58 research outputs found
Moduli spaces of d-connections and difference Painleve equations
We show that difference Painleve equations can be interpreted as isomorphisms
of moduli spaces of d-connections on the projective line with given singularity
structure. We also derive a new difference equation. It is the most general
difference Painleve equation known so far, and it degenerates to both
difference Painleve V and classical (differential) Painleve VI equations.Comment: 30 pages (LaTeX
Ď„-function of discrete isomonodromy transformations and probability
We introduce the τ-function of a difference rational connection (d-connection) and its isomonodromy transformations. We show that in a continuous limit ourτ-function agrees with the Jimbo–Miwa–Ueno τ-function. We compute the τ-function for the isomonodromy transformations leading to difference Painlevé V and difference Painlevé VI equations. We prove that the gap probability for a wide class of discrete random matrix type models can be viewed as the τ-function for an associated d-connection
Factorizations of Rational Matrix Functions with Application to Discrete Isomonodromic Transformations and Difference Painlev\'e Equations
We study factorizations of rational matrix functions with simple poles on the
Riemann sphere. For the quadratic case (two poles) we show, using
multiplicative representations of such matrix functions, that a good coordinate
system on this space is given by a mix of residue eigenvectors of the matrix
and its inverse. Our approach is motivated by the theory of discrete
isomonodromic transformations and their relationship with difference Painlev\'e
equations. In particular, in these coordinates, basic isomonodromic
transformations take the form of the discrete Euler-Lagrange equations.
Secondly we show that dPV equations, previously obtained in this context by D.
Arinkin and A. Borodin, can be understood as simple relationships between the
residues of such matrices and their inverses.Comment: 9 pages; minor typos fixed, journal reference adde
Cohomological descent theory for a morphism of stacks and for equivariant derived categories
In the paper we answer the following question: for a morphism of varieties
(or, more generally, stacks), when the derived category of the base can be
recovered from the derived category of the covering variety by means of descent
theory? As a corollary, we show that for an action of a reductive group on a
scheme, the derived category of equivariant sheaves is equivalent to the
category of objects, equipped with an action of the group, in the ordinary
derived category.Comment: 28 page
Nanodispersed Ni-catalysts with Additives in Partial Oxidation of Methane
Catalytic activity of Ni-Zn-surface-skeletal catalysts modi ed by Rh, Au, Ti, Mo and W in the reaction of methane partial oxidation has been studied. In uence of catalysts of conditions preparation on its catalytic activity was researched. It was shown that introduction of additives in Ni-Zn catalysts promote to increasing of activity in the process of methane partial oxidation to synthesis-gas and thermostability of skeletal Nicatalysts thanks to the change of its faseous composition and the predominance of reduced form of Ni in catalysts structure
A categorification of Morelli's theorem
We prove a theorem relating torus-equivariant coherent sheaves on toric
varieties to polyhedrally-constructible sheaves on a vector space. At the level
of K-theory, the theorem recovers Morelli's description of the K-theory of a
smooth projective toric variety. Specifically, let be a proper toric
variety of dimension and let M_\bR = \mathrm{Lie}(T_\bR^\vee)\cong \bR^n
be the Lie algebra of the compact dual (real) torus T_\bR^\vee\cong U(1)^n.
Then there is a corresponding conical Lagrangian \Lambda \subset T^*M_\bR and
an equivalence of triangulated dg categories \Perf_T(X) \cong
\Sh_{cc}(M_\bR;\Lambda), where \Perf_T(X) is the triangulated dg category of
perfect complexes of torus-equivariant coherent sheaves on and
\Sh_{cc}(M_\bR;\Lambda) is the triangulated dg category of complex of sheaves
on M_\bR with compactly supported, constructible cohomology whose singular
support lies in . This equivalence is monoidal---it intertwines the
tensor product of coherent sheaves on with the convolution product of
constructible sheaves on M_\bR.Comment: 20 pages. This is a strengthened version of the first half of
arXiv:0811.1228v3, with new results; the second half becomes
arXiv:0811.1228v
Perverse coherent t-structures through torsion theories
Bezrukavnikov (later together with Arinkin) recovered the work of Deligne
defining perverse -structures for the derived category of coherent sheaves
on a projective variety. In this text we prove that these -structures can be
obtained through tilting torsion theories as in the work of Happel, Reiten and
Smal\o. This approach proves to be slightly more general as it allows us to
define, in the quasi-coherent setting, similar perverse -structures for
certain noncommutative projective planes.Comment: New revised version with important correction
- …