the
elderly. Supportive of this view, Adler et al. (2020) found that
aging disrupts the circadian rhythm in mice shown by loss of
rhythmicity in proteins involved in circadian function. These
proteins were linked to pathologies like AD and Parkinson’s
Disease but also glycolysis and TCA cycle pathways (Adler et al.,
2020) which are central to the electron transport chain and
OXPHOS to produce ATP. Altogether, the reason for sleep
disturbances to be so common in AD patients may be caused by
age-dependent changes in mitochondrial function which might
be even more severely compromised with AD pathology.

On the contrary, cognitively normal middle-aged people
revealed that lower CSFAβ42 was associated with worse objective
sleep quality (Ju et al., 2013) and in 40-65-year old cognitively
normal people self-reported worse sleep adequacy was associated
with lower CSF Aβ42/Aβ40, higher CSF T-tau/Aβ42, and
higher CSF P-tau/Aβ42 (Sprecher et al., 2017). Additionally,
experimentally sleep-deprived healthy adults increased their Aβ

production overnight with 25–30% compared to normal sleeping
controls (Lucey et al., 2018) and the Aβ burden increased
in the hippocampus and thalamus after one night of sleep
deprivation in healthy individuals (Shokri-Kojori et al., 2018).

These studies indicate that sleep disturbances can affect the
levels of Aβ in the brain which might be due to increased
production (Lucey et al., 2018) or decreased clearance of Aβ

(Iliff et al., 2012), as described in the glymphatic system pathway
(Plog and Nedergaard, 2018; Benveniste et al., 2019), or a
combination of both. The default mode network (DMN) is
active during awake non-task specific activities and inactive
during sleep (Spreng et al., 2010). When activated it has a
high neuronal activity which results in increased production
of Aβ (Bero et al., 2011). Lastly, melatonin (the endogenous
sleep-promoting hormone) acts on the DMN in an inhibitory
manner (Zisapel, 2018) and AD patients have very low levels
of melatonin which correlate with disease progression (Zhou
et al., 2003). Thus, one explanation for the increased levels of
Aβ with sleep deprivation could be increased activation of the
DMN. Moreover, melatonin has several protective properties
(for a more detailed description see Vincent, 2018) including
the promotion of anti-inflammatory pathways and inhibition of
pro-inflammatory pathways (Deng et al., 2006; Hardeland, 2018).
The decrease of melatonin in AD patients could therefore both
cause sleep disturbances and induce neuroinflammation both of
which contribute to AD pathology.

The locus coeruleus (LC) is implicated in controlling
wakefulness and arousal by the release of NE with high levels
of neural activity during wakefulness and low activity during
sleep (Aston-Jones and Bloom, 1981; Mitchell andWeinshenker,
2010). The LC neurons project to a variety of brain areas and
networks and have anti-inflammatory effects (Feinstein et al.,
2016; Giorgi et al., 2019) but the neurons and thus NE release
is compromised in MCI (Grudzien et al., 2007) and AD brains
(Zarow et al., 2003; Braak et al., 2011; Mravec et al., 2014).
Studies have shown that microglia respond to Aβ42 fibrils in
a pro-inflammatory manner which is abolished in the presence
of NE (Heneka et al., 2010), thus increased levels of Aβ in
sleep disturbances may contribute to neuroinflammation which
cannot be suppressed in MCI or AD brains due to loss of the
LC-NE system. Furthermore, these studies found that depletion
of NE by the degradation of LC neurons caused increased Aβ

deposits in the hippocampus and increased levels of Aβ42 but
not Aβ40 in APP transgenic mice, suggesting that NE depletion
causes changes in clearance rather than the production of Aβ

peptides (Heneka et al., 2010). Altogether, these studies provide
evidence of a partial explanation of how sleep disturbances
accelerate AD pathology via the neuroinflammatory response to
depletion of NE.

Interestingly, tau pathology has been reported in LC neurons
in both children and young adults (Mather and Harley, 2016)
but become significantly more pathological in MCI and early
AD cases (Grudzien et al., 2007). It is further postulated that tau
pathology spreads from the LC to other brain areas (Iba et al.,
2015) and that oligomeric tau induces mitochondrial membrane
leakage and subsequently loss of OXPHOS and mitochondrial
biogenesis (Camilleri et al., 2020). Lastly, dysregulation of the
LC-NE system associate with depressive symptoms, apathy, and
sleep disturbances in AD (Matthews et al., 2002). A recent
study showed clear synergistic toxicity of tau and Aβ with
both increased neurodegeneration and behavioral changes in
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C. elegance (Benbow et al., 2020). It is, therefore, reasonable to
think that sleep disturbances, and other NPDs, are not driven by
a single pathologic event; however, further studies are warranted
to substantiate this hypothesis.

The Molecular Mechanisms of Sleep
The circadian system is the foundation of the sleep-wake cycle
and in both humans and rodents, the system is regulated by the
suprachiasmatic nucleus (SCN) of the hypothalamus (Johnston
et al., 2016), which receives light/dark inputs via the intrinsically
photosensitive retinal ganglion cells containingmelanopsin (Paul
et al., 2009). However, nearly all cells in the body contain a
circadian clock where the circadian oscillations are generated
by a negative feedback loop. This loop consists of the core
transcriptional activators CLOCK and BMAL1 (also known as
ARNTL), who control the transcription of PER and CRY genes
among others. The SCN neurons project to different areas of
the hypothalamus in a complex manner and these projections
are responsible for the circuit activity of neurotransmitters and
neuropeptides that regulate the sleep/wake cycle. These include
melatonin, serotonin, NE, acetylcholine, glutamate, GABA,
dopamine, orexin, neurotensin, vasopressin, and vasoactive
intestinal peptide (VIP; Lim and Szymusiak, 2015; Van Erum
et al., 2018). A detailed description of the circuits is beyond the
scope of this review.

The circadian system network is compromised in AD (Van
Erum et al., 2018). The ventrolateral preoptic nucleus of
the hypothalamus is innervated by SCN GABAergic neuron
projections (Chou et al., 2003) and is important for maintaining
sleep (Lu et al., 2000). AD patients have fewer neurons in
this area (Lim et al., 2014), suggesting a link between AD
pathogenesis and dysregulated sleep. The ventrolateral preoptic
nucleus produces orexins (also known as hypocretins) and
regulates wakefulness (Sakurai et al., 1998; de Lecea et al., 1998)
and its neurons project predominantly to the LC and raphe nuclei
(Peyron et al., 1998; España and Scammell, 2011). Compared
to non-demented subjects, patients with moderate to severe
AD have significantly higher CSF orexin levels associating with
impaired nighttime sleep (Liguori et al., 2014). These levels
correlated positively with CSF T-tau and CSF P-tau, while
the Mini-Mental State Examination (MMSE) score correlated
positively with sleep efficiency (Liguori et al., 2014). Orexin
has also been linked to higher levels of soluble Aβ in an AD
transgenic mouse model (Kang et al., 2009). Lastly, Liguori
et al. (2017) found a significant increase in CSF orexin in AD
patients and that hypothalamic glucose consumption correlated
negatively with the CSF T-tau/ Aβ42 ratio suggesting a causative
link between mitochondrial function, AD pathology, and orexin.
Although hypothalamic glucose consumption did not correlate
with CSF orexin levels, the authors argue that the hypothalamus
is compromised by AD pathology and this may cause the sleep
disturbances in AD patients (Liguori et al., 2017). Altogether,
this is supportive of orexin dysfunction as a viable target
for AD intervention. In this regard, a phase III clinical trial
(NCT02750306) to treat insomnia in patients with AD using
the orexin receptor antagonist (Suvorexant) was effective and
generally well-tolerated (Herring et al., 2019).

PRECLINICAL RESEARCH ON NPD
RELATED BEHAVIOR

Preclinical models are important tools for understanding
pathological processes and developing novel treatment regimens;
nevertheless, robust preclinical models for NPDs in AD are
lacking. Although 189 AD transgenic rodent models exist today1,
studies specifically characterizing NPD-like behavior in these
models are limited.

Wister rats with oligomeric Aβ injected into the CA1 region
of the hippocampus showed increased anxiety and memory
impairment compared to vehicle injected rats without affecting
hippocampal integrity (Salgado-Puga et al., 2015). This suggests,
that Aβ oligomers trigger anxious behavior and memory
impairment via cellular processes. In fact, others have shown that
intracerebroventricular injected Aβ aggregates induce memory
impairment and increased hippocampal levels of ROS and
proinflammatory cytokines (Gupta et al., 2018). This indicates
that Aβ oligomer injection to the brain can serve as a
mechanistic model of NPD-like behavior. Double knockout
PS1 and PS2 (DKO) mice experience age-dependent apathy
shown by decreased nest building (Filali et al., 2009; Jirkof,
2014) activity compared to control littermates (Yan et al.,
2013). Interestingly, this mouse model does not develop plaque
or tangle pathology (Saura et al., 2004) but exhibit increased
neuroinflammatory markers in the neocortex and hippocampus
(Beglopoulos et al., 2004) and cortical neuron loss (Wines-
Samuelson et al., 2010) at ages tested in the Yan-study. This
suggests that neuroinflammation and/or neuronal loss can
drive apathetic behavior unrelated to Aβ and tau toxicity.
The 3xTg-AD mouse model shows anxiety and depressive
behavior at ages where both Aβ and tau pathology is present.
Interestingly, these behaviors could be ameliorated by melatonin
treatment and protein changes on the protein levels were also
normalized after treatment (Nie et al., 2017). Additionally,
melatonin treatment significantly reduced the number of Aβ

aggregates and neuroinflammation in 5xFAD mice (Jürgenson
et al., 2019) and increased mitochondrial biogenesis together
with a reduction in Aβ pathology in APPSwe/PS1dE9 mice
(Song et al., 2018). Altogether, these studies indicate that the
sleep promoting hormone, melatonin, is important for anxious
and depressive behavior and that melatonin might act on
both molecular and circuit pathways affected by Aβ pathology
and neuroinflammation.

The APPSwe/PS1dE9 mouse model reported Aβ aggregation
dependent disruption of the normal sleep-wake cycle with fewer
sleep durations which could be rescued by preventing Aβ

aggregation (Roh et al., 2012). These changes were accompanied
by a significant reduction of Per1 and Per2 expression in the
hippocampus and significant reduction of Per1, Per2, Cry1,
and Cry2 expression in medulla-pons during the dark phase
(Oyegbami et al., 2017). Similarly, APPxPS1 mice have decreased
Per2 expression in the SCN at zeitgeber time (ZT) 2 and ZT10
(Duncan et al., 2012) while 5xFADmice show significant changes
in the mRNA expression patterns of both BMAL1 and Per2 in the

1https://www.alzforum.org/research-models
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FIGURE 1 | Interactions of AD-related pathologies, apathy, depressive symptoms, and sleep disturbances. We hypothesize, that loss of the LC-NE system might
originate from tau accumulation in the LC which in turn can cause sleep disturbances. In turn, sleep disturbances can reduce the glymphatic flow and thereby
decrease Aβ clearance. Also, sleep disturbances might increase the DMN activity due to the lack of sleep which then increases neuronal activity with a resulting
increase in Aβ production. Both loss of the LC-NE system and sleep disturbances can increase neuroinflammation. During mitochondrial damage, ROS increases
and can cause damage to both mtDNA and OXPHOS but ineffective OXPHOS can also increase the production of ROS. Mitochondrial damage can ultimately lead
to apoptosis, neuronal cell death and lastly brain atrophy, which is present in late-stage AD. Both tau accumulation, Aβ aggregation and mitochondrial damage can
lead to apathy/depressive behavior. AD, Alzheimer’s disease; Aβ, beta-amyloid; ROS, reactive oxygen species, OXPHOS, oxidative phosphorylation; mtDNA,
mitochondrial DNA; LC, locus coeruleus; NE, norepinephrine, DMN, default mode network.

SCN but these changes were less prominent on the protein level
(Song et al., 2015). The McGill rats have increased expression
levels of BMAL1 in the cortex and cerebellum but not in the
hippocampus compared to age-matched control rats (Petrasek
et al., 2018). Additionally, 3xTg-AD mice have reduced SCN
neuron numbers and altered circadian rhythm (Sterniczuk et al.,
2010) combined with lower numbers of norepinephrinergic
neurons in the LC (Manaye et al., 2013).

SIRT1 is an NAD+-dependent deacetylase that is important
for mitochondrial biogenesis (Wang and Chen, 2016) but also
modulates the circadian cycle via its effect on the transcription
of BMAL1 (Chang and Guarente, 2013). Serum levels of
SIRT1 decrease with age and more dramatically with MCI and
AD diagnosis (Kumar et al., 2013) and SIRT1 mRNA levels
have been shown to decrease in an ApoE−/− mouse model of
AD together with loss of circadian rhythmicity compared to
normal (C57BL/6J) mice (Zhou et al., 2016). These ApoE−/−

mice also had compromised mitochondria together with Aβ and
tau pathology in the SCN (Zhou et al., 2016). Altogether, these
studies provide evidence that dysfunctional mitochondria are
implicated in the pathology of sleep disturbances in AD and that
this implication might be triggered by obstruction of the normal
function of SIRT1.

Altogether, these preclinical studies are consistent with
the clinical data and provide evidence for a causal link
between sleep disturbances, apathy, depressive behavior, and

AD pathology. However, to substantiate these studies and our
knowledge of NPD pathology we need to develop more robust
preclinical models.

CONCLUSION

One notion put forward is that that NPDs appear because
AD patients become unable to communicate or attend to
their own needs and as a result feel misunderstood and
become apathetic or depressive (Cohen-Mansfield et al., 2000).
Although this hypothesis might explain some behavioral changes
in AD patients, based on the literature reviewed here we
propose a different hypothesis (summarized in Figure 1).
Apathy, depressive behavior, and sleep disturbances are linked
by pathophysiological events including mitochondrial damage,
Aβ aggregations, tau accumulations, neuroinflammation, and
loss of the LC-NE system, that together serve to drive
and exacerbate AD progression. It is worth noting that
separately, these pathophysiological processes are previous or
current strategic targets for AD therapies, which have had
limited success. Even though we still know little about these
processes, targeting them in combination may prove to be
the most optimal strategy and might pave the way for a
better understanding of apathy, depressive symptoms, and
sleep disturbances in AD; however, further investigations are
needed to substantiate this hypothesis. Following this line
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of thinking, preclinical mechanistic models that allow us to
dissect NPD processes are important. A strong commitment
to building and studying such mechanistic models should be
the next step towards developing and testing novel therapies in
NPD research.
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