58 research outputs found

    Moduli spaces of d-connections and difference Painleve equations

    Full text link
    We show that difference Painleve equations can be interpreted as isomorphisms of moduli spaces of d-connections on the projective line with given singularity structure. We also derive a new difference equation. It is the most general difference Painleve equation known so far, and it degenerates to both difference Painleve V and classical (differential) Painleve VI equations.Comment: 30 pages (LaTeX

    Ď„-function of discrete isomonodromy transformations and probability

    Get PDF
    We introduce the τ-function of a difference rational connection (d-connection) and its isomonodromy transformations. We show that in a continuous limit ourτ-function agrees with the Jimbo–Miwa–Ueno τ-function. We compute the τ-function for the isomonodromy transformations leading to difference Painlevé V and difference Painlevé VI equations. We prove that the gap probability for a wide class of discrete random matrix type models can be viewed as the τ-function for an associated d-connection

    Factorizations of Rational Matrix Functions with Application to Discrete Isomonodromic Transformations and Difference Painlev\'e Equations

    Full text link
    We study factorizations of rational matrix functions with simple poles on the Riemann sphere. For the quadratic case (two poles) we show, using multiplicative representations of such matrix functions, that a good coordinate system on this space is given by a mix of residue eigenvectors of the matrix and its inverse. Our approach is motivated by the theory of discrete isomonodromic transformations and their relationship with difference Painlev\'e equations. In particular, in these coordinates, basic isomonodromic transformations take the form of the discrete Euler-Lagrange equations. Secondly we show that dPV equations, previously obtained in this context by D. Arinkin and A. Borodin, can be understood as simple relationships between the residues of such matrices and their inverses.Comment: 9 pages; minor typos fixed, journal reference adde

    Cohomological descent theory for a morphism of stacks and for equivariant derived categories

    Full text link
    In the paper we answer the following question: for a morphism of varieties (or, more generally, stacks), when the derived category of the base can be recovered from the derived category of the covering variety by means of descent theory? As a corollary, we show that for an action of a reductive group on a scheme, the derived category of equivariant sheaves is equivalent to the category of objects, equipped with an action of the group, in the ordinary derived category.Comment: 28 page

    Nanodispersed Ni-catalysts with Additives in Partial Oxidation of Methane

    Get PDF
    Catalytic activity of Ni-Zn-surface-skeletal catalysts modi ed by Rh, Au, Ti, Mo and W in the reaction of methane partial oxidation has been studied. In uence of catalysts of conditions preparation on its catalytic activity was researched. It was shown that introduction of additives in Ni-Zn catalysts promote to increasing of activity in the process of methane partial oxidation to synthesis-gas and thermostability of skeletal Nicatalysts thanks to the change of its faseous composition and the predominance of reduced form of Ni in catalysts structure

    A categorification of Morelli's theorem

    Full text link
    We prove a theorem relating torus-equivariant coherent sheaves on toric varieties to polyhedrally-constructible sheaves on a vector space. At the level of K-theory, the theorem recovers Morelli's description of the K-theory of a smooth projective toric variety. Specifically, let XX be a proper toric variety of dimension nn and let M_\bR = \mathrm{Lie}(T_\bR^\vee)\cong \bR^n be the Lie algebra of the compact dual (real) torus T_\bR^\vee\cong U(1)^n. Then there is a corresponding conical Lagrangian \Lambda \subset T^*M_\bR and an equivalence of triangulated dg categories \Perf_T(X) \cong \Sh_{cc}(M_\bR;\Lambda), where \Perf_T(X) is the triangulated dg category of perfect complexes of torus-equivariant coherent sheaves on XX and \Sh_{cc}(M_\bR;\Lambda) is the triangulated dg category of complex of sheaves on M_\bR with compactly supported, constructible cohomology whose singular support lies in Λ\Lambda. This equivalence is monoidal---it intertwines the tensor product of coherent sheaves on XX with the convolution product of constructible sheaves on M_\bR.Comment: 20 pages. This is a strengthened version of the first half of arXiv:0811.1228v3, with new results; the second half becomes arXiv:0811.1228v

    Perverse coherent t-structures through torsion theories

    Get PDF
    Bezrukavnikov (later together with Arinkin) recovered the work of Deligne defining perverse tt-structures for the derived category of coherent sheaves on a projective variety. In this text we prove that these tt-structures can be obtained through tilting torsion theories as in the work of Happel, Reiten and Smal\o. This approach proves to be slightly more general as it allows us to define, in the quasi-coherent setting, similar perverse tt-structures for certain noncommutative projective planes.Comment: New revised version with important correction
    • …
    corecore