1,414,740 research outputs found
Fluvio-deltaic avulsions during relative sea-level fall.
Understanding river response to changes in relative sea level (RSL) is essential for predicting fluvial stratigraphy and source-to-sink dynamics. Recent theoretical work has suggested that rivers can remain aggradational during RSL fall, but field data are needed to verify this response and investigate sediment deposition processes. We show with field work and modeling that fluvio-deltaic systems can remain aggradational or at grade during RSL fall, leading to superelevation and continuation of delta lobe avulsions. The field site is the Goose River, Newfoundland-Labrador, Canada, which has experienced steady RSL fall of around 3–4 mm yr⁻¹ in the past 5 k.y. from post-glacial isostatic rebound. Elevation analysis and optically stimulated luminescence dating suggest that the Goose River avulsed and deposited three delta lobes during RSL fall. Simulation results from Delft3D software show that if the characteristic fluvial response time is longer than the duration of RSL fall, then fluvial systems remain aggradational or at grade, and continue to avulse during RSL fall due to superelevation. Intriguingly, we find that avulsions become more frequent at faster rates of RSL fall, provided the system response time remains longer than the duration of RSL fall. This work suggests that RSL fall rate may influence the architecture of falling-stage or forced regression deposits by controlling the number of deposited delta lobes
Emergence of skyrmion lattices and bimerons in chiral magnetic thin films with nonmagnetic impurities
Skyrmions are topologically protected field structures with particlelike characteristics that play important roles in several areas of science. Recently, skyrmions have been directly observed in chiral magnets. Here, we investigate the effects of pointlike nonmagnetic impurities on the distinct initial states (random or helical ones) and on the formation of the skyrmion crystal in a discrete lattice. Using Monte Carlo techniques, we have found that even a small percentage of spin vacancies present in the chiral magnetic thin film considerably affects the skyrmion order. The main effects of impurities are somewhat similar to thermal effects. The presence of these spin vacancies also induces the formation of bimerons in both the helical and skyrmion states. We also investigate how adjacent impurities forming a hole affect the skyrmion crystal
A comparison of two methods of measuring particle size of Al2O3 produced by a small rocket motor
The size of aluminum oxide particles produced by small rocket motors is determined by tank collection and spectrophotometry. The size of the particulate determines loss in thrust due to particle lag, particulate radiant heat transfer, acoustic attenuation and impingement and rocket plume structure and properties
Polarized Magnetic Wire Induced by Tunneling Through a Magnetic Impurity
Using the zero mode method we compute the conductance of a wire consisting of
a magnetic impurity coupled to two Luttinger liquid leads characterized by the
Luttinger exponent . We find for resonance conditions, in which
the Fermi energy of the leads is close to a single particle energy of the
impurity, the conductance as a function of temperature is , whereas for off-resonance conditions the conductance is
. By applying a gate voltage and/or
a magnetic field, one of the spin components can be in resonance while the
other is off-resonance causing a strong asymmetry between the spin-up and
spin-down conductances.Comment: 8 pages, submitted to PR
Composite fermions in the Fractional Quantum Hall Effect: Transport at finite wavevector
We consider the conductivity tensor for composite fermions in a close to
half-filled Landau band in the temperature regime where the scattering off the
potential and the trapped gauge field of random impurities dominates. The
Boltzmann equation approach is employed to calculate the quasiclassical
transport properties at finite effective magnetic field, wavevector and
frequency. We present an exact solution of the kinetic equation for all
parameter regimes. Our results allow a consistent description of recently
observed surface acoustic wave resonances and other findings.Comment: REVTEX, 4 pages, 1 figur
Techniques and errors in measuring cross- correlation and cross-spectral density functions
Techniques and errors in measuring cross spectral density and cross correlation functions of stationary dynamic pressure dat
Snell's Law from an Elementary Particle Viewpoint
Snell's law of light deflection between media with different indices of
refraction is usually discussed in terms of the Maxwell electromagnetic wave
theory. Snell's law may also be derived from a photon beam theory of light
rays. This latter particle physics view is by far the most simple one for
understanding the laws of refraction.Comment: ReVTeX Format 2 *.eps figure
- …