research

Polarized Magnetic Wire Induced by Tunneling Through a Magnetic Impurity

Abstract

Using the zero mode method we compute the conductance of a wire consisting of a magnetic impurity coupled to two Luttinger liquid leads characterized by the Luttinger exponent α(1)\alpha(\leq 1). We find for resonance conditions, in which the Fermi energy of the leads is close to a single particle energy of the impurity, the conductance as a function of temperature is Ge2h(T/TF)2(α2)G \sim \frac{e^2}{h} (T/T_F)^{2(\alpha-2)}, whereas for off-resonance conditions the conductance is Ge2h(T/TF)2(α1)G \sim \frac{e^2}{h} (T/T_F)^{2(\alpha-1)}. By applying a gate voltage and/or a magnetic field, one of the spin components can be in resonance while the other is off-resonance causing a strong asymmetry between the spin-up and spin-down conductances.Comment: 8 pages, submitted to PR

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020
    Last time updated on 27/12/2021