630 research outputs found

    Time-reversal focusing of an expanding soliton gas in disordered replicas

    Full text link
    We investigate the properties of time reversibility of a soliton gas, originating from a dispersive regularization of a shock wave, as it propagates in a strongly disordered environment. An original approach combining information measures and spin glass theory shows that time reversal focusing occurs for different replicas of the disorder in forward and backward propagation, provided the disorder varies on a length scale much shorter than the width of the soliton constituents. The analysis is performed by starting from a new class of reflectionless potentials, which describe the most general form of an expanding soliton gas of the defocusing nonlinear Schroedinger equation.Comment: 7 Pages, 6 Figure

    Heteroclinic structure of parametric resonance in the nonlinear Schr\"odinger equation

    Full text link
    We show that the nonlinear stage of modulational instability induced by parametric driving in the {\em defocusing} nonlinear Schr\"odinger equation can be accurately described by combining mode truncation and averaging methods, valid in the strong driving regime. The resulting integrable oscillator reveals a complex hidden heteroclinic structure of the instability. A remarkable consequence, validated by the numerical integration of the original model, is the existence of breather solutions separating different Fermi-Pasta-Ulam recurrent regimes. Our theory also shows that optimal parametric amplification unexpectedly occurs outside the bandwidth of the resonance (or Arnold tongues) arising from the linearised Floquet analysis

    Suppression of transverse instabilities of dark solitons and their dispersive shock waves

    Full text link
    We investigate the impact of nonlocality, owing to diffusive behavior, on transverse instabilities of a dark stripe propagating in a defocusing cubic medium. The nonlocal response turns out to have a strongly stabilizing effect both in the case of a single soliton input and in the regime where dispersive shock waves develop "multisoliton regime". Such conclusions are supported by the linear stability analysis and numerical simulation of the propagation

    Stabilization of uni-directional water wave trains over an uneven bottom

    Get PDF
    We study the evolution of nonlinear surface gravity water wave packets developing from modulational instability over an uneven bottom. A nonlinear Schrödinger equation (NLSE) with coefficients varying in space along propagation is used as a reference model. Based on a low-dimensional approximation obtained by considering only three complex harmonic modes, we discuss how to stabilize a one-dimensional pattern in the form of train of large peaks sitting on a background and propagating over a significant distance. Our approach is based on a gradual depth variation, while its conceptual framework is the theory of autoresonance in nonlinear systems and leads to a quasi-frozen state. Three main stages are identified: amplification from small sideband amplitudes, separatrix crossing and adiabatic conversion to orbits oscillating around an elliptic fixed point. Analytical estimates on the three stages are obtained from the low-dimensional approximation and validated by NLSE simulations. Our result will contribute to understand the dynamical stabilization of nonlinear wave packets and the persistence of large undulatory events in hydrodynamics and other nonlinear dispersive media

    Reconciling different formulations of viscous water waves and their mass conservation

    Full text link
    The viscosity of water induces a vorticity near the free surface boundary. The resulting rotational component of the fluid velocity vector greatly complicates the water wave system. Several approaches to close this system have been proposed. Our analysis compares three common sets of model equations. The first set has a rotational kinematic boundary condition at the surface. In the second set, a gauge choice for the velocity vector is made that cancels the rotational contribution in the kinematic boundary condition, at the cost of rotational velocity in the bulk and a rotational pressure. The third set circumvents the problem by introducing two domains: the irrotational bulk and the vortical boundary layer. This comparison puts forward the link between rotational pressure on the surface and vorticity in the boundary layer, addresses the existence of nonlinear vorticity terms, and shows where approximations have been used in the models. Furthermore, we examine the conservation of mass for the three systems, and how this can be compared to the irrotational case.Comment: 32 pages, 5 figure

    4-Phenyl-1,2,3-triazoles as Versatile Ligands for Cationic Cyclometalated Iridium(III) Complexes

    Get PDF
    Five cationic iridium(III) complexes (1-5) were synthesized exploiting two triazole-based cyclometalating ligands, namely, 1-methyl-4-phenyl-1H-1,2,3-triazole (A) and the corresponding mesoionic carbene 1,3-dimethyl-4-phenyl-1H-1,2,3-triazol-5-yliclene (B). From the combination of these two ligands and the ancillary one, i.e., 4,4'-di-tert-butyl-2,2'-bipyridine (for 1-3) or tert-butyl isocyanide (for 4 and 5), not only the typical bis-heteroleptic complexes but also the much less explored tris-heteroleptic analogues (2 and 5) could be synthesized. The redox and emission properties of all of the complexes are effectively fine-tuned by the different ligands: (i) cyclometalating ligand A induces a stronger highest occupied molecular orbital (HOMO) stabilization compared to B and leads to complexes with progressively narrower HOMO-lowest unoccupied molecular orbital (LUMO) and redox gaps, and lower emission energy; (ii) complexes 1-3, equipped with the bipyridine ancillary ligand, display fully reversible redox processes and emit from predominantly metal-to-ligand charge transfer (MLCT) states with high emission quantum yields, up to 60% in polymeric matrix; (iii) complexes 4 and 5, equipped with high-field isocyanide ligands, display irreversible redox processes and high-energy emission from strongly ligand-centered triplets with long emission lifetimes but relatively low quantum yields (below 6%, both in room-temperature solution and in solid state). This work demonstrates the versatility of phenyl-triazole derivatives as cyclometalating ligands with different chelation modes (i.e., C<^>N and C<^>C:) for the synthesis of photoactive iridium(III) complexes with highly tunable properties

    Long-term survival of children born with congenital anomalies: A systematic review and meta-analysis of population-based studies.

    Get PDF
    BACKGROUND: Following a reduction in global child mortality due to communicable diseases, the relative contribution of congenital anomalies to child mortality is increasing. Although infant survival of children born with congenital anomalies has improved for many anomaly types in recent decades, there is less evidence on survival beyond infancy. We aimed to systematically review, summarise, and quantify the existing population-based data on long-term survival of individuals born with specific major congenital anomalies and examine the factors associated with survival. METHODS AND FINDINGS: Seven electronic databases (Medline, Embase, Scopus, PsycINFO, CINAHL, ProQuest Natural, and Biological Science Collections), reference lists, and citations of the included articles for studies published 1 January 1995 to 30 April 2020 were searched. Screening for eligibility, data extraction, and quality appraisal were performed in duplicate. We included original population-based studies that reported long-term survival (beyond 1 year of life) of children born with a major congenital anomaly with the follow-up starting from birth that were published in the English language as peer-reviewed papers. Studies on congenital heart defects (CHDs) were excluded because of a recent systematic review of population-based studies of CHD survival. Meta-analysis was performed to pool survival estimates, accounting for trends over time. Of 10,888 identified articles, 55 (n = 367,801 live births) met the inclusion criteria and were summarised narratively, 41 studies (n = 54,676) investigating eight congenital anomaly types (spina bifida [n = 7,422], encephalocele [n = 1,562], oesophageal atresia [n = 6,303], biliary atresia [n = 3,877], diaphragmatic hernia [n = 6,176], gastroschisis [n = 4,845], Down syndrome by presence of CHD [n = 22,317], and trisomy 18 [n = 2,174]) were included in the meta-analysis. These studies covered birth years from 1970 to 2015. Survival for children with spina bifida, oesophageal atresia, biliary atresia, diaphragmatic hernia, gastroschisis, and Down syndrome with an associated CHD has significantly improved over time, with the pooled odds ratios (ORs) of surviving per 10-year increase in birth year being OR = 1.34 (95% confidence interval [95% CI] 1.24-1.46), OR = 1.50 (95% CI 1.38-1.62), OR = 1.62 (95% CI 1.28-2.05), OR = 1.57 (95% CI 1.37-1.81), OR = 1.24 (95% CI 1.02-1.5), and OR = 1.99 (95% CI 1.67-2.37), respectively (p < 0.001 for all, except for gastroschisis [p = 0.029]). There was no observed improvement for children with encephalocele (OR = 0.98, 95% CI 0.95-1.01, p = 0.19) and children with biliary atresia surviving with native liver (OR = 0.96, 95% CI 0.88-1.03, p = 0.26). The presence of additional structural anomalies, low birth weight, and earlier year of birth were the most commonly reported predictors of reduced survival for any congenital anomaly type. The main limitation of the meta-analysis was the small number of studies and the small size of the cohorts, which limited the predictive capabilities of the models resulting in wide confidence intervals. CONCLUSIONS: This systematic review and meta-analysis summarises estimates of long-term survival associated with major congenital anomalies. We report a significant improvement in survival of children with specific congenital anomalies over the last few decades and predict survival estimates up to 20 years of age for those born in 2020. This information is important for the planning and delivery of specialised medical, social, and education services and for counselling affected families. This trial was registered on the PROSPERO database (CRD42017074675)

    Can an early-warning system help minimize the impacts of coastal storms? A case study of the 2012 Halloween storm, northern Italy

    Get PDF
    Abstract. The Emilia-Romagna early-warning system (ER-EWS) is a state-of-the-art coastal forecasting system that comprises a series of numerical models (COSMO, ROMS, SWAN and XBeach) to obtain a daily 3-day forecast of coastal storm hazard at eight key sites along the Emilia-Romagna coastline (northern Italy). On the night of 31 October 2012, a major storm event occurred that resulted in elevated water levels (equivalent to a 1-in-20- to 1-in-50-year event) and widespread erosion and flooding. Since this storm happened just 1 month prior to the roll-out of the ER-EWS, the forecast performance related to this event is unknown. The aim of this study was to therefore reanalyse the ER-EWS as if it had been operating a day before the event and determine to what extent the forecasts may have helped reduce storm impacts. Three different reanalysis modes were undertaken: (1) a default forecast (DF) mode based on 3-day wave and water-level forecasts and default XBeach parameters; (2) a measured offshore (MO) forecast mode using wave and water-level measurements and default XBeach parameters; and (3) a calibrated XBeach (CX) mode using measured boundary conditions and an optimized parameter set obtained through an extensive calibration process. The results indicate that, while a "code-red" alert would have been issued for the DF mode, an underprediction of the extreme water levels of this event limited high-hazard forecasts to only two of the eight ER-EWS sites. Forecasts based on measured offshore conditions (the MO mode) more-accurately indicate high-hazard conditions for all eight sites. Further considerable improvements are observed using an optimized XBeach parameter set (the CX mode) compared to default parameters. A series of what-if scenarios at one of the sites show that artificial dunes, which are a common management strategy along this coastline, could have hypothetically been constructed as an emergency procedure to potentially reduce storm impacts

    From 3,4-dinitrothiophene to nitrocyclopropanes and 1,1'-dinitro-1,1'-bi(cyclopropyl) compounds

    Get PDF
    Treatment of (E,E)-1,4-diaryl-2,3-dinitro-1,3-butadienes (I) with diazomethane in Et2O or THF represents a facile and high-yielding route to 2,2'-diaryl-1,1'-dinitro-1,1'-bi(cyclopropyl)s. The process exclusively produces diastereomeric mixts. of a chiral d,l pair and a meso form, the relative percentages of which depend on the aryl moiety, consistently with a concerted syn-stereoselective cyclopropanation of each double bond. With 1 mol-equiv of CH2N2, the cyclopropanation can effectively be limited to one double bond of the starting dinitrobutadiene, thus allowing a synthetically useful differentiation between the two originally conjugated nitrovinyl moieties. As verified with model derivs., the resulting vinylcyclopropanes can be cyclopropanated with excess diazomethane to give the same diastereomeric mixts. as obtained by direct bis(cyclopropanation) of I
    • …
    corecore