258 research outputs found

    Measles: An overview of a re-emerging disease in children and immunocompromised patients

    Get PDF
    Despite the availability of a safe and effective vaccine, in 2018, around 350,000 measles cases were reported worldwide, which resulted in an estimate of 142,300 deaths from measles. Additionally, in 2017, global measles cases spiked, causing the death of 110,000 people, mostly children under the age of 5 years and immunocompromised adults. The increase in measles incidence is caused by the ongoing reduction of vaccination coverage. This event has triggered public and scientific interest. For this reason, we reviewed the pathophysiology of measles infection, focusing on mechanisms by which the virus spreads systemically through the host organism. By reaching the lymphocytes from the airways through a \u201ctrojan horse\u201d strategy, measles induces an immunosuppression status. H and F glycoproteins, both expressed in the envelope, ensure attachment of the virus to host cells and spreading from one cell to another by binding to several receptors, as described in detail. The severity of the disease depends both on the age and underlying conditions of patients as well as the social and health context in which epidemics spread, and is often burdened by sequelae and complications that may occur several years after infection. Particular attention was paid to special groups that are more susceptible to severe or atypical measles. An overview of microbiology, symptoms, diagnosis, prevention, and treatment completes and enriches the review

    Zinc prevents vaginal candidiasis by inhibiting expression of an inflammatory fungal protein

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Association for the Advancement of Science via the DOI in this recordData and materials availability: All data associated with this study are present in the paper or the Supplementary Materials. Raw data from the figures are given in data file S1.Candida causes an estimated half-billion cases of vulvovaginal candidiasis (VVC) every year. VVC is most commonly caused by Candida albicans, which, in this setting, triggers nonprotective neutrophil infiltration, aggressive local inflammation, and symptomatic disease. Despite its prevalence, little is known about the molecular mechanisms underpinning the immunopathology of this fungal infection. In this study, we describe the molecular determinant of VVC immunopathology and a potentially straightforward way to prevent disease. In response to zinc limitation, C. albicans releases a trace mineral binding molecule called Pra1 (pH-regulated antigen). Here, we show that the PRA1 gene is strongly up-regulated during vaginal infections and that its expression positively correlated with proinflammatory cytokine concentrations in women. Genetic deletion of PRA1 prevented vaginal inflammation in mice, and application of a zinc solution down-regulated expression of the gene and also blocked immunopathology. We also show that treatment of women suffering from recurrent VVC with a zinc gel prevented reinfections. We have therefore identified a key mediator of symptomatic VVC, giving us an opportunity to develop a range of preventative measures for combatting this disease.Wellcome TrustMedical Research Council (MRC)National Institute for Health and Care Research (NIHR)Biotechnology and Biological Sciences Research Council (BBSRC

    A Yersinia Effector with Enhanced Inhibitory Activity on the NF-κB Pathway Activates the NLRP3/ASC/Caspase-1 Inflammasome in Macrophages

    Get PDF
    A type III secretion system (T3SS) in pathogenic Yersinia species functions to translocate Yop effectors, which modulate cytokine production and regulate cell death in macrophages. Distinct pathways of T3SS-dependent cell death and caspase-1 activation occur in Yersinia-infected macrophages. One pathway of cell death and caspase-1 activation in macrophages requires the effector YopJ. YopJ is an acetyltransferase that inactivates MAPK kinases and IKKβ to cause TLR4-dependent apoptosis in naïve macrophages. A YopJ isoform in Y. pestis KIM (YopJKIM) has two amino acid substitutions, F177L and K206E, not present in YopJ proteins of Y. pseudotuberculosis and Y. pestis CO92. As compared to other YopJ isoforms, YopJKIM causes increased apoptosis, caspase-1 activation, and secretion of IL-1β in Yersinia-infected macrophages. The molecular basis for increased apoptosis and activation of caspase-1 by YopJKIM in Yersinia-infected macrophages was studied. Site directed mutagenesis showed that the F177L and K206E substitutions in YopJKIM were important for enhanced apoptosis, caspase-1 activation, and IL-1β secretion. As compared to YopJCO92, YopJKIM displayed an enhanced capacity to inhibit phosphorylation of IκB-α in macrophages and to bind IKKβ in vitro. YopJKIM also showed a moderately increased ability to inhibit phosphorylation of MAPKs. Increased caspase-1 cleavage and IL-1β secretion occurred in IKKβ-deficient macrophages infected with Y. pestis expressing YopJCO92, confirming that the NF-κB pathway can negatively regulate inflammasome activation. K+ efflux, NLRP3 and ASC were important for secretion of IL-1β in response to Y. pestis KIM infection as shown using macrophages lacking inflammasome components or by the addition of exogenous KCl. These data show that caspase-1 is activated in naïve macrophages in response to infection with a pathogen that inhibits IKKβ and MAPK kinases and induces TLR4-dependent apoptosis. This pro-inflammatory form of apoptosis may represent an early innate immune response to highly virulent pathogens such as Y. pestis KIM that have evolved an enhanced ability to inhibit host signaling pathways

    Principal variable selection to explain grain yield variation in winter wheat from features extracted from UAV imagery

    Get PDF
    Background: Automated phenotyping technologies are continually advancing the breeding process. However, collecting various secondary traits throughout the growing season and processing massive amounts of data still take great efforts and time. Selecting a minimum number of secondary traits that have the maximum predictive power has the potential to reduce phenotyping efforts. The objective of this study was to select principal features extracted from UAV imagery and critical growth stages that contributed the most in explaining winter wheat grain yield. Five dates of multispectral images and seven dates of RGB images were collected by a UAV system during the spring growing season in 2018. Two classes of features (variables), totaling to 172 variables, were extracted for each plot from the vegetation index and plant height maps, including pixel statistics and dynamic growth rates. A parametric algorithm, LASSO regression (the least angle and shrinkage selection operator), and a non-parametric algorithm, random forest, were applied for variable selection. The regression coefficients estimated by LASSO and the permutation importance scores provided by random forest were used to determine the ten most important variables influencing grain yield from each algorithm. Results: Both selection algorithms assigned the highest importance score to the variables related with plant height around the grain filling stage. Some vegetation indices related variables were also selected by the algorithms mainly at earlier to mid growth stages and during the senescence. Compared with the yield prediction using all 172 variables derived from measured phenotypes, using the selected variables performed comparable or even better. We also noticed that the prediction accuracy on the adapted NE lines (r = 0.58–0.81) was higher than the other lines (r = 0.21–0.59) included in this study with different genetic backgrounds. Conclusions: With the ultra-high resolution plot imagery obtained by the UAS-based phenotyping we are now able to derive more features, such as the variation of plant height or vegetation indices within a plot other than just an averaged number, that are potentially very useful for the breeding purpose. However, too many features or variables can be derived in this way. The promising results from this study suggests that the selected set from those variables can have comparable prediction accuracies on the grain yield prediction than the full set of them but possibly resulting in a better allocation of efforts and resources on phenotypic data collection and processing

    Witches, Floods, and Wonder Drugs: Historical Perspectives on Risk Management

    Get PDF
    This paper reports an investigation that was undertaken to give a philosophical and historical perspective to IIASA's work on decision making in the face of uncertainty in such areas as energy, agriculture, health care, and water resources, and in particular, problems of risk management. While current risk-management methods usually apply advanced concepts of system modeling and statistical inference to societal decision making under uncertainty, it has generally been the case, as this paper points out, that risk-management problems have not revolved around obtaining the correct probabilities. Rather, the problems have important political and procedural elements, and involve how a society collects and employs imperfect and incomplete information. Clark's central point is that the answers to today's societal risk-management problems do not depend solely on the usual techniques of risk assessment; rather, they lie in developing imaginative approaches to risk management that incorporate the social decision processes that must be involved. IIASA's research amply corroborates this point

    Investigating the Glycating Effects of Glucose, Glyoxal and Methylglyoxal on Human Sperm

    Get PDF
    Glycation is the non-enzymatic reaction between reducing sugars, such as glucose, and proteins, lipids or nucleic acids, producing Advanced Glycation End (AGE) products. AGEs, produced during natural senescence as well as through lifestyle factors such as diet and smoking, are key pathogenic compounds in the initiation and progression of diabetes. Importantly, many of these factors and conditions also have influence on male fertility, affecting sperm count and semen quality, contributing to the decreasing trend in male fertility. This study investigated the impact of AGEs on sperm damage. In vitro sperm glycation assays were used to determine the levels and localization of the potent AGE compound, carboxymethyl-lysine (CML) in response to treatment with the glycating compounds glucose, glyoxal and methylglyoxal. Sperm function assays were then used to assess the effects of glycation on motility and hyaluronan binding, and levels of oxidative DNA damage were analyzed through measurement of the marker, 8-oxoguanine. Results showed that glyoxal, but not glucose or methylglyoxal, induced significant increases in CML levels on sperm and this correlated with an increase in 8-oxoguanine. Immunocytochemistry revealed that AGEs were located on all parts of the sperm cell and most prominently on the head region. Sperm motility and hyaluronidase activity were not adversely affected by glycation. Together, the observed detrimental effects of the increased levels of AGE on DNA integrity, without an effect on motility and hyaluronidase activity, suggest that sperm may retain some fertilizing capacity under these adverse conditions
    corecore