148 research outputs found

    BET inhibition as a single or combined therapeutic approach in primary paediatric B-precursor acute lymphoblastic leukaemia

    Get PDF
    Paediatric B-precursor ALL is a highly curable disease, however, treatment resistance in some patients and the long-term toxic effects of current therapies pose the need for more targeted therapeutic approaches. We addressed the cytotoxic effect of JQ1, a highly selective inhibitor against the transcriptional regulators, bromodomain and extra-terminal (BET) family of proteins, in paediatric ALL. We showed a potent in vitro cytotoxic response of a panel of primary ALL to JQ1, independent of their prognostic features but dependent on high MYC expression and coupled with transcriptional downregulation of multiple pro-survival pathways. In agreement with earlier studies, JQ1 induced cell cycle arrest. Here we show that BET inhibition also reduced c-Myc protein stability and suppressed progression of DNA replication forks in ALL cells. Consistent with c-Myc depletion and downregulation of pro-survival pathways JQ1 sensitised primary ALL samples to the classic ALL therapeutic agent dexamethasone. Finally, we demonstrated that JQ1 reduces ALL growth in ALL xenograft models, both as a single agent and in combination with dexamethasone. We conclude that targeting BET proteins should be considered as a new therapeutic strategy for the treatment of paediatric ALL and particularly those cases that exhibit suboptimal responses to standard treatment

    T-cell number and subtype influence the disease course of primary chronic lymphocytic leukaemia xenografts in alymphoid mice.

    Get PDF
    Chronic lymphocytic leukaemia (CLL) cells require microenvironmental support for their proliferation. This can be recapitulated in highly immunocompromised hosts in the presence of T cells and other supporting cells. Current primary CLL xenograft models suffer from limited duration of tumour cell engraftment coupled with gradual T-cell outgrowth. Thus, a greater understanding of the interaction between CLL and T cells could improve their utility. In this study, using two distinct mouse xenograft models, we investigated whether xenografts recapitulate CLL biology, including natural environmental interactions with B-cell receptors and T cells, and whether manipulation of autologous T cells can expand the duration of CLL engraftment. We observed that primary CLL xenografts recapitulated both the tumour phenotype and T-cell repertoire observed in patients and that engraftment was significantly shorter for progressive tumours. A reduction in the number of patient T cells that were injected into the mice to 2-5% of the initial number or specific depletion of CD8+ cells extended the limited xenograft duration of progressive cases to that characteristic of indolent disease. We conclude that manipulation of T cells can enhance current CLL xenograft models and thus expand their utility for investigation of tumour biology and pre-clinical drug assessment

    CIRCE: Coordinated Ionospheric Reconstruction Cubesat Experiment

    Get PDF
    The Coordinated Ionospheric Reconstruction Cubesat Experiment (CIRCE) is a collaborative space mission between the UK Defence Science and Technology Laboratory (Dstl), and the US Naval Research Laboratory (NRL) in developing small satellite ionospheric physics capability. CIRCE will characterise space weather effects on a regional scale in the ionosphere/thermosphere system. Properly characterising the dynamic ionosphere is important for a wide range of both civil and defence applications such as GPS, communications, and sensing technology. Consisting of two near-identical 6U (2x3U) CubeSat buses, the CIRCE nanosatellites will fly in a lead-follow tandem configuration in co-planar near-polar orbits at 500km altitude. Provided by Blue Canyon Technologies (BCT), the two buses will use differential drag to achieve and maintain an in-track separation of between 250 and 500km, allowing short time-scale dynamics to be observed in-situ. These nanosatellites each carry a complement of 5 individual scientific instruments, contributed from academic, industrial, and government partners across the UK and US. Scheduled to launch in 2021 via the US Department of Defence Space Test Program, the two CIRCE satellites will provide observations to enable a greater understanding of the driving processes of geophysical phenomena in the ionosphere/thermosphere system, distributed across a wide range of latitudes, and altitudes, as the mission progresses

    Targeting the Ataxia Telangiectasia Mutated-null Phenotype in Chronic Lymphocytic Leukemia with Pro-oxidants

    Get PDF
    Inactivation of the Ataxia Telangiectasia Mutated gene in chronic lymphocytic leukemia results in resistance to p53-dependent apoptosis and inferior responses to treatment with DNA damaging agents. Hence, p53-independent strategies are required to target Ataxia Telangiectasia Mutated-deficient chronic lymphocytic leukemia. As Ataxia Telangiectasia Mutated has been implicated in redox homeostasis, we investigated the effect of the Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia genotype on cellular responses to oxidative stress with a view to therapeutic targeting. We found that in comparison to Ataxia Telangiectasia Mutated-wild type chronic lymphocytic leukemia, pro-oxidant treatment of Ataxia Telangiectasia Mutated-null cells led to reduced binding of NF-E2 p45-related factor-2 to antioxidant response elements and thus decreased expression of target genes. Furthermore, Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia cells contained lower levels of antioxidants and elevated mitochondrial reactive oxygen species. Consequently, Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia, but not tumours with 11q deletion or TP53 mutations, exhibited differentially increased sensitivity to pro-oxidants both in vitro and in vivo. We found that cell death was mediated by a p53- and caspase-independent mechanism associated with apoptosis inducing factor activity. Together, these data suggest that defective redox-homeostasis represents an attractive therapeutic target for Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia

    Expression of CD80 and CD86 costimulatory molecules are potential markers for better survival in nasopharyngeal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>B7 Costimulatory signal is essential to trigger T-cell activation upon the recognition of tumor antigens. This study examined the expression of B7-1 (CD80) and B7-2 (CD86) costimulatory molecules along with HLA-DR and the presence of infiltrating lymphocytes and dendritic cells to assess their significance in patients with nasopharyngeal carcinoma (NPC).</p> <p>Methods</p> <p>Expression of CD80, CD86, HLA-DR, S-100 protein and the presence of infiltrating lymphocytes and follicular dendritic reticulum cells were immunohistochemically examined on the paraffin-embedded tissue blocks from newly diagnosed NPC patients (n = 50). The results were correlated with clinical outcome of patients.</p> <p>Results</p> <p>CD80 and CD86 were each expressed in 10 of 50 cases in which they co-expressed in 9 cases. Univariate analysis revealed that patients with CD80/CD86 expression had significantly better overall survival than those without it (P = 0.017), but after adjustment for stage, nodal status, and treatment, the expression of CD80/CD86 did not significantly correlate with overall survival. Expression of HLA-DR and the presence of infiltrating lymphocytes and dendritic cells did not appear to have impact on the survival of patients.</p> <p>Conclusion</p> <p>Expression of CD80 and CD86 costimulatory molecules appears to be a marker of better survival in patient with NPC.</p

    Methylation-associated down-regulation of RASSF1A and up-regulation of RASSF1C in pancreatic endocrine tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>RASSF1A </it>gene silencing by DNA methylation has been suggested as a major event in pancreatic endocrine tumor (PET) but <it>RASSF1A </it>expression has never been studied. The <it>RASSF1 </it>locus contains two CpG islands (<it>A </it>and <it>C</it>) and generates seven transcripts (<it>RASSF1A</it>-<it>RASSF1G</it>) by differential promoter usage and alternative splicing.</p> <p>Methods</p> <p>We studied 20 primary PETs, their matched normal pancreas and three PET cell lines for the (i) methylation status of the <it>RASSF1 </it>CpG islands using methylation-specific PCR and pyrosequencing and (ii) expression of <it>RASSF1 </it>isoforms by quantitative RT-PCR in 13 cases. CpG island A methylation was evaluated by methylation-specific PCR (MSP) and by quantitative methylation-specific PCR (qMSP); pyrosequencing was applied to quantify the methylation of 51 CpGs also encompassing those explored by MSP and qMSP approaches.</p> <p>Results</p> <p>MSP detected methylation in 16/20 (80%) PETs and 13/20 (65%) normal pancreas. At qMSP, 11/20 PETs (55%) and 9/20 (45%) normals were methylated in at least 20% of <it>RASSF1A </it>alleles.</p> <p>Pyrosequencing showed variable distribution and levels of methylation within and among samples, with PETs having average methylation higher than normals in 15/20 (75%) cases (<it>P </it>= 0.01). The evaluation of mRNA expression of <it>RASSF1 </it>variants showed that: i) <it>RASSF1A </it>was always expressed in PET and normal tissues, but it was, on average, expressed 6.8 times less in PET (<it>P </it>= 0.003); ii) <it>RASSF1A </it>methylation inversely correlated with its expression; iii) <it>RASSF1 </it>isoforms were rarely found, except for <it>RASSF1B </it>that was always expressed and <it>RASSF1C </it>whose expression was 11.4 times higher in PET than in normal tissue (<it>P </it>= 0.001). A correlation between <it>RASSF1A </it>expression and gene methylation was found in two of the three PET cell lines, which also showed a significant increase in <it>RASSF1A </it>expression upon demethylating treatment.</p> <p>Conclusions</p> <p><it>RASSF1A </it>gene methylation in PET is higher than normal pancreas in no more than 75% of cases and as such it cannot be considered a marker for this neoplasm. <it>RASSF1A </it>is always expressed in PET and normal pancreas and its levels are inversely correlated with gene methylation. Isoform <it>RASSF1C </it>is overexpressed in PET and the recent demonstration of its involvement in the regulation of the Wnt pathway points to a potential pathogenetic role in tumor development.</p

    Coordinated Ionospheric Reconstruction CubeSat Experiment (CIRCE), In situ and Remote Ionospheric Sensing (IRIS) suite

    Get PDF
    The UK’s Defence Science and Technology Laboratory (Dstl) is partnering with the US Naval Research Laboratory (NRL) on a joint mission to launch miniature sensors that will advance space weather measurement and modelling capabilities. The Coordinated Ionospheric Reconstruction Cubesat Experiment (CIRCE) comprises two 6U cube-satellites that will be launched into a near-polar low earth orbit (LEO), targeting 500 km altitude, in 2021. The UK contribution to CIRCE is the In situ and Remote Ionospheric Sensing (IRIS) suite, complementary to NRL sensors, and comprising three highly miniaturised payloads provided to Dstl by University College London (UCL), University of Bath, and University of Surrey/Surrey Satellite Technology Ltd (SSTL). One IRIS suite will be flown on each satellite, and incorporates an ion/neutral mass spectrometer, a tri-band global positioning system (GPS) receiver for ionospheric remote sensing, and a radiation environment monitor. From the US, NRL have provided two 1U Triple Tiny Ionospheric Photometers (Tri-TIPs) on each satellite (Nicholas et al., 2019), observing the ultraviolet 135.6 nm emission of atomic oxygen at night-time to characterize the two-dimensional distribution of electrons

    The Prognostic Role of RASSF1A Promoter Methylation in Breast Cancer: A Meta-Analysis of Published Data

    Get PDF
    promoter methylation status and both disease free survival (DFS) and overall survival (OS) in female breast cancer.Eligible studies were identified through searching the PubMed, Web of Science and Embase databases. Studies were pooled and summary hazard ratios (HR) with corresponding confidence intervals (CIs) were calculated. Funnel plots were also carried out to evaluate publication bias. promoter methylation status with OS in 1439 patients. The hazard estimates ranged from 1.21–6.90 with a combined random-effects estimates of 3.47 (95%CI 1.44–8.34). OS reported in multivariate analysis was evaluated in four series comprising 1346 cases and the summarized random-effects HR estimate was 3.35 (95%CI 1.14–9.85). Additionally, no publication bias was detected for both OS and DFS. promoter methylation

    Ras-association domain family 1C protein promotes breast cancer cell migration and attenuates apoptosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Ras association domain family 1 (RASSF1) gene is a Ras effector encoding two major mRNA forms, RASSF1A and RASSF1C, derived by alternative promoter selection and alternative mRNA splicing. RASSF1A is a tumor suppressor gene. However, very little is known about the function of RASSF1C both in normal and transformed cells.</p> <p>Methods</p> <p>Gene silencing and over-expression techniques were used to modulate RASSF1C expression in human breast cancer cells. Affymetrix-microarray analysis was performed using T47D cells over-expressing RASSF1C to identify RASSF1C target genes. RT-PCR and western blot techniques were used to validate target gene expression. Cell invasion and apoptosis assays were also performed.</p> <p>Results</p> <p>In this article, we report the effects of altering RASSF1C expression in human breast cancer cells. We found that silencing RASSF1C mRNA in breast cancer cell lines (MDA-MB231 and T47D) caused a small but significant decrease in cell proliferation. Conversely, inducible over-expression of RASSF1C in breast cancer cells (MDA-MB231 and T47D) resulted in a small increase in cell proliferation. We also report on the identification of novel RASSF1C target genes. RASSF1C down-regulates several pro-apoptotic and tumor suppressor genes and up-regulates several growth promoting genes in breast cancer cells. We further show that down-regulation of caspase 3 via overexpression of RASSF1C reduces breast cancer cells' sensitivity to the apoptosis inducing agent, etoposide. Furthermore, we found that RASSF1C over-expression enhances T47D cell invasion/migration <it>in vitro</it>.</p> <p>Conclusion</p> <p>Together, our findings suggest that RASSF1C, unlike RASSF1A, is not a tumor suppressor, but instead may play a role in stimulating metastasis and survival in breast cancer cells.</p
    corecore