37 research outputs found
Responsible management: Engaging moral reflexive practice through threshold concepts
YesIn this conceptual paper we argue that, to date, principles of responsible management have not impacted practice as anticipated because of a disconnect between knowledge and practice. This disconnect means that an awareness of ethical concerns, by itself, does not help students take personal responsibility for their actions. We suggest that an abstract knowledge of principles has to be supplemented by an engaged understanding of the responsibility of managers and leaders to actively challenge irresponsible practices. We argue that a form of moral reflexive practice drawing on an understanding of threshold concepts is central to responsible management, and provides a gateway to transformative learning. Our conceptual argument leads to implications for management and professional education
ChemInform Abstract: DIFFERENT BEHAVIOUR OF ISOMERIC ARYLBENZYLKETONES TOWARDS PHOSPHORUS PENTACHLORIDE
ChemInform Abstract: KONDENSATIONEN VON UNGESAETTIGTEN SAEUREN MIT BENZOL, DIE DURCH ALUMINIUMCHLORID KATALYSIERT WERDEN 5. MITT. SORBINSAEURE
Die Wirkung von Oestradiol und Progesteron auf den Stoff-wechsel des Uterus infantiler M�use und �ber den Stoffwechsel des Uterus geschlechtsreifer M�use in den verschiedenen Phasen des Cyclus
Wild Italian Prunus spinosa L. Fruit exerts in vitro antimicrobial activity and protects against in vitro and in vivo oxidative stress
Polyphenol-rich foods could have a pivotal function in the prevention of oxidative stress-based pathologies and antibacterial action. The purpose of this study was to investigate the in vitro antimicrobial activity as well as the in vitro and In Vivo antioxidant capacities of wild Prunus spinosa L. fruit (PSF) from the southeast regions of Italy. The total phenolic content (TPC) was quantified, and the single polyphenols were analyzed by HPLC-DAD, showing high rutin and 4-hydroxybenzoic acid levels, followed by gallic and trans-sinapic acids. PSF extract demonstrated antimicrobial activity against some potentially pathogenic Gram-negative and Gram-positive bacteria. Besides, we investigated the cellular antioxidant activity (CAA) and the hemolysis inhibition of PSF extract on human erythrocytes, evidencing both a good antioxidant power and a marked hemolysis inhibition. Furthermore, an In Vivo experiment with oxidative stress-induced rats treated with a high-fat diet (HFD) and a low dose of streptozotocin (STZ) demonstrated that PSF has a dose-dependent antioxidant capacity both in liver and in brain. In conclusion, the wild Italian Prunus spinosa L. fruit could be considered a potentially useful material for both nutraceutical and food industries because of its antioxidant and antimicrobial effects
Development of a genetic toolset for the highly engineerable and metabolically versatile Acinetobacter baylyi ADP1
Abstract
One primary objective of synthetic biology is to improve the sustainability of chemical manufacturing. Naturally occurring biological systems can utilize a variety of carbon sources, including waste streams that pose challenges to traditional chemical processing, such as lignin biomass, providing opportunity for remediation and valorization of these materials. Success, however, depends on identifying micro-organisms that are both metabolically versatile and engineerable. Identifying organisms with this combination of traits has been a historic hindrance. Here, we leverage the facile genetics of the metabolically versatile bacterium Acinetobacter baylyi ADP1 to create easy and rapid molecular cloning workflows, including a Cas9-based single-step marker-less and scar-less genomic integration method. In addition, we create a promoter library, ribosomal binding site (RBS) variants and test an unprecedented number of rationally integrated bacterial chromosomal protein expression sites and variants. At last, we demonstrate the utility of these tools by examining ADP1’s catabolic repression regulation, creating a strain with improved potential for lignin bioprocessing. Taken together, this work highlights ADP1 as an ideal host for a variety of sustainability and synthetic biology applications.</jats:p
Development of a genetic toolset for the highly engineerable and metabolically versatile <i>Acinetobacter baylyi</i> ADP1
AbstractOne primary objective of synthetic biology is to improve the sustainability of chemical manufacturing. Biological systems can utilize a variety of carbon sources, including waste streams that pose challenges to traditional chemical processing such as lignin biomass, providing opportunity for remediation and valorization of these materials. Success, however, depends on identifying microorganisms that are both metabolically versatile and engineerable. This has been a historic hindrance. Here, we leverage the facile genetics of the metabolically versatile bacterium Acinetobacter baylyi ADP1 to create easy and rapid molecular cloning workflows, a promoter library, ribosomal binding site (RBS) variants, and an unprecedented number of bacterial chromosomal protein expression sites and variants. Moreover, we demonstrate the utility of these tools by examining ADP1’s catabolic repression regulation, creating a strain with improved potential for lignin bioprocessing. Taken together, this work establishes ADP1 as an ideal host for a variety of sustainability and synthetic biology applications.</jats:p
