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Summary

Intracellular transport is driven by motor proteins that either
use microtubules or actin filaments as their tracks [1], but

the interplay between these transport pathways is poorly
understood [2–4]. Whereasmanymicrotubule-basedmotors

are known to drive long-range transport, several actin-based
motors have been proposed to function predominantly in

cargo tethering [4–6]. How these opposing activities are inte-
grated on cargoes that contain both types of motors is un-

known. Here we use inducible intracellular transport assays
to show that acute recruitment of myosin-V to kinesin-pro-

pelled cargo reduces their motility near the cell periphery
and enhances their localization at the actin-rich cell cortex.

Myosin-V arrests rapid microtubule-based transport without
the need for regulated auto- or other inhibition of kinesin

motors. In addition, myosin-V, despite being an ineffective

long-range transporter, can drive slow, medium-range
(1–5 mm), point-to-point transport in cortical cell regions.

Altogether, these data support a model in which myosin-V
establishes local cortical delivery of kinesin-bound cargos

through a combination of tethering and active transport.

Results and Discussion

The unconventional myosin motor myosin-V has clear trans-
porting roles in yeast and plants [7–11], but direct evidence
formyosin-V-driven point-to-point transport in vertebrate cells
is surprisingly limited [2, 4]. In these cells, microtubule-based
motor proteins mediate most long-range transport, and
myosin-V-dependent vectorial transport has only been directly
demonstrated in specialized structures with distinct actin
organization, such as dendritic spines [12–14]. In contrast, ex-
periments in which the intracellular motility of quantum dot-
labeledmyosin-V was examined showed very short directional
runs (<1 s), whereas motility at longer timescales was random
[15]. Myosin-V-dependent melanosome movements have also
been reported, but the extent to which these movements were
dependent on myosin-V stepping, rather than dynamics of the
actin cytoskeleton, has remained unclear [4, 6, 16]. Thus, it
remains uncertain whether myosin-V motors can drive direc-
tional cargo transport over longer distances on the nonuni-
form, disorganized actin cytoskeleton of mammalian cells
[2, 4]. Several models instead propose a role for myosin-V in
*Correspondence: l.kapitein@uu.nl (L.C.K.), c.hoogenraad@uu.nl (C.C.H.)
tethering of cargo transported by microtubule-based motors
[2, 4, 5, 17, 18], but whether the presence of myosin-V is suffi-
cient to stall microtubule-based cargo motility is not known.
To directly probe the intracellular activity of myosin-V in

fibroblast cells, we created a fusion construct of GFP and
myosin-V, which was truncated such that it contained the
motor domain and dimerization (coiled-coil) region but lacked
the known cargo-binding domain [2, 19, 20] (MyoVb[1–1090]-
GFP-FRB, hereafter called ‘‘myosin-V’’; Figure 1A). Upon
expression in COS7 cells, myosin-V was highly enriched in
actin-rich protrusions at the cell border (see Figure S1A avail-
able online). This specific distribution could be a consequence
of motor activity toward the actin barbed end or represent a
specific affinity for the actin present in these protrusions.
To discriminate between these possibilities, we constructed
a catalytically impaired motor (MyoVb[1–1090;G441A]-GFP-
FRB [21], hereafter called ‘‘rmyosin-V,’’ from ‘‘rigor’’; Figure 1A)
and found no enrichment at the cell border (Figure S1B). In
addition, because processivemotor activity requires two coor-
dinated motor domains, we also created MyoVb(1–893)-GFP-
FRB, a construct lacking the dimerization domain. Again, no
accumulation at the cell border was observed upon expres-
sion of this monomeric myosin construct (mmyosin-V, Fig-
ure S1C). In contrast, strong cortical accumulation of the
shorter construct could be stimulated by chemically induced
mmyosin-V dimer formation using the FKBP-rapalog-FRB sys-
tem (Figures S1D and S1E), indicating that dimeric myosin-V
can move processively inside live COS7 cells.
To further examine the intracellular dynamics of non-cargo-

bound myosin-V, we performed time-lapse microscopy in
cells expressing myosin-V together with CDC42 to enhance
formation of filopodia rich in uniformly barbed-end, out-ori-
ented actin [22, 23] (Figure S1F). Remarkably, although clear
myosin-V accumulation at the tips could be observed, the
most apparent motility was directed inward and was similar
to the retrograde flow observed for actin (Figure S1G). We
next photobleached intermediate segments of filopodia to
test for directional motility into filopodia and observed two
modes of motility into the photobleached area, as expected
from numerical simulations (Figure S1H). Myosin-V entered
the distal part of the bleached area at the expected velocity
of w30 nm/s, whereas motility from the cell body into the filo-
podia occurred at the faster rate of w300 nm/s (Figure S1I).
Interestingly, many of the newly entered myosin-V motors
changed behavior in the bleached zone and started drifting
back to the cell body at the slow rate (Figure S1I). Similar be-
haviors were observed for chemically dimerized mmyosin-V
(Figures S1J and S1K). Together, these data demonstrate
that individual myosin-V dimers alternate between active and
passive actin-binding modes.
To directly probe the activity of myosin-V bound to cargo,

we employed our recently developed intracellular cargo-traf-
ficking assay [24]. In this assay, we employ the FKBP-rapa-
log-FRB heterodimerization system to induce specific motor
protein recruitment to peroxisomes during live-cell recordings
(Figure 1B). Because peroxisomes are largely immobile in the
perinuclear region before rapalog addition (Movies S2 and
S3), their motility after rapalog addition selectively reports
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Figure 1. Intracellular Dynamics of Dimeric, Monomeric, and Catalytically Impaired Myosin-V Constructs

(A) Overview of myosin-V constructs used in this study.

(B) Assay: a fusion construct of PEX3, RFP, and FKBP targets peroxisomes. Fusion of FRB with truncated motor construct (myosin-V or kinesin-2) is

recruited to FKBP and consequently the peroxisomes upon addition of rapalog.

(C and D) Peroxisomedistribution before and after recruitment ofmyosin-V (C) or kinesin-2 (D) by rapalog addition (inverted contrast). Yellow curves indicate

cell outline. Each third panel depicts an overlay of sequential binarized images from the respective recordings, color coded by time as indicated. Bluemarks

the initial distribution, whereas red marks regions targeted upon addition of rapalog. See Movie S2.

(E and F) Average time traces of the R90% (radius of circle enclosing 90% of cellular fluorescence; see Experimental Procedures) (E) and the frame-to-frame

correlation index (F) for peroxisomes in COS7 cells expressingmyosin-V (red, see C, n = 6 cells), mmyosin-V (cyan, n = 4 cells), rmyosin-V (green, n = 7 cells),

or kinesin-2 (black, see D, n = 10), to which rapalog is added at time point 0.

Error bars depict SE. Scale bars represent 10 mm.
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the activity of the specific FRB-tagged motor that was
recruited. Whereas peroxisomes rapidly redistributed to the
cell periphery upon recruitment of the plus-end-directed,
microtubule-based motor kinesin-1 (KIF5, data not shown
[24, 25]) or kinesin-2 (KIF17, Figure 1D), very little peroxisome
motility was observed upon chemically induced recruitment
of myosin-V (Figure 1C). To quantify these effects, we calcu-
lated for each time point the radius required to include 90%
of all fluorescence intensity from the peroxisomes, R90% [24],
and found a large increase upon recruitment of kinesin-2,
whereas R90% hardly changed upon recruitment of myosin-V,
rmyosin-V, or mmyosin-V (Figure 1E). These data indicate
that myosin-V, when recruited to cargo in the perinuclear
region, is not an effective long-range transporter inside live
COS7 cells.

The lack of robust cargo motility driven by myosin-V could
reflect an alternative role for myosin-V on cargo, such as
opposing microtubule-based motor proteins. Importantly, we
observed that most kinesin-propelled peroxisomes never
stopped moving after reaching the cell periphery but instead
continued to be mobile (Figure 1D). To quantify this observa-
tion, we used image correlation analysis [26] to measure the
overall frame-to-frame differences in our recordings. The
average correlation index c30(t) was calculated for each 30 s
interval within a moving window of six frames to determine
how the peroxisome motility changed over time. A correlation
of 1 indicates that two images are completely identical,
whereas 0 indicates that the intensity is distributed over a
completely different set of pixels. Recruitment of kinesin-2 to
peroxisomes caused a persistent drop in correlation c30 from
0.916 0.02 to 0.426 0.06 (mean 6 SD, n = 10 cells), reflecting
the rapid displacement of peroxisomes (Figure 1F). Consistent
with our primary observations, the correlation index remained
low even after arrival in the cell periphery. Only upon depoly-
merization of microtubules using nocodazole did the correla-
tion index rapidly increase, reflecting that kinesin-driven
motility was now prohibited (Figures S2A and S2B). These
results demonstrate that kinesin-2 continues to drive rapid
motility of cargo near the cell periphery.
To test how myosin-V affects the motility of cargo driven

by microtubule-based motor proteins, we next recruited
kinesin-2 to peroxisomes together with myosin-V or rmyosin-V
(Figure 2A). Peroxisomes again rapidlymoved outward inmost
cells (Figures 2B and 2E), but nowmost peroxisomes stopped
at the cell border, where they became strongly colocalized
with myosin-V (Figures 2B–2D). Calculation of the correlation
index over time revealed that, for both myosin-V and rmyo-
sin-V, the initial rapid drop upon addition of rapalog was now
followed by an increase when peroxisomes reached the cell
periphery, reflecting the reduced motility (Figures 2F and
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Figure 2. Myosin-V Anchors Kinesin-Propelled Cargo near the Cell Periphery

(A) Assay: two different motors are recruited to the peroxisomes upon addition of rapalog.

(B) Peroxisome distribution before and after recruitment of myosin-V and kinesin-2 by rapalog addition. Yellow curves indicate cell outline. Third panel

depicts an overlay of sequential binarized images from the respective recordings, color coded by time as indicated. See Movie S3.

(C) Distribution of MyoVb(1–1090)-GFP-FRB before and after addition of rapalog.

(D) Enlargement of the regions marked in red in (B) and (C).

(E and F) Average time traces of the R90% (E) and the frame-to-frame correlation index (F) versus time for peroxisomes in COS7 cells expressing kinesin-2

together with myosin-V (red, n = 17 cells), rmyosin-V (green, n = 7 cells) or MyoVb(1–1090)-PEX26 (blue, n = 16 cells). Dotted line marks time points used

for (G).

(G) Average correlation at 10 and 23min after rapalog addition for the indicated experiments. Asterisks depict p values obtained from t tests of values against

control with KIF17 only (*p < 0.01; **p < 0.005; ***p < 0.001).

(H) Assay: kinesin-2 is recruited to peroxisomes preloaded with myosin-V using the fusion construct MyoVb(1–1090)-PEX26 (PEX26 to allow a fusion at the

C terminus of myosin-V).

(I) Peroxisome distribution before and after rapalog addition to recruit kinesin-2 to myosin-V-coated peroxisomes. Yellow curves indicate cell outline. Third

panel depicts an overlay of sequential binarized images from the respective recordings, color coded by time as indicated.

Contrast is inverted for all fluorescence images. Error bars depict SE. Scale bars represent 10 mm.
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2G). This selective peripheral anchoring by myosin-V could
reflect that myosin-V recruitment to peroxisomes is inefficient
in regions where it is not enriched. To test whether myosin-V
could oppose kinesin-based motility throughout the whole
cell if recruited at sufficiently high levels, we recruited kine-
sin-2 to peroxisomes that were preloaded with myosin-V
through a direct fusion with the peroxisomal protein PEX26
(Figures 2H and 2I). Kinesin-2-driven displacement to the cell
periphery was nowdecelerated (Figure 2E), and the correlation
index was high throughout the cell and not only when peroxi-
somes reached the cell periphery (Figures 2F and 2G). These
results demonstrate that myosin-V can oppose kinesin-driven
motility throughout the cell.
To specifically probe how acute myosin-V recruitment
affects the motility of kinesin-propelled cargo, we next used
a fusion construct of kinesin-2 and PEX26 that, upon expres-
sion, induced the radial redistribution of peroxisomes (Figures
3A and 3B). Similar to the experiment where kinesin-2 was
recruited by rapalog addition, these peroxisomes were not
immobile near the cell periphery but kept changing positions,
as reflected in the low correlation index of 0.43 6 0.05
(Figure 3F). When myosin was recruited to these motile perox-
isomes, their dynamics sloweddowndramatically (Figures 3B–
3F). The observed increase in the correlation index from 0.426
0.07 (at 0:00) to 0.65 6 0.07 (at 23 min after rapalog addition)
was only slightly less than the effect of complete microtubule
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Figure 3. Acute Recruitment of Myosin-V to Kinesin-Propelled Cargo at the Cell Periphery

(A) Assay: a fusion construct PEX26 with either kinesin-1 or kinesin-2 targets peroxisomes and redistributes them throughout the cell. PEX-RFP-FKBP also

targets these peroxisomes and recruits myosin-V upon addition of rapalog.

(B and C) Peroxisome (B) and myosin-V (C) distributions before and after recruitment of myosin-V to kinesin-2-propelled peroxisomes by rapalog addition.

Box indicates region used for kymography in (D). See also Movie S4.

(D) Kymograph of the recordings shown in (B). Dotted line marks rapalog addition.

(E) Overlay of sequential binarized images from the recording in (B), color coded by time as indicated.

(F) Time traces of the R90% (distance, top) and the frame-to-frame correlation index (bottom) versus time for peroxisomes in COS7 cells expressing kinesin-

2-PEX together with myosin-V (red, n = 6 cells) or rmyosin-V (green, n = 4 cells), or kinesin-1-PEX together with myosin-V (yellow, n = 5 cells). Rapalog is

added at time point 0. For this analysis, only peroxisomes located in the outer 10–20 mm of the cell were included.

Contrast is inverted for all fluorescence images. Error bars depict SE. Scale bars represent 10 mm.
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depolymerization (from 0.5 6 0.15 to 0.8 6 0.04; see Fig-
ure S2B). However, in addition to the attenuation of microtu-
bule-basedmotility, two effects could be distinguished. A sub-
set of peroxisomes now appeared at the cell edge, where they
colocalized with myosin-V, whereas the other peroxisomes
slowly moved away from the cell edge (Figures 3B–3E). Similar
results were obtained when myosin-V was recruited to perox-
isomes propelled by the kinesin-1 family member KIF5B (Fig-
ure 3F). In contrast, although recruitment of rmyosin-Vwas suf-
ficient to arrest kinesin-driven motility, it did not result in cargo
accumulation at the cell edge, suggesting that peripheral accu-
mulation requires active motility of myosin-V (Figure 3F).

To directly test for directional myosin-V-driven transport at
the cell periphery of vertebrate cells, we repeated the dual-
motor assay but now incubated cells with the microtubule-
depolymerizing agent nocodazole before the start of the
experiment to stop kinesin-2-driven peroxisomal motility (Fig-
ures 4A, S2A, and S2B). Recruitment of dimeric myosin-V, but
not rmyosin-V, resulted in the persistent directional motility of
many peroxisomes toward the cell edge (Figures 4B–4N).
Furthermore, recruitment of (multiple) monomeric myosin-V
motors was also sufficient to induce directional motility of
peroxisomes to the cell edge (Figures S2C–S2H). Finally,
to maintain cytoskeletal integrity and stop kinesin-driven
motility without microtubule depolymerization, we used spe-
cific chemical inhibition of kinesin-5-PEX26 using S-trityl-
L-cysteine (STLC) [27, 28] before addition of rapalog and
again observed directional motility driven upon recruitment
of myosin-V (Figures S2J–S2P). These results directly
demonstrate that, in contrast to the metabolically impaired
rmyosin-V, myosin-V can drive medium-range point-to-point
transport (>1 mm) toward the cell edge in mammalian cells.
To quantify these results, we traced individual peroxisomes

linked to either myosin-V or rmyosin-V, averaged their mean-
squared displacements (MSD) for different time intervals t,
and found that myosin-V induced more motility than
rmyosin-V (Figures 4N and 4O). The power dependence a
of the MSD with increasing time intervals t, MSD f ta, is
the anomalous diffusion exponent [15, 29] and indicates
whether motility is completely random (a z 1, diffusive),
directed (1 < a% 2, superdiffusive), or confined (0 < a < 1, sub-
diffusive). The overall myosin-V-driven peroxisome motility
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Figure 4. Myosin-V Can Autonomously Drive Directional Cargo Motility near the Cell Periphery

(A) Assay: peroxisomes are preloaded with kinesin-2 to induce peripheral distribution. After microtubule depolymerization by nocodazole addition, rapalog

is added to recruit myosin-V.

(B and C) Frames from a time-lapse recording of peroxisomes (B) and myosin-V (C) for the assay depicted in (A). Time point 0:00 marks the addition of

rapalog. Box indicates region used for kymography in (D) and (E). See Movie S5.

(D and E) Kymograph of the recordings shown in (B) and (C), respectively. Dotted line marks rapalog addition.

(F) Pseudocolored merge of (D) and (E).

(G) Overlay of sequential binarized images from the recording in (B), color coded by time as indicated.

(H and I) Frames from a time-lapse recording of peroxisomes (H) and rmyosin-V (I) for the assay depicted in (A). Time point 0:00marks the addition of rapalog.

Box indicates region used for kymography in (J) and (K).

(J and K) Kymograph of the recordings shown in (H) and (I), respectively. Dotted line marks rapalog addition.

(L) Pseudocolored merge of (J) and (K).

(M) Overlay of sequential binarized images from the recording in (B), color coded by time as indicated.

(N) Example trajectories of peroxisomes linked to myosin-V (top) or rmyosin-V (bottom) near the cell edge (marked in red). Red dot marks start of the tra-

jectory. Data was acquired with 4 s intervals. Total time of trajectory: 1, 7:04; 2, 7:48; 3, 24:36; 4, 17:16; 5, 6:00; 6, 9:40; 7, 30:00; 8, 30:00. 16:44 for all

trajectories of rmyosin-V. See Movie S6.

(O) Average mean-squared displacement calculated from trajectories of peripherally located peroxisomes linked to either myosin-V or rmyosin-V, plotted

with linear (top) or logarithmic axes (bottom). n = 285 and 168 trajectories for myosin-V and rmyosin-V, respectively.

(P) Example trajectory, color coded for time from red to blue as indicated in the windowed a0228 s(t) trace shown at bottom.

(Q) Histograms of a0228 s obtained from 38,426 and 29,937 28 s intervals from 285 and 168 different trajectories of myosin-V and rmyosin-V, respectively.

Contrast is inverted for all fluorescence images. Scale bars represent 10 mm, except in (N) and (P), where scale bars represent 5 mm.
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was superdiffusive (slope in log-log plot > 1, Figure 4O),
whereas motility in the presence of rmyosin-V was subdiffu-
sive at short time scales (t < 100 s) and superdiffusive at longer
time scales as a result of slow movement away from the cell
edge (Figure 4N). However, directed motility of myosin-V was
also often interspersed with long pauses or more random
movements (Figures 4N and 4P).We therefore further analyzed
peroxisome trajectories by calculating the MSD(t) and a for a
sliding window of 28 s to examine how a(t) varied over time
(Figures 4P and 4Q). This analysis revealed that peroxisome
motility was often subdiffusive for many minutes (<a> =
1.0 6 0.5, mean 6 SD, Figures 4P and 4Q). Nevertheless,
many intervals were classified as superdiffusive episodes
(a > 1), whereas for rmyosin-Vmost intervals were subdiffusive
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(<a> = 0.6 6 0.4, mean 6 SD, Figure 4Q). Thus, myosin-V can
drive directional transport.

In this study, we have provided direct evidence for myosin-
V-driven directional cargo transport at the cell periphery,
demonstrating that the dynamic and irregular peripheral actin
organization still supports robust actin-based directional
motility. Despite the overall directionality toward the cell
edge, myosin-V-mediated motility was highly irregular and
frequently halted for long periods, consistent with earlier
work showing that most myosin-V-based motility is effectively
random at 1–5 s time scales [15]. In addition, we have shown
that acute recruitment of myosin-V to kinesin-propelled cargo
is sufficient to attenuate their motility. These results are
consistent with the pioneering study ofmelanosome dynamics
in mouse melanocytes, where myosin-Va was shown to
dampen both speed and length of microtubule-based runs
[6]. Similar results have also been reported for mitochondria
and secretory granules in neurons [17, 30] and recycling endo-
somes in HeLa cells [5]. The immediate stalling of kinesin-
driven cargo observed upon stochastic coupling of myosin-V
demonstrates a kinesin inactivation scheme alternative to
regulated unbinding or auto- or other inhibition.

Our model system provides a well-controlled method to
examine the interplay between different types of motors inside
cells but (intentionally) does not incorporate all aspects known
to regulate motor activity. For example, the use of constitu-
tively active and permanently attached myosin-V and kinesin
bypasses the regulatory layer in which specific adaptor
molecules, such as melanophilin, and specific posttransla-
tional modifications, such as phosphorylation, regulate motor
attachment and conformation [2, 31, 32]. Future work will be
needed to better understand how myosin-V activity is
controlled [13] and how the outcome of motor antagonism
depends on the precise numbers of motors involved [33].
The approach introduced here will be an important starting
point for such developments.

Experimental Procedures

DNA Constructs

The DNA constructs used in this study are cloned in pGW1-CMV or pbactin-

16-pl. Myosin-V-(1–1090)-GFP-FRB (myosin-V), myosin-V-(1–1090;G441A)-

GFP-FRB (rmyosin-V), and myosin-V-(1–893)-GFP-FRB (mmyosin-V) were

made by PCR from mouse myosin-Vb cDNA (NM_201600), purchased

from Geneservice (IMAGE 40099275). PEX3 and PEX26 constructs were

described previously [24]. For details, see Supplemental Experimental

Procedures.

Cell Cultures, Live-Cell Image Acquisition, and Image Processing and

Analysis

COS7 were cultured in DMEM/Ham’s F10 (50%/50%) medium containing

10% FCS and 1% penicillin/streptomycin. Cells were plated on 24 mm

diameter coverslips and 2–3 days later transfected with FuGENE6 trans-

fection reagent (Roche). Time-lapse live-cell imaging was performed on

an Eclipse TE2000E (Nikon) equipped with a CoolSNAP HQ (Photometrics)

camera and an incubation chamber (Tokai Hit; INUG2-ZILCS-H2) mounted

on a motorized stage (Prior). COS7 cells were imaged in Ringer’s solu-

tion at 37�C. During image acquisition, rapalog was added to establish

a final rapalog concentration of 100 nM. Images of live cells were pro-

cessed and analyzed using MetaMorph (Molecular Devices) and LabVIEW

(National Instruments) software. For details, see Supplemental Experi-

mental Procedures.

Supplemental Information

Supplemental Information includes two figures, Supplemental Experimental

Procedures, and six movies and can be found with this article online at

http://dx.doi.org/10.1016/j.cub.2013.03.068.
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