38 research outputs found

    Correlation of Clinical Examination, MRI and Arthroscopy Findings in Menisco-Cruciate Injuries of the Knee: A Prospective Diagnostic Study

    Get PDF
    Background: The aim of this study was to examine the correlation of the clinical examination, MRI and arthroscopic findings in cruciate ligaments and meniscal injuries of knee and to evaluate the accuracy of clinical examination and MRI with the gold standard arthroscopy. Methods: A prospective diagnostic double-blind study was conducted on 104 consecutive patients admitted to the outdoor/casualty with trauma to the knee complaining of knee pain/locking/ instability, from August 2012 to June 2014. All the patients were subjected to clinical examination, MRI scanning and diagnostic arthroscopy. Variables like sensitivity, specificity, positive predictive value, negative predictive value and accuracy of clinical examination and MRI against arthroscopy were evaluated. Results: The sensitivity, specificity and accuracy of clinical examination for anterior cruciate ligament tears were 94.7%, 71.4% and 88.5% and for MRI were 94.7%, 78.6% and 90.4%, respectively; for posterior cruciate ligament tears 100%, 100% and 100% for clinical examination and for MRI 80%, 97.9% and 96.2%, respectively. These values for medial meniscus tears were 76.5%, 68.6% and 71.2% for clinical examination and 88.2%, 62.8% and 71.2% respectively for MRI. For lateral meniscus tears, 40%, 94.6% and 78.8% for clinical examination and 46.7%, 89.2% and 76.9% respectively for MRI. Conclusions: A skillfully performed clinical examination establishes a diagnosis on which an arthroscopic procedure can be planned, reserving MRI scans for patients where the clinical examination fails to establish a diagnosis or cannot be performed. Decision to use MRI should be based on the criteria that it would confirm, expand the diagnosis or change diagnosis in such a way that alters the proposed treatment

    Applying the ALARA concept to the evaluation of vesicoureteric reflux

    Get PDF
    The voiding cystourethrogram (VCUG) is a widely used study to define lower urinary tract anatomy and to diagnose vesicoureteric reflux (VUR) in children. We examine the technical advances in the VCUG and other examinations for reflux that have reduced radiation exposure of children, and we give recommendations for the use of imaging studies in four groups of children: (1) children with urinary tract infection, (2) siblings of patients with VUR, (3) infants with antenatal hydronephrosis (ANH), and (4) children with a solitary functioning kidney. By performing examinations with little to no radiation, carefully selecting only the children who need imaging studies and judiciously timing follow-up examinations, we can reduce the radiation exposure of children being studied for reflux

    Solvothermal synthesis of a polyaniline nanocomposite – a prospective biosensor electrode material

    No full text
    Polyaniline (PANI) is the most important conducting polymer with excellent electrochemical properties. So PANIbased biosensors may find wide applications in medical diagnostics. We report here a ternary nanocomposite of gold nanoparticle-decorated single- walled carbon nanotubes (SWCNTs) embedded in sulfonated polyaniline matrix, prepared using a simple solvothermal chemical route. The structural and morphological characteristics have been determined by electron microscopy, X-ray diffraction and Raman spectroscopy. Optical characteristics of the nanocomposite have been determined by ultraviolet (UV)-visible absorption spectroscopy and photoluminescence spectroscopy. The direct current (DC)-conductivity measurement of the material shows a significant increase in electrical conductivity at 353 K from 7.80·10–2 S/m for pure SPANI to 10.91 S/m for the 3-phase nanocomposite as synthesized in the present investigations. Thus the incorporation of SWCNT/Au nanohybrid fibers in the PANI matrix enhanced its electrical properties. Sulfonation increased the processability of the material, as the samples have now been found to be soluble in water and common organic solvents like DMSO. Such a functional nanocomposite will make an excellent biosensor electrode material

    In Situ Investigation of Mammalian Inorganic Polyphosphate Localization Using Novel Selective Fluorescent Probes JC-D7 and JC-D8

    No full text
    Inorganic polyphosphate (polyP) is a polymer composed of many orthophosphates linked together by phosphoanhydride bonds. Recent studies demonstrate that in addition to its important role in the function of microorganisms, polyP plays multiple important roles in the pathological and physiological function of higher eukaryotes, including mammalians. However, due to the dramatically lower abundance of polyP in mammalian cells when comparing to microorganisms, its investigation poses an experimental challenge. Here, we present the identification of novel fluorescent probes that allow for specific labeling of synthetic polyP in vitro as well as endogenous polyP in living cells. These probes demonstrate high selectivity for the labeling of polyP that was not sensitive to a number of ubiquitous organic polyphosphates, notably RNA. Use of these probes allowed us to demonstrate the real time detection of polyP release from lysosomes in live cells. Furthermore, we have been able to detect the increased levels of polyP in cells with Parkinson's disease related mutations.1113sciescopu

    <i>In Situ</i> Investigation of Mammalian Inorganic Polyphosphate Localization Using Novel Selective Fluorescent Probes JC-D7 and JC-D8

    No full text
    Inorganic polyphosphate (polyP) is a polymer composed of many orthophosphates linked together by phosphoanhydride bonds. Recent studies demonstrate that in addition to its important role in the function of microorganisms, polyP plays multiple important roles in the pathological and physiological function of higher eukaryotes, including mammalians. However, due to the dramatically lower abundance of polyP in mammalian cells when comparing to microorganisms, its investigation poses an experimental challenge. Here, we present the identification of novel fluorescent probes that allow for specific labeling of synthetic polyP <i>in vitro</i> as well as endogenous polyP in living cells. These probes demonstrate high selectivity for the labeling of polyP that was not sensitive to a number of ubiquitous organic polyphosphates, notably RNA. Use of these probes allowed us to demonstrate the real time detection of polyP release from lysosomes in live cells. Furthermore, we have been able to detect the increased levels of polyP in cells with Parkinson’s disease related mutations
    corecore