57 research outputs found
The impact of the use of small rice threshers on the production performance of irrigated rice farms in the municipality of Kalibo, Aklan
Journal articleThe survey was done from October 25 to December 30, 1982 in order to analyze the impact of the use of small rice threshers on rice production of farmers and to determine the effects of rice threshers on the efficiency of threshing, quality of palay produced, employment and the frequency of cropping and turnaround period between harvesting and the preparation of land for the next cropping
SIMS: A Hybrid Method for Rapid Conformational Analysis
Proteins are at the root of many biological functions, often performing complex tasks as the result of large changes in their
structure. Describing the exact details of these conformational changes, however, remains a central challenge for
computational biology due the enormous computational requirements of the problem. This has engendered the
development of a rich variety of useful methods designed to answer specific questions at different levels of spatial,
temporal, and energetic resolution. These methods fall largely into two classes: physically accurate, but computationally
demanding methods and fast, approximate methods. We introduce here a new hybrid modeling tool, the Structured
Intuitive Move Selector (SIMS), designed to bridge the divide between these two classes, while allowing the benefits of both
to be seamlessly integrated into a single framework. This is achieved by applying a modern motion planning algorithm,
borrowed from the field of robotics, in tandem with a well-established protein modeling library. SIMS can combine precise
energy calculations with approximate or specialized conformational sampling routines to produce rapid, yet accurate,
analysis of the large-scale conformational variability of protein systems. Several key advancements are shown, including the
abstract use of generically defined moves (conformational sampling methods) and an expansive probabilistic
conformational exploration. We present three example problems that SIMS is applied to and demonstrate a rapid solution
for each. These include the automatic determination of ムムactiveメメ residues for the hinge-based system Cyanovirin-N,
exploring conformational changes involving long-range coordinated motion between non-sequential residues in Ribose-
Binding Protein, and the rapid discovery of a transient conformational state of Maltose-Binding Protein, previously only
determined by Molecular Dynamics. For all cases we provide energetic validations using well-established energy fields,
demonstrating this framework as a fast and accurate tool for the analysis of a wide range of protein flexibility problems
Order through Disorder: Hyper-Mobile C-Terminal Residues Stabilize the Folded State of a Helical Peptide. A Molecular Dynamics Study
Conventional wisdom has it that the presence of disordered regions in the three-dimensional structures of polypeptides not only does not contribute significantly to the thermodynamic stability of their folded state, but, on the contrary, that the presence of disorder leads to a decrease of the corresponding proteins' stability. We have performed extensive 3.4 µs long folding simulations (in explicit solvent and with full electrostatics) of an undecamer peptide of experimentally known helical structure, both with and without its disordered (four residue long) C-terminal tail. Our simulations clearly indicate that the presence of the apparently disordered (in structural terms) C-terminal tail, increases the thermodynamic stability of the peptide's folded (helical) state. These results show that at least for the case of relatively short peptides, the interplay between thermodynamic stability and the apparent structural stability can be rather subtle, with even disordered regions contributing significantly to the stability of the folded state. Our results have clear implications for the understanding of peptide energetics and the design of foldable peptides
Atypical Forms of Employment in the Public Sector Are There Any?
The paper deals with various forms of atypical employment in the public sector that are widely neglected in existing research; its specific focus is on their development, scope, distribution and structural features. In the first part we break down the purely statistical category and differentiate between the disparate forms (part-time, marginal employment or minijobs, midijobs, fixed-term, agency work). In the second part we address the question if these forms are not only atypical, but also have to be classified as precarious. We distinguish various risks operative in the short, medium and long term (income, stability of employment and employability, pensions). Finally, we differentiate between employment in the private as well as the public sector and draw parallels and indicate specific differences in their development and situation. Our basic finding is that atypical forms of employment are also widespread in the public sector but are all in all less precarious than in the private sector. The distribution of individual forms shows major differences between both sectors whereas the over-all percentages are similar
Variational Approach to Molecular Kinetics
The eigenvalues and eigenvectors of the molecular dynamics propagator (or transfer operator) contain the essential information about the molecular thermodynamics and kinetics. This includes the stationary distribution, the metastable states, and state-to-state transition rates. Here, we present a variational approach for computing these dominant eigenvalues and eigenvectors. This approach is analogous the variational approach used for computing stationary states in quantum mechanics. A corresponding method of linear variation is formulated. It is shown that the matrices needed for the linear variation method are correlation matrices that can be estimated from simple MD simulations for a given basis set. The method proposed here is thus to first define a basis set able to capture the relevant conformational transitions, then compute the respective correlation matrices, and then to compute their dominant eigenvalues and eigenvectors, thus obtaining the key ingredients of the slow kinetics
Principal component and clustering analysis on molecular dynamics data of the ribosomal L11·23S subdomain
World-Wide Web proxies
A WWW proxy server, proxy for short, provides access to the Web for people on closed subnets who can only access the Internet through a firewall machine. The hypertext server developed at CERN, cern_httpd, is capable of running as a proxy, providing seamless external access to HTTP, Gopher, WAIS and FTP. cern_httpd has had gateway features for a long time, but only this spring they were extended to support all the methods in the HTTP protocol used by WWW clients. Clients don't lose any functionality by going through a proxy, except special processing they may have done for nonnative Web protocols such as Gopher and FTP. A brand new feature is caching performed by the proxy, resulting in shorter response times after the first document fetch. This makes proxies useful even to the people who do have full Internet access and don't really need the proxy just to get out of their local subnet. This paper gives an overview of proxies and reports their current status. 1.
- …
