531 research outputs found

    Use of a laser for the spectral analysis of semiconductor materials

    Get PDF
    Conventional applications of lasers for emission spectroscopy involving direct recording of light pulses of an evaporated substance emitted from the sample under the action of the laser light (direct method) were examined. Use of the laser light for conversion of the substance to a vapor and feeding the vapors into the conventional source of emission such as arc, sparks, etc. (the so called 2 stage excitation) were studied for use in the spectral analysis, of semiconductors. The direct method has a high reproducibility (5-7%); the 2 stage excitation method, characterized by the same intensity as obtained with the conventional constant, current arc, has better reproducibility than the direct method (15-20%). Both methods can be used for the analysis of samples without prior preparation. Advantages of these methods are the elimination of impurities picked up during trituration of the samples into powders and shortening of the analytical procedures

    Characterisation of transcriptionally active and inactive chromatin domains in neurons

    Get PDF
    The tandemly organised ribosomal DNA (rDNA) repeats are transcribed by a dedicated RNA polymerase in a specialised nuclear compartment, the nucleolus. There appears to be an intimate link between the maintenance of nucleolar structure and the presence of heterochromatic chromatin domains. This is particularly evident in many large neurons, where a single nucleolus is present, which is separated from the remainder of the nucleus by a characteristic shell of heterochromatin. Using a combined fluorescence in situ hybridisation and immunocytochemistry approach, we have analysed the molecular composition of this highly organised neuronal chromatin, to investigate its functional significance. We find that clusters of inactive, methylated rDNA repeats are present inside large neuronal nucleoli, which are often attached to the shell of heterochromatic DNA. Surprisingly, the methylated DNA-binding protein MeCP2, which is abundantly present in the centromeric and perinucleolar heterochromatin, does not associate significantly with the methylated rDNA repeats, whereas histone H1 does overlap partially with these clusters. Histone H1 also defines other, centromere-associated chromatin subdomains, together with the mammalian Polycomb group factor Eed. These dat

    Cytoplasmic linker proteins promote microtubule rescue in vivo

    Get PDF
    The role of plus end–tracking proteins in regulating microtubule (MT) dynamics was investigated by expressing a dominant negative mutant that removed endogenous cytoplasmic linker proteins (CLIPs) from MT plus ends. In control CHO cells, MTs exhibited asymmetric behavior: MTs persistently grew toward the plasma membrane and displayed frequent fluctuations of length near the cell periphery. In the absence of CLIPs, the microtubule rescue frequency was reduced by sevenfold. MT behavior became symmetrical, consisting of persistent growth and persistent shortening. Removal of CLIPs also caused loss of p150Glued but not CLIP-associating protein (CLASP2) or EB1. This result raised the possibility that the change in dynamics was a result of the loss of either CLIPs or p150Glued. To distinguish between these possibilities, we performed rescue experiments. Normal MT dynamics were restored by expression of the CLIP-170 head domain, but p150Glued was not recruited back to MT plus ends. Expression of p150Glued head domain only partially restored MT dynamics. We conclude that the CLIP head domain is sufficient to alter MT dynamics either by itself serving as a rescue factor or indirectly by recruiting a rescue factor. By promoting a high rescue frequency, CLIPs provide a mechanism by which MT plus ends may be concentrated near the cell margin

    Dynamic behavior of GFP–CLIP-170 reveals fast protein turnover on microtubule plus ends

    Get PDF
    Microtubule (MT) plus end–tracking proteins (+TIPs) specifically recognize the ends of growing MTs. +TIPs are involved in diverse cellular processes such as cell division, cell migration, and cell polarity. Although +TIP tracking is important for these processes, the mechanisms underlying plus end specificity of mammalian +TIPs are not completely understood. Cytoplasmic linker protein 170 (CLIP-170), the prototype +TIP, was proposed to bind to MT ends with high affinity, possibly by copolymerization with tubulin, and to dissociate seconds later. However, using fluorescence-based approaches, we show that two +TIPs, CLIP-170 and end-binding protein 3 (EB3), turn over rapidly on MT ends. Diffusion of CLIP-170 and EB3 appears to be rate limiting for their binding to MT plus ends. We also report that the ends of growing MTs contain a surplus of sites to which CLIP-170 binds with relatively low affinity. We propose that the observed loss of fluorescent +TIPs at plus ends does not reflect the behavior of single molecules but is a result of overall structural changes of the MT end

    Dynamic microtubules produce an asymmetric E-cadherin-Bazooka complex to maintain segment boundaries.

    Get PDF
    Distributing junctional components around the cell periphery is key for epithelial tissue morphogenesis and homeostasis. We discovered that positioning of dynamic microtubules controls the asymmetric accumulation of E-cadherin. Microtubules are oriented preferentially along the dorso-ventral axis in Drosophila melanogaster embryonic epidermal cells, and thus more frequently contact E-cadherin at dorso-ventral cell-cell borders. This inhibits RhoGEF2, reducing membrane recruitment of Rho-kinase, and increasing a specific E-cadherin pool that is mobile when assayed by fluorescence recovery after photobleaching. This mobile E-cadherin is complexed with Bazooka/Par-3, which in turn is required for normal levels of mobile E-cadherin. Mobile E-cadherin-Bazooka prevents formation of multicellular rosette structures and cell motility across the segment border in Drosophila embryos. Altogether, the combined action of dynamic microtubules and Rho signaling determines the level and asymmetric distribution of a mobile E-cadherin-Bazooka complex, which regulates cell behavior during the generation of a patterned epithelium

    Myosin-V Opposes Microtubule-Based Cargo Transport and Drives Directional Motility on Cortical Actin

    Get PDF
    SummaryIntracellular transport is driven by motor proteins that either use microtubules or actin filaments as their tracks [1], but the interplay between these transport pathways is poorly understood [2–4]. Whereas many microtubule-based motors are known to drive long-range transport, several actin-based motors have been proposed to function predominantly in cargo tethering [4–6]. How these opposing activities are integrated on cargoes that contain both types of motors is unknown. Here we use inducible intracellular transport assays to show that acute recruitment of myosin-V to kinesin-propelled cargo reduces their motility near the cell periphery and enhances their localization at the actin-rich cell cortex. Myosin-V arrests rapid microtubule-based transport without the need for regulated auto- or other inhibition of kinesin motors. In addition, myosin-V, despite being an ineffective long-range transporter, can drive slow, medium-range (1–5 μm), point-to-point transport in cortical cell regions. Altogether, these data support a model in which myosin-V establishes local cortical delivery of kinesin-bound cargos through a combination of tethering and active transport

    Taxanes convert regions of perturbed microtubule growth into rescue sites

    Get PDF
    Microtubules are polymers of tubulin dimers, and conformational transitions in the microtubule lattice drive microtubule dynamic instability and affect various aspects of microtubule function. The exact nature of these transitions and their modulation by anti -cancer drugs such as Taxol and epothilone, which can stabilize microtubules but also perturb their growth, are poorly understood. Here, we directly visualize the action of fluorescent Taxol and epothilone derivatives and show that microtubules can transition to a state that triggers cooperative drug binding to form regions with altered lattice conformation. Such regions emerge at growing microtubule ends that are in a pre-catastrophe state and inhibit microtubule growth and shortening. Electron microscopy and in vitro dynamics data indicate that taxane accumulation zones represent incomplete tubes that can persist, incorporate tubulin dimers and repeatedly induce microtubule rescues. Thus, taxanes modulate the material properties of microtubules by converting destabilized growing microtubule ends into regions resistant to depolymerization

    Phosphorylation controls autoinhibition of cytoplasmic linker protein-170

    Get PDF
    Author Posting. © American Society for Cell Biology, 2010. This article is posted here by permission of American Society for Cell Biology for personal use, not for redistribution. The definitive version was published in Molecular Biology of the Cell 21 (2010): 2661-2673, doi:10.1091/mbc.E09-12-1036.Cytoplasmic linker protein (CLIP)-170 is a microtubule (MT) plus-end-tracking protein that regulates MT dynamics and links MT plus ends to different intracellular structures. We have shown previously that intramolecular association between the N and C termini results in autoinhibition of CLIP-170, thus altering its binding to MTs and the dynactin subunit p150Glued (J. Cell Biol. 2004: 166, 1003–1014). In this study, we demonstrate that conformational changes in CLIP-170 are regulated by phosphorylation that enhances the affinity between the N- and C-terminal domains. By using site-directed mutagenesis and phosphoproteomic analysis, we mapped the phosphorylation sites in the third serine-rich region of CLIP-170. A phosphorylation-deficient mutant of CLIP-170 displays an "open" conformation and a higher binding affinity for growing MT ends and p150Glued as compared with nonmutated protein, whereas a phosphomimetic mutant confined to the "folded back" conformation shows decreased MT association and does not interact with p150Glued. We conclude that phosphorylation regulates CLIP-170 conformational changes resulting in its autoinhibition.This work was supported by National Institutes of Health grant GM-25062 (to G.G.B.); Netherlands Organization for Scientific Research grants (to A. A. and N. G.); a Cancer Genomics Centre grant (to J.v.H.); and Presidential Program of Russian Academy of Sciences and RFBP grant 05-04-4915 (to E.S.N.)
    • …
    corecore