178 research outputs found

    Improvement of Grid-directed Cross Flow in CUPID Subchannel Scale Analysis Module based on CFD Calculation

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์—๋„ˆ์ง€์‹œ์Šคํ…œ๊ณตํ•™๋ถ€,2019. 8. ์กฐํ˜•๊ทœ.ํ˜ผํ•ฉ๋‚ ๊ฐœ๋Š” ํ•ต์—ฐ๋ฃŒ๋ด‰์˜ ๋ƒ‰๊ฐ์„ฑ ์ฆ๋Œ€๋ฅผ ์œ„ํ•œ ๊ตฌ์กฐ๋ฌผ๋กœ, ์ „์‚ฐ ํ•ด์„ ๋ถ„์•ผ์—์„œ ์ง€์ง€๊ฒฉ์ž์™€ ํ˜ผํ•ฉ๋‚ ๊ฐœ์— ์˜ํ•œ ํšก๋ฐฉํ–ฅ ์œ ๋™์„ ๋ชจ์‚ฌํ•˜๊ธฐ ์œ„ํ•œ ๋ชจ๋ธ์˜ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰์ค‘์ด๋‹ค. ๋ถ€์ˆ˜๋กœ ๋‹จ์œ„ ํ•ด์„ ์ฝ”๋“œ์ธ CTF์—์„œ๋Š” ์ง€์ง€๊ฒฉ์ž-์œ ๋„ ํšก๋ฅ˜ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ํ˜ผํ•ฉ๋‚ ๊ฐœ์— ์˜ํ•ด ์ƒ์„ฑ๋˜๋Š” ํšก๋ฅ˜๋ฅผ ๋ชจ์‚ฌํ•˜๊ณ , ์„ ํ–‰์—ฐ๊ตฌ์—์„œ CUPID ๋ถ€์ˆ˜๋กœ ๋‹จ์œ„ ํ•ด์„์— ์ง€์ง€๊ฒฉ์ž-์œ ๋„ ํšก๋ฅ˜ ๋ชจ๋ธ์„ ์ ์šฉํ•˜์˜€๋‹ค. ๊ธฐ์กด์˜ CUPID ์ฝ”๋“œ์— ์ ์šฉ๋œ ์ง€์ง€๊ฒฉ์ž-์œ ๋„ ํšก๋ฅ˜ ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ ๊ฐ ๋ถ€์ˆ˜๋กœ์—์„œ ํ˜ผํ•ฉ๋‚ ๊ฐœ์˜ ํšจ๊ณผ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” ํšก๋ฐฉํ–ฅ ๋Œ€๋ฅ˜ ์ธ์ž์˜ ๊ฐ’์— ๋Œ€ํ•œ ๋ฌผ๋ฆฌ์  ๊ทผ๊ฑฐ๊ฐ€ ๋ถ€์กฑํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ธฐ์กด์˜ ๋ชจ๋ธ๊ณผ ๊ฐ™์ด ๋ถ€์ˆ˜๋กœ ์ข…๋ฅ˜์™€ ๋ฌด๊ด€ํ•˜๊ฒŒ ํšก๋ฐฉํ–ฅ ๋Œ€๋ฅ˜ ์ธ์ž๋ฅผ ๋™์ผํ•˜๊ฒŒ ์ •์˜ํ•˜๋Š” ๊ฒƒ์ด ํƒ€๋‹นํ•œ์ง€ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•ด MATiS-H ์‹คํ—˜์˜ CFD ํ•ด์„์„ ํ†ตํ•ด ํšก๋ฐฉํ–ฅ ๋Œ€๋ฅ˜ ์ธ์ž๋ฅผ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ๋ถ€์ˆ˜๋กœ ์ข…๋ฅ˜ ๋ณ„๋กœ ํšก๋ฐฉํ–ฅ ๋Œ€๋ฅ˜ ์ธ์ž์˜ ๊ฐ’์ด ๋‹ค๋ฅด๋‹ค๋Š” ์ ์„ ๋ฐœ๊ฒฌํ•˜์˜€๊ณ , CE-type ์ง‘ํ•ฉ์ฒด์˜ ์ œ์–ด๋ด‰ ๋ถ€๊ทผ์˜ ๋ถ€์ˆ˜๋กœ์— ๋Œ€ํ•ด์„œ๋„ ํšก๋ฐฉํ–ฅ ๋Œ€๋ฅ˜ ์ธ์ž๋ฅผ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ์ˆ˜์ •๋œ ํšก๋ฐฉํ–ฅ ๋Œ€๋ฅ˜ ์ธ์ž๋ฅผ CUPID ์ฝ”๋“œ์— ์ ์šฉํ•˜์—ฌ PSBT ์—ด ํ˜ผํ•ฉ ์‹คํ—˜ ๊ฒ€์ฆ์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๊ธฐ์กด ๋ชจ๋ธ๊ณผ ๊ฐ™์ด ๊ท ์ผํ•œ ํšก๋ฐฉํ–ฅ ๋Œ€๋ฅ˜ ์ธ์ž๋ฅผ ์ ์šฉํ–ˆ์„ ๋•Œ๋ณด๋‹ค ์ˆ˜์ •๋œ ํšก๋ฐฉํ–ฅ ๋Œ€๋ฅ˜ ์ธ์ž๋ฅผ ์ ์šฉํ–ˆ์„ ๋•Œ PSBT ์—ด ํ˜ผํ•ฉ ์‹คํ—˜ ์ถœ๊ตฌ ์˜จ๋„ ๋ถ„ํฌ๋ฅผ ๋” ์ž˜ ์˜ˆ์ธกํ•˜์˜€๊ณ , ํŠนํžˆ ์˜จ๋„๊ฐ€ ๊ฐ€์žฅ ๋†’์€ ๋ถ€์ˆ˜๋กœ์˜ ์œ„์น˜๋ฅผ ์ž˜ ์˜ˆ์ธกํ•˜์˜€๋‹ค. APR1400 ์ „๋…ธ์‹ฌ ํ•ด์„์—์„œ ์ˆ˜์ •๋œ ํšก๋ฐฉํ–ฅ ๋Œ€๋ฅ˜ ์ธ์ž๋ฅผ ์ ์šฉํ•˜์—ฌ ๊ธฐ์กด ๊ณ„์‚ฐ๊ณผ์˜ ๋น„๊ต๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์ „๋…ธ์‹ฌ ์ˆ˜์†ก ํ•ด์„ ์ฝ”๋“œ์ธ nTRACER ๊ณ„์‚ฐ์˜ ์ถœ๋ ฅ ๋ถ„ํฌ๋ฅผ ์ด์šฉํ•˜์—ฌ 8๋ฒˆ ์ง‘ํ•ฉ์ฒด์˜ ๋‹จ์ผ ์ง‘ํ•ฉ์ฒด ๊ณ„์‚ฐ์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ๊ธฐ์กด ๊ณ„์‚ฐ๊ณผ์˜ ์ฐจ์ด์ ์„ ๋ถ„์„ํ•˜์˜€๊ณ , ์ „๋…ธ์‹ฌ ๊ณ„์‚ฐ์—์„œ ์ตœ์†Œ DNBR์„ ๋น„๊ตํ•œ ๊ฒฐ๊ณผ ์ˆ˜์ •๋œ ํšก๋ฐฉํ–ฅ ๋Œ€๋ฅ˜ ์ธ์ž๋ฅผ ์ ์šฉํ•œ ๊ณ„์‚ฐ์—์„œ ์ตœ์†Œ๊ฐ’์ด 0.5% ๊ฐ€๋Ÿ‰ ๊ฐ์†Œํ•˜์˜€๋‹ค. ์„ ํ–‰์—ฐ๊ตฌ์—์„œ ์ง€์ง€๊ฒฉ์ž-์œ ๋„ ํšก๋ฅ˜ ๋ชจ๋ธ์€ ๋‹จ์ƒ์œ ๋™์— ๋Œ€ํ•ด์„œ๋งŒ ์ ์šฉ์ด ๋˜์–ด ์žˆ์—ˆ๋‹ค. ์ด์ƒ์œ ๋™ ๊ณ„์‚ฐ์—์„œ ๋ชจ๋ธ์˜ ์ ํ•ฉ์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ PSBT ๊ธฐํฌ์œจ ์ธก์ • ์‹คํ—˜ ๊ฒ€์ฆ์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์ง€์ง€๊ฒฉ์ž-์œ ๋„ ํšก๋ฅ˜ ๋ชจ๋ธ์€ ๋‹จ์ƒ ์•ก์ฒด ์œ ๋™ ํ˜•ํƒœ์™€ ๊ธฐํฌ ์œ ๋™ ํ˜•ํƒœ์— ํ•ด๋‹นํ•˜๋Š” ๋ถ€์ˆ˜๋กœ์— ๋Œ€ํ•˜์—ฌ ์ ์šฉํ•˜์˜€๋‹ค. ์ง€์ง€๊ฒฉ์ž-์œ ๋„ ํšก๋ฅ˜ ๋ชจ๋ธ์„ ์ ์šฉํ•˜๋ฉด ํ˜ผํ•ฉ๋‚ ๊ฐœ ๋ชจ๋ธ์„ ์ ์šฉํ•˜์ง€ ์•Š์€ ๊ณ„์‚ฐ๊ณผ ๋น„๊ตํ•˜์—ฌ ๊ธฐํฌ์œจ์ด ๊ฐ์†Œํ•˜๊ณ , ๋น„๋“ฑ์ด ๋” ๋Šฆ๊ฒŒ ์‹œ์ž‘๋˜๋Š” ํŠน์ง•์ด ์žˆ์—ˆ๊ณ , ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ์ƒ๋Œ€์ ์œผ๋กœ ๋” ์ž˜ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ๊ธฐํฌ์œจ์ด ๋†’์€ ์‹คํ—˜์—์„œ ์‹คํ—˜๋ณด๋‹ค ๋น„๋“ฑ์˜ ์‹œ์ž‘ ์œ„์น˜๋ฅผ ๊ณผ๋„ํ•˜๊ฒŒ ๋‚ฎ๊ฒŒ ์˜ˆ์ธกํ•˜์˜€๊ณ , ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ธฐํฌ์œจ์ด ๋†’์€ ๋ถ€์ˆ˜๋กœ์—์„œ ํ˜ผํ•ฉ๋‚ ๊ฐœ ๋ชจ๋ธ์„ ์ ์šฉํ•˜๊ณ , ํ˜ผํ•ฉ๋‚ ๊ฐœ์— ์˜ํ•œ ๊ธฐํฌ์˜ ์œ ๋™์„ ๋ชจ์‚ฌํ•˜๊ธฐ ์œ„ํ•œ ์‹คํ—˜์  ๋ฐ์ดํ„ฐ์™€ ๋ชจ๋ธ์ด ์ œ์‹œ๋˜์–ด์•ผ ํ•œ๋‹ค.Mixing vane is a structure applied in rod bundle geometry, which enhances the coolability of nuclear fuel rods. In thermal-hydraulic analysis field, one of the essential issue is simulating the lateral flow due to mixing vane and spacer grid geometry. Grid-directed cross flow model is the model simulates lateral flow due to mixing vane in subchannel scale analysis code, CTF. This model is implemented in CUPID subchannel scale analysis in previous study. There was lack of physical basis for defining the lateral convection factor, which is the factor represents the intensity of lateral flow in CUPID subchannel scale analysis. Also in order to justify defining lateral convection factor equally for all subchannels, CFD analysis of MATiS-H experiment was used for calculating lateral convection factor. Lateral convection factor was various for each type of subchannels. Subchannels near the CE-type guide tube geometry were also considered for calculation of lateral convection factor. PSBT thermal mixing test was simulated for validation of modified lateral convection factor in CUPID code. Compared with the calculation that used uniform lateral convection factor like previous model, the new calculation result with modified lateral convection factor predicted well the PSBT thermal mixing test. Especially it predicts the location of the subchannel which had the highest temperature. APR1400 whole core simulation with modified lateral convection factor was compared with previous calculation. Power distribution from calculation result of nTRACER was used. Calculations of 8th subchannel with modified and uniform lateral convection factor was compared, and whole core calculations were also compared. Minimum DNBR from modified lateral convection factor was 0.5% less than minimum DNBR from uniform lateral convection factor. In previous study, grid-directed cross flow model was only implemented in single phase calculation. PSBT void measurement test was validated for justify the grid directed cross flow model from CUPID code in two phase simulation. Grid-directed cross flow model was implemented only in the subchannels in single phase liquid flow regime or bubble flow regime. Implementing the grid-directed cross flow model decreased the void fraction and set back boiling. Calculation result with grid-directed cross flow model well predicted the PSBT void measurement test than the calculation without mixing vane model. There were over predictions at test cases include high void fraction result. Therefore, implementation of grid-directed cross flow model in subchannels with high void fraction is needed. Also, experimental data about the bubbly flow near the mixing vane geometry was suggested for the model for simulating two phase flow near mixing vane in subchannel scale analysis.๋ชฉ ์ฐจ ์ดˆ ๋ก i ๋ชฉ ์ฐจ iii ํ‘œ ๋ชฉ ์ฐจ v ๊ทธ ๋ฆผ ๋ชฉ ์ฐจ vi ์ œ 1 ์žฅ ์„œ ๋ก  ๏ผ‘ ์ œ 1 ์ ˆ ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๏ผ‘ 1. ์ง€์ง€๊ฒฉ์ž-์œ ๋„ ํšก๋ฅ˜ ๋ชจ๋ธ ๏ผ“ 2. CUPID ์ฝ”๋“œ์˜ ์ง€์ง€๊ฒฉ์ž-์œ ๋„ ํšก๋ฅ˜ ๋ชจ๋ธ ์ ์šฉ ๏ผ” ์ œ 2 ์ ˆ ์—ฐ๊ตฌ ๋ชฉ์  ๋ฐ ๋ฒ”์œ„ ๏ผ– ์ œ 2 ์žฅ ์ง€์ง€๊ฒฉ์ž ๋ชจ๋ธ์˜ CFD ์—ฐ๊ตฌ ๏ผ™ ์ œ 1 ์ ˆ MATiS-H ์‹คํ—˜ ๏ผ™ 1. CFD ํ•ด์„ ๋„๋ฉ”์ธ ์ •์˜ ๏ผ‘๏ผ 2. ๋‚œ๋ฅ˜ ๋ชจ๋ธ์— ๋”ฐ๋ฅธ ๋ฏผ๊ฐ๋„ ๋ถ„์„ 14 3. CFD ํ•ด์„์„ ์ด์šฉํ•œ ์œ ์„  ๋ถ„์„ 19 ์ œ 2 ์ ˆ ํšก๋ฐฉํ–ฅ ๋Œ€๋ฅ˜ ์ธ์ž ๊ณ„์‚ฐ 23 1. MATiS-H ํ˜•์ƒ์—์„œ์˜ ํšก๋ฐฉํ–ฅ ๋Œ€๋ฅ˜ ์ธ์ž ๊ณ„์‚ฐ 24 2. ์ œ์–ด๋ด‰ ๊ทผ์ฒ˜ ํ˜•์ƒ์—์„œ์˜ ํšก๋ฐฉํ–ฅ ๋Œ€๋ฅ˜ ์ธ์ž ๊ณ„์‚ฐ 28 3. ํšก๋ฐฉํ–ฅ ๋Œ€๋ฅ˜ ์ธ์ž์— ๊ด€ํ•œ ๊ณ ์ฐฐ 32 ์ œ 3 ์žฅ ์ง€์ง€๊ฒฉ์ž-์œ ๋„ ํšก๋ฅ˜ ๋ชจ๋ธ์˜ ๊ฐœ์„  35 ์ œ 1 ์ ˆ PSBT ์—ด ํ˜ผํ•ฉ ์‹คํ—˜ 35 1. PSBT ์—ด ํ˜ผํ•ฉ ์‹คํ—˜ ๊ฒ€์ฆ ๊ฒฐ๊ณผ 38 ์ œ 2 ์ ˆ APR1400 ์ „๋…ธ์‹ฌ ํ•ด์„ 44 1. APR1400 ๋‹จ์ผ ์ง‘ํ•ฉ์ฒด ๊ณ„์‚ฐ 44 2. APR1400 ์ „๋…ธ์‹ฌ ๊ณ„์‚ฐ ๊ฒฐ๊ณผ ๋น„๊ต 49 ์ œ 4 ์žฅ ์ด์ƒ ์œ ๋™ ํ•ด์„์—์„œ์˜ ๋ชจ๋ธ ์ ์šฉ 54 ์ œ 1 ์ ˆ PSBT ๊ธฐํฌ์œจ ์ธก์ • ์‹คํ—˜ 54 1. PSBT ๊ธฐํฌ์œจ ์ธก์ • ์‹คํ—˜ ์ผ€์ด์Šค 56 2. PSBT ๊ธฐํฌ์œจ ์ธก์ • ์‹คํ—˜ ๊ฒ€์ฆ ๊ฒฐ๊ณผ 58 ์ œ 5 ์žฅ ๊ฒฐ ๋ก  62 ์ œ 1 ์ ˆ ์š” ์•ฝ 62 ์ œ 2 ์ ˆ ์ œ ์–ธ 63 ์ฐธ ๊ณ  ๋ฌธ ํ—Œ 64 Abstract 66Maste

    A Development Planning for Conservation of Samgak Mansion area and Periphery area in Yongsan-gu, Seoul

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ํ™˜๊ฒฝ๋Œ€ํ•™์› : ํ™˜๊ฒฝ์กฐ๊ฒฝํ•™๊ณผ, 2012. 8. ์กฐ๊ฒฝ์ง„.์„œ์šธ์€ ์˜ค๋žœ ์—ญ์‚ฌ์™€ ๋ฌธํ™”๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋Š์ž„์—†์ด ๋ณ€ํ™”ยท๋ฐœ์ „ํ•ด์™”์œผ๋ฉฐ ์˜ค๋Š˜๋‚  ๋ฏธ๋ž˜๊ตญ์ œ๋„์‹œ๋กœ์„œ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ์˜ค๋žซ๋™์•ˆ ์ถ•์ ๋œ ๋„์‹œ๋ฐœ์ „๊ณผ์ •์˜ ํ”์ ๋“ค์€ ์•„์ง๋„ ๋„์‹ฌ์˜ ๊ณณ๊ณณ์—์„œ ํ™•์ธํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ๋„์‹œํ™˜๊ฒฝ์˜ ๋‹ค์–‘์„ฑ์„ ๋†’์ด๋Š” ์—ญํ• ์„ ํ•˜๊ณ  ์žˆ๋‹ค. ๋ฏธ๋ž˜๊ตญ์ œ๋„์‹œ๋กœ์„œ ๊ฑด๊ฐ•ํ•œ ๋„์‹œ์˜ ๋ชจ์Šต์„ ๊ณ ๋ฏผํ•˜๋ฉด์„œ ๋„์‹œํ™˜๊ฒฝ์„ ๊ตฌ์„ฑํ•˜๋Š” ์š”์†Œ๋“ค์˜ ๋‹ค์–‘์„ฑ๊ณผ ๊ณต๊ณต์„ฑ์˜ ์ค‘์š”์„ฑ์„ ์ธ์‹ํ•˜๊ฒŒ ๋˜์—ˆ๊ณ  ์šฐ๋ฆฌ์˜ ๋„์‹œํ™˜๊ฒฝ ์† ์ž์‚ฐ๋“ค์— ๋Œ€ํ•œ ๊ฐ€์น˜๋ฅผ ์ƒˆ๋กญ๊ฒŒ ์กฐ๋ช…ํ•˜๊ณ  ๊ทธ ๋ณด์กด์˜ ํ•„์š”์„ฑ์„ ์ธ์‹ํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. ์šฉ์‚ฐ ์ผ๋Œ€๋Š” ๊ฐœํ•ญ๊ธฐ์™€ ์ผ์ œ๊ฐ•์ ๊ธฐ๋™์•ˆ ํ•œ๊ฐ•๋ณ€์˜ ๊ฐœํ•ญ์žฅ๊ณผ ์ฒ ๋„์—ญ์„ ์ค‘์‹ฌ์œผ๋กœ ๋„์‹œ์กฐ์ง์ด ํ˜•์„ฑ๋˜์—ˆ๊ณ  ํ•ด๋ฐฉ ํ›„ ์˜ค๋Š˜๋‚ ๊นŒ์ง€ ๋„์‹œ์˜ ๋ฐœ์ „๊ณผ ๋ณ€ํ™”๊ณผ์ •์„ ํ•จ๊ป˜ ํ•˜๊ณ  ์žˆ๋‹ค. ๋‚จ๋ถ์œผ๋กœ ํ•œ๊ฐ•๊ณผ ๋‚จ์‚ฐ์— ์ ‘ํ•ด์žˆ๋Š” ์šฉ์‚ฐ์€ ์ง€๋ฆฌ์ ์œผ๋กœ ์„œ์šธ์˜ ์ค‘์‹ฌ์— ์žˆ์œผ๋ฉฐ ํ•œ๊ฐ•๊ณผ ์šฉ์‚ฐ์—ญ์— ์˜ํ•œ ๊ทผ๋Œ€ํ™”๊ณต๊ฐ„์—์„œ ์šฉ์‚ฐ๊ณต์›๊ณผ ์šฉ์‚ฐ๊ตญ์ œ์—…๋ฌด์ง€๊ตฌ ๋“ฑ ๋ฏธ๋ž˜๊ตญ์ œ๋„์‹œ์˜ ์ƒ์ง•์  ์ค‘์‹ฌ๊ณต๊ฐ„์œผ๋กœ์„œ ๊ทธ ์—ญํ• ๊ณผ ์ค‘์š”์„ฑ์ด ๋†’์•„์ง€๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ์šฉ์‚ฐ ์ผ๋Œ€์—์„œ ์ง„ํ–‰ ์ค‘์ธ ์ „๋ฉด์ฒ ๊ฑฐ์‹ ์žฌ๊ฑด์ถ•์žฌ๊ฐœ๋ฐœ๋ฐฉ์‹์€ ์šฉ์‚ฐ์˜ ์—ญ์‚ฌ๋ฌธํ™”์  ํ”์ ๋“ค์ธ ๊ธฐ์กด์˜ ๋„์‹œ ๊ตฌ์กฐ์™€ ๊ธฐ์–ต๋“ค์„ ์†Œ๋ฉธ์‹œํ‚ค๊ณ  ์žˆ๋‹ค. ๋˜ํ•œ, ๊ณ ์ธต๊ณ ๋ฐ€์˜ ์ฃผ์ƒ๋ณตํ•ฉ์‹ ๋‹จ์ง€๋“ค์€ ์šฉ์‚ฐ ์ผ๋Œ€์˜ ํš์ผ์ ์ธ ๊ฒฝ๊ด€์„ ์กฐ์„ฑํ•˜๊ณ  ์žˆ์œผ๋ฉฐ ํ์‡„์ ์ธ ์„ฑ๊ฒฉ๊ณผ ํ•จ๊ป˜ ์ฃผ๋ณ€์ง€์—ญ๊ณผ์˜ ์—ฐ๊ณ„์„ฑ์„ ๋–จ์–ด๋œจ๋ ค ๋„์‹œํ™˜๊ฒฝ์˜ ๊ณต๊ณต์„ฑ๊ณผ ๋‹ค์–‘์„ฑ์„ ์ €ํ•˜์‹œํ‚ค๊ณ  ์žˆ๋‹ค. ์šฐ์„ ์ ์œผ๋กœ ์šฉ์‚ฐ ์ผ๋Œ€์—์„œ ์ง„ํ–‰ ์ค‘์ธ ๋Œ€๊ทœ๋ชจ ๊ฐœ๋ฐœ์˜ ํ๋ฆ„์œผ๋กœ๋ถ€ํ„ฐ ๋ฒ—์–ด๋‚˜ ์žˆ๋Š” ์šฉ์‚ฐ๊ตฌ ํ•œ๊ฐ•๋กœ๋™ ์‚ผ๊ฐ์ง€ ๊ต์ฐจ๋กœ ์ผ๋Œ€๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์—ญ์‚ฌ๋ฌธํ™”ํ™˜๊ฒฝ์„ ๊ตฌ์„ฑํ•˜๋Š” ์š”์†Œ๋“ค์„ ์ฐพ์•„ ์žฅ์†Œ์„ฑ ๊ตฌํ˜„์˜ ์š”์†Œ๋กœ์„œ ๊ฐ€์น˜์™€ ๋ณด์ „์˜ ํ•„์š”์„ฑ์„ ํ™•์ธํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ๊ฐ€๋กœ์™€ ํ•„์ง€ํ˜•ํƒœ, ๊ฑด์ถ•๋ฌผ๋“ค๊ณผ ๊ฐ™์€ ๋ฌผ๋ฆฌ์  ์š”์†Œ๋“ค์— ๋Œ€ํ•œ ๊ฒƒ์ด๋ฉฐ, ๋‘ ๋ฒˆ์งธ๋Š” ๋Œ€์ƒ์ง€๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์ƒ์„ฑ๋˜์—ˆ๋˜ ๋Œ€์ค‘๋ฌธํ™”์™€ ๋„์‹œ๋ฐœ์ „๊ณผ์ •์—์„œ ๋Œ€์ƒ์ง€์˜ ์˜๋ฏธ์™€ ์—ญํ•  ๋“ฑ ๋ฌธํ™”์  ์š”์†Œ๋‹ค. ์„ธ ๋ฒˆ์งธ๋Š” ํ˜„์žฌ ํ™œ๋™ ์ค‘์ธ ๋‹จ์ฒด๋“ค๊ณผ ๊ธฐ์–ต์„ ๊ณต์œ ํ•˜๊ณ  ์žˆ๋Š” ๊ณต๋™์ฒด, ๋Œ€์ƒ์ง€์—์„œ ๊ฑฐ์ฃผํ•˜๊ณ  ์žˆ๋Š” ์ง€์—ญ์ฃผ๋ฏผ๋“ค์ธ ์ธ์  ์š”์†Œ๋‹ค. ์ด๋“ค ์„ธ ๊ฐ€์ง€ ์š”์†Œ๋Š” ๋Œ€์ƒ์ง€์˜ ์‹œ๊ณต๊ฐ„์  ์—ฐ์†์„ฑ์„ ๋ณด์—ฌ์ฃผ๋Š” ์š”์†Œ๋“ค์ด๋ฉฐ ์—ญ์‚ฌ๋ฌธํ™”์  ๊ฐ€์น˜์™€ ๋ณด์ „๊ฐ€๋Šฅ์„ฑ์„ ๊ฐ€์ง„๋‹ค. ๋‹ค์Œ์œผ๋กœ ํ˜„ํ™ฉ์กฐ์‚ฌ๋ฅผ ํ†ตํ•ด ๋Œ€์ƒ์ง€์˜ ๋ฌผ๋ฆฌ์ ์ธ ํŠน์„ฑ๊ณผ ์‹ค์งˆ์ ์ธ ๋ฌธ์ œ๋“ค์„ ํ™•์ธํ•œ๋‹ค. ๋Œ€์ƒ์ง€ ๋‚ด์˜ ๊ฐ€๋กœ๋“ค์€ ๊ทผ๋Œ€ํ™”๊ณผ์ •์—์„œ ํ˜•์„ฑ๋˜์–ด ์ง€๊ธˆ๊นŒ์ง€ ์œ ์ง€๋˜๊ณ  ์žˆ๋Š” ๋Œ€ํ‘œ์ ์ธ ํŠน์„ฑ์ด๋ฉฐ ์ฃผ๋ณ€์ง€์—ญ๊ณผ ์—ฐ๊ณ„์„ฑ์„ ๊ฐ€์ง€๋Š” ์ค‘์š”ํ•œ ์š”์†Œ๋‹ค. ํ•œ๊ฐ•๋Œ€๋กœ๋ณ€์˜ ์•ก์ž๊ฐ€๊ฒŒ๋“ค์€ 60-70๋…„๋Œ€ ํ˜•์„ฑ๋œ ํ™”๋ž‘๊ฑฐ๋ฆฌ์˜ ํ”์ ๋“ค์„ ๊ทธ๋Œ€๋กœ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ์œผ๋ฉฐ ๊ณผ๊ฑฐ์˜ ์ „์ฐจ๊ณ ์ง€๋กœ ์‚ฌ์šฉ๋˜์—ˆ๋˜ ๋Œ€๊ทœ๋ชจ ์˜คํ”ˆ์ŠคํŽ˜์ด์Šค๋Š” ์ฐฝ๊ณ ์šฉ๋„๋กœ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ๋Œ€์ƒ์ง€์˜ ์ค‘์‹ฌ์ง€์—ญ์— ์žˆ๋Š” ์ฐฝ๊ณ ๋ถ€์ง€๋Š” ์‚ฌ์œ ํ™”๋œ ์„ฑ๊ฒฉ์œผ๋กœ ์ฃผ๋ณ€์ง€์—ญ๊ณผ์˜ ์—ฐ๊ณ„์„ฑ์ด ๋–จ์–ด๋œจ๋ฆฌ๊ณ  ์žˆ์œผ๋ฉฐ ๊ฑด๋ฌผ๋“ค์˜ ๋…ธํ›„ํ™”์— ๋”ฐ๋ฅธ ์ฃผ๊ฑฐํ™˜๊ฒฝ์˜ ๋ถˆ๋Ÿ‰๊ณผ ๋ณด์ฐจํ˜ผ์šฉ์— ๋”ฐ๋ฅธ ๋ณดํ–‰์˜ ์•ˆ์ „์„ฑ ๋“ฑ ๋Œ€์ƒ์ง€์˜ ๋ฌธ์ œ๋“ค์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ๋Œ€์ƒ์ง€์˜ ๋ฌผ๋ฆฌ์ , ๋ฌธํ™”์ , ์ธ์ ์š”์†Œ๋“ค๊ณผ ํ˜„ํ™ฉ์— ๋Œ€ํ•œ ์กฐ์‚ฌ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ์˜ ๋ฐฉํ–ฅ๊ณผ ๋ชฉํ‘œ๋ฅผ ๋ช…ํ™•ํžˆ ํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์‚ผ๊ฐ์ง€ ๊ต์ฐจ๋กœ ์ผ๋Œ€์˜ ์žฅ์†Œ์„ฑ์„ ๊ตฌํ˜„ํ•˜๊ณ  ์žˆ๋Š” ์š”์†Œ๋“ค์„ ํ†ตํ•ด ์—ญ์‚ฌ๋ฌธํ™”ํ™˜๊ฒฝ์˜ ๋ณด์ „๋ฐฉ๋ฒ•์„ ์ฐพ๋Š” ๊ฒƒ์ด๋ฉฐ, ๋‘ ๋ฒˆ์งธ๋Š” ์˜คํ”ˆ์ŠคํŽ˜์ด์Šค์™€ ๊ฑด๋ฌผ์˜ ๋ฐฐ์น˜, ๊ธฐ์กด์˜ ๋„์‹œ์กฐ์ง์— ๋Œ€์‘ํ•˜๋Š” ์„ค๊ณ„๋ฅผ ๊ตฌํ˜„ํ•จ์œผ๋กœ์จ ๋„์‹œํ™˜๊ฒฝ์„ ๋ณด์กดํ•˜๊ณ  ์ง€์—ญ๊ณต๋™์ฒด์˜ ํ™œ์„ฑํ™”๋ฅผ ์œ ๋„ํ•˜๋ฉฐ ์ฃผ๋ณ€์ง€์—ญ๊ณผ์˜ ์—ฐ๊ณ„์„ฑ์„ ๋†’์ด๋Š” ๊ฒƒ์ด๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋‘ ๊ฐ€์ง€ ๋ชฉํ‘œ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์ ์ •๊ทœ๋ชจ์˜ ๋ฐฐ์น˜์™€ ์ ํ•ฉํ•œ ์šฉ๋„๊ณ„ํš์„ ํ†ตํ•ด ์ˆ˜์ต์„ฑ๊ณผ ๊ณต๊ณต์„ฑ์˜ ๊ท ํ˜•์„ ์œ ๋„ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ๊ตฌ์ฒด์ ์ธ ๊ณ„ํš๋ฐฉํ–ฅ๊ณผ ์„ค๊ณ„๋‚ด์šฉ์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ ๋ฒˆ์งธ, ๋Œ€์ƒ์ง€ ์ฃผ๋ณ€์— ํ˜•์„ฑ๋˜์–ด ์žˆ๋Š” ๊ฐ€๋กœ๋ง์„ ์ˆ˜์šฉํ•˜์—ฌ ๊ธฐ์กด ๋„์‹œ์˜ ๋งฅ๋ฝ์„ ๋ณด์ „ํ•œ๋‹ค. ๋‘ ๋ฒˆ์งธ, ๋„์‹œ๋ฐœ์ „๊ณผ์ •์˜ ๊ธฐ์–ต์„ ๊ฐ„์งํ•œ ์กด์น˜ ์‹œ์„ค๊ณผ ๊ณต๊ฐ„์„ ํ™œ์šฉํ•˜์—ฌ ๊ณต๊ณต์‹œ์„ค๋กœ ํ™œ์šฉํ•œ๋‹ค. ์„ธ ๋ฒˆ์งธ, ๊ฐ„์„ ๋ถ€์™€ ์ด๋ฉด๋ถ€์˜ ํŠน์„ฑ์— ๋งž๋Š” ๋ฐฐ์น˜์™€ ์šฉ๋„๋ฅผ ๊ณ„ํšํ•œ๋‹ค. ๋„ค ๋ฒˆ์งธ, ๊ธฐ์กด ์ง€์—ญ๊ณต๋™์ฒด ๋ฐ ๊ฒฝ์ œํ™œ๋™์˜ ์š”์†Œ๋“ค์„ ๊ฐ€๋กœ๋ณ€์— ๋ฐฐ์น˜ํ•˜์—ฌ ์ฃผ๋ณ€์ง€์—ญ๊ณผ์˜ ์—ฐ๊ณ„์„ฑ์„ ํ™•๋ณดํ•œ๋‹ค. ๋‹ค์„ฏ ๋ฒˆ์งธ, ํ™˜๊ฒฝ์กฐ์„ฑ๊ณผ ํ”„๋กœ๊ทธ๋žจ๊ตฌ์„ฑ ๋“ฑ ์˜คํ”ˆ์ŠคํŽ˜์ด์Šค์— ๋Œ€ํ•œ ๊ตฌ์ฒด์ ์ธ ๊ณ„ํš๋“ค์„ ํ†ตํ•ด ์ง€์—ญ์˜ ์ •์ฒด์„ฑ์„ ๊ฐ•์กฐํ•˜๊ณ  ์ง€์—ญ๊ณต๋™์ฒด๋ฅผ ํ™œ์„ฑํ™”ํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ณ„ํšํ•œ๋‹ค. ์—ฌ์„ฏ ๋ฒˆ์งธ, ๊ฐœ๋ฐœ์„ ํ†ตํ•ด ๊ณต๊ณต์„ฑ๊ณผ ์ˆ˜์ต์„ฑ์˜ ๊ท ํ˜•๊ณผ ๊ฑด๊ฐ•ํ•œ ๋„์‹œํ™˜๊ฒฝ์„ ์กฐ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์ ์ •๊ทœ๋ชจ์™€ ์šฉ๋„๋ฅผ ๊ณ„ํšํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์šฉ์‚ฐ ์ผ๋Œ€์—์„œ ์ง„ํ–‰ ์ค‘์ธ ๊ฐœ๋ฐœ๋“ค์˜ ๋ฌธ์ œ์ ์„ ๋ช…ํ™•ํžˆ ์ธ์‹ํ•˜๊ณ  ๋Œ€์ƒ์ง€์ธ ํ•œ๊ฐ•๋กœ๋™ ์‚ผ๊ฐ์ง€ ๊ต์ฐจ๋กœ ์ผ๋Œ€์˜ ์—ญ์‚ฌ๋ฌธํ™”์š”์†Œ๋“ค์„ ๋ฐœ๊ตดํ•˜์—ฌ ๋ณด์กด์˜ ๊ฐ€์น˜์™€ ํ•„์š”์„ฑ์„ ํ™•์ธํ•œ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ์˜ ์ œ์•ˆ์€ ๊ตญ์ œ์—…๋ฌด๋„์‹œ์˜ ๊ธฐ๋Šฅ๊ณผ ์—ญํ• ์„ ํ•˜๊ฒŒ ๋  ์šฉ์‚ฐ ์ผ๋Œ€์—์„œ ์—ญ์‚ฌ๋ฌธํ™”์  ๋‹ค์–‘์„ฑ์„ ํ™•๋ณดํ•˜๊ณ  ๊ณต๊ณต์„ฑ์ด ๊ตฌํ˜„๋œ ๋„์‹œ๊ณต๊ฐ„์˜ ๊ฐ€๋Šฅ์„ฑ๊ณผ ํ•„์š”์„ฑ์„ ํ™•์ธํ•œ๋‹ค๋Š” ์ ์—์„œ ์˜์˜๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค.Seoul has been changed and developed continuously based on long history and culture and receives attention as a future cosmopolitan city today. Traces of urban development process accrued for long time can still be seen everywhere in downtown and are taking role of enhancing diversity of urban environment. As concerning healthy city images as future cosmopolitan city, the importance of diversity and publicity of elements composing urban environment is recognized, and the asset value in our urban environment is newly highlighted and the necessity for its preservation is recognized. Yongsan area formed urban structure centered on open port and railway station during open port period and Japanese colonial era and has shared urban development and changing process up to now since liberation. Yongsan bordered to Han River and Namsan north and south is located at the center of Seoul geometrically and its role and importance as a symbolic central space of future cosmopolitan city such as Yongsan Park, Yongsan international business quarter, etc becomes higher in modernized area by Han River and Yongsan Station. However, the reconstruction method by total demolition being processed in Yongsan area plows under existing urban structure and memory which are historical and cultural traces of Yongsan. Also, high rise high density multipurpose building complex creates uniform scenery in this area and reduces publicity and diversity of urban environment as decreasing connectivity with surrounding area by closed environment. Preferentially, it needs to find historical and cultural environment elements around Yongsan-gu Hangangro-dong Samgakji intersection area where is excluded from the large scale development currently underway in Yongsan and confirm the its value as sense of place and preservation necessity. The first is about physical elements such as street, lot shape and buildings and the second is popular culture created on the center of object site and cultural elements such as meaning, role, etc of the object site in urban development process. The third is human elements such as community sharing memory with presently acting society and local residents in object site. These three elements show spatio-temporal continuity of object site and have historical cultural value and maintainability. As next step, it needs to check physical characteristics and actual problems of object site by status report. Streets in the object site are representative characteristics formed in modernization process and maintained until now, and they are important factors in connectivity with surroundings. Picture frame stores on Hangang main streets show intactly traces of gallery street formed in 60~70th, and the large open space used as streetcar garage is used for warehouse purpose. But the warehouse site at the center of object site decreases connectivity with surroundings by privatization, and can be confirmed problems of poor residential environment according to building deterioration and walking safety by mixed traffic flow. Based on reports of physical, cultural, human elements and status, it is to clear the direction and purpose of this study. The first is to find preservation method of historical cultural environment through elements realizing sense of place around Samgakji intersection area, and the second is to preserve urban environment, induce activation of local communities and enhance connectivity with surroundings as realizing design suitable for open space, building arrangement and existing urban structure. The last is to induce balance between profitability and publicity through optimum size arrangement and proper use plan based on above two purposes. The specific plan and design of this study are as follows. At first, as accepting road network already formed around object site, it is to preserve the context of existing city. At second, it is to utilize existing facilities and spaces cherishing memory of urban development process as public facilities. At third, it is to plan arrangement and usage suitable for characteristics of main lines and side lines. At fourth, it is to secure connectivity with surroundings as arranging existing local communities and economic activity elements in main street. At fifth, it is to plan for emphasizing regional identity and activating local communities through specific planes on open space such as environment creation, program construction, etc. At sixth, it is to plan optimum size and usage for the balance between publicity and profitability and healthy urban environment creation through development. This study is to clearly recognize problems of development in progress around Yongsan area and confirm preservation value and necessity after discovering historical cultural elements in the object site, Hangangro-dong Samgakji intersection area. Also, the suggestion by this study is meaningful in securing historical cultural diversity in Yongsan area which takes function and role as an international business city and confirming possibility and necessity of urban space realizing publicity.โ— ๊ตญ๋ฌธ์ดˆ๋ก โ— ๋ชฉ ์ฐจ โ— ํ‘œ ๋ชฉ ์ฐจ โ— ๊ทธ๋ฆผ๋ชฉ์ž ์ œ1์žฅ ์„œ๋ก  ์ œ1์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  1 1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ 1 1.2 ์—ฐ๊ตฌ์˜ ๋ชฉ์  5 ์ œ2์ ˆ ์—ฐ๊ตฌ์˜ ๋ฒ”์œ„ 6 2.1 ๊ณต๊ฐ„์  ๋ฒ”์œ„ 6 2.2 ๋‚ด์šฉ์  ๋ฒ”์œ„ 7 2.3 ์‹œ๊ฐ„์  ๋ฒ”์œ„ 8 ์ œ3์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฉ๋ฒ• ๋ฐ ๊ณผ์ • 8 3.1 ์—ฐ๊ตฌ์˜ ๋ฐฉ๋ฒ• 8 3.2 ์—ฐ๊ตฌ์˜ ๊ณผ์ • 9 ์ œ2์žฅ ์ด๋ก ์  ๊ณ ์ฐฐ ์ œ1์ ˆ ์—ญ์‚ฌ๋ฌธํ™”ํ™˜๊ฒฝ์˜ ๋ณด์ „ 10 1.1 ์—ญ์‚ฌ๋ฌธํ™”ํ™˜๊ฒฝ์˜ ์˜๋ฏธ 10 1.2 ์—ญ์‚ฌ๋ฌธํ™”ํ™˜๊ฒฝ์˜ ๋ณด์ „๊ณผ ๋ฐฉ๋ฒ• 10 ์ œ2์ ˆ ๋„์‹œ์„ค๊ณ„ ํŒจ๋Ÿฌ๋‹ค์ž„์˜ ๋ณ€ํ™” 13 2.1 ๋„์‹œ์„ค๊ณ„ ํŒจ๋Ÿฌ๋‹ค์ž„์˜ ๋ณ€ํ™”์™€ ๋ชฉํ‘œ 13 2.2 ๊ธฐ์กด ๋„์‹œ์กฐ์ง๊ณผ์˜ ๋Œ€์‘ 16 ์ œ3์ ˆ ์‚ฌ๋ก€์—ฐ๊ตฌ 19 3.1 ์‚ฌ๋ก€์˜ ์„ ์ •๊ธฐ์ค€ ๋ฐ ๋Œ€์ƒ 19 3.2 ์‚ฌ๋ก€์กฐ์‚ฌ 19 3.3 ์‚ฌ๋ก€๋ถ„์„์˜ ์ข…ํ•ฉ ๋ฐ ์†Œ๊ฒฐ 25 ์ œ4์ ˆ ์„ ํ–‰์—ฐ๊ตฌ 25 4.1 ์„ ํ–‰์—ฐ๊ตฌ์˜ ์„ ์ • 25 4.2 ์„ ํ–‰์—ฐ๊ตฌ์˜ ์š”์•ฝ ๋ฐ ๋ถ„์„ 25 ์ œ5์ ˆ ๊ด€๋ จ๊ณ„ํš 28 5.1 ๊ด€๋ จ๊ณ„ํš 28 5.2 ๊ณ„ํš์ข…ํ•ฉ ๋ฐ ์†Œ๊ฒฐ 39 ์ œ3์žฅ ๋Œ€์ƒ์ง€ ์ดํ•ด ์ œ1์ ˆ ๋Œ€์ƒ์ง€ ๊ฐœ์š” 40 1.1 ์ธ๋ฌธํ™˜๊ฒฝ๋ถ„์„ 40 1.2 ์ž์—ฐํ™˜๊ฒฝ๋ถ„์„ 52 1.3 ๋Œ€์ƒ์ง€ ์ด์šฉํ˜„ํ™ฉ 53 ์ œ2์ ˆ ๊ด‘์—ญ์  ์ดํ•ด 79 2.1 ๊ณต์›์ฃผ๋ณ€์ง€์—ญ ํ˜„ํ™ฉ 79 2.2 ๊ณต์›์ฃผ๋ณ€์ง€์—ญ ๊ณต๊ณต์‹œ์„คํ˜„ํ™ฉ 82 2.3 ๊ณต์›์ฃผ๋ณ€์ง€์—ญ ๋„๋กœ ๋ฐ ๊ตํ†ตํ˜„ํ™ฉ 83 ์ œ3์ ˆ ์‚ฌํšŒ์  ์ดํ•ด 84 3.1 ์‹คํƒœ 84 3.2 ์ฃผ์š”ํ™œ๋™ 86 3.3 ์ฃผ๋ฏผ์˜๊ฒฌ 89 ์ œ4์žฅ ๋ถ„์„์˜ ์ข…ํ•ฉ ๋ฐ ๊ณผ์ œ์˜ ๋„์ถœ ์ œ1์ ˆ ๋ถ„์„์˜ ์ข…ํ•ฉ 90 1.1 ๊ด€๋ จ๊ณ„ํš 90 1.2 ๊ด€๋ จ์‚ฌ๋ก€ ๋ฐ ์„ ํ–‰์—ฐ๊ตฌ 91 1.3 ๋Œ€์ƒ์ง€ ํ˜„ํ™ฉ 91 2. ๋ฌธ์ œ์˜ ์ •๋ฆฌ 92 ์ œ2์ ˆ SWOT๋ถ„์„๊ณผ ๊ณผ์ œ์˜ ๋„์ถœ 95 2.1 SWOT๋ถ„์„์„ ํ†ตํ•œ ์ •๋ฆฌ 95 2.2 ๊ณผ์ œ์˜ ๋„์ถœ 97 ์ œ5์žฅ ๊ธฐ๋ณธ๊ณ„ํš ์ œ1์ ˆ ๊ณ„ํš์˜ ๋ชฉํ‘œ์™€ ์ „์ œ 99 1.1 ๊ณ„ํš์˜ ๋ชฉํ‘œ 99 1.2 ๊ณ„ํš์˜ ์ „์ œ 99 1.3 ๊ณ„ํš์˜ ๋ฒ”์œ„ 99 ์ œ2์ ˆ ๊ธฐ๋ณธ๊ตฌ์ƒ 101 2.1 ๊ด‘์—ญ๊ตฌ์ƒ 101 2.2 ๊ธฐ๋ณธ๊ตฌ์ƒ 101 ์ œ3์ ˆ ๊ธฐ๋ณธ๊ณ„ํš 102 3.1 ํš์ง€๊ตฌ์„ฑ ๋ฐ ๋‹จ๊ณ„๋ณ„ ๊ฐœ๋ฐœ๊ณ„ํš 102 3.2 ๊ณต๊ฐ„๊ณ„ํš 103 3.3 ์ฃผ์š”์‹œ์„ค๊ณ„ํš 104 3.4 ์šฉ๋„ ๋ฐ ๋†’์ด๊ณ„ํš 105 3.5 ๋ฐฐ์น˜๊ธฐ๋ณธ๊ณ„ํš 106 3.6 ๋™์„ ๊ณ„ํš 107 3.7 ์˜คํ”ˆ์ŠคํŽ˜์ด์Šค๊ณ„ํš 108 3.8 ๋ฐฐ์น˜๊ทœ๋ชจ๊ณ„ํš 109 ์ œ4์ ˆ ๊ธฐ๋ณธ์„ค๊ณ„ 111 4.1 ๋ฐฐ์น˜๋„ 111 4.2 ์šฉ๋„ ๋ฐ ๋†’์ด 113 4.3 ์ฐจ๋Ÿ‰ํ†ต๋กœ ๋ฐ ์ฃผ์ฐจ์ถœ์ž…๊ตฌ 116 4.4 ๋ณดํ–‰๋กœ 119 4.5 ์˜คํ”ˆ์ŠคํŽ˜์ด์Šค 123 4.6 ๋ฐฐ์น˜๊ทœ๋ชจ 127 4.7 ์ข…ํ•ฉ๋ฐฐ์น˜๋„ 128 ์ œ5์ ˆ ๊ธฐ์กด ๊ณ„ํš์•ˆ๊ณผ ๋น„๊ต 129 5.1 ๊ธฐ์กด ๊ณ„ํš์•ˆ 129 5.2 ๊ณ„ํš์•ˆ์˜ ๋น„๊ต 130 ์ œ6์žฅ ๊ฒฐ๋ก  ์ œ1์ ˆ ์—ฐ๊ตฌ์˜ ์š”์•ฝ๊ณผ ๊ฒฐ๋ก  133 1.1 ์—ฐ๊ตฌ์˜ ์š”์•ฝ 133 1.2 ์—ฐ๊ตฌ์˜ ๊ฒฐ๋ก  135 ์ œ2์ ˆ ์—ฐ๊ตฌ์˜ ์˜์˜์™€ ๊ณผ์ œ 135 2.1 ์—ฐ๊ตฌ์˜ ์˜์˜ 135 2.2 ์—ฐ๊ตฌ์˜ ๊ณผ์ œ 136 ์ฐธ๊ณ ๋ฌธํ—Œ 137 Abstract 140Maste

    RNF20์˜ ์ง€๋ฐฉ๋Œ€์‚ฌ ์กฐ์ ˆ๊ณผ ์‹ ์žฅ์•”์—์„œ์˜ ๊ธฐ๋Šฅ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ƒ๋ช…๊ณผํ•™๋ถ€, 2017. 2. ๊น€์žฌ๋ฒ”.์ง€๋ฐฉ๋Œ€์‚ฌ๋Š” ์—๋„ˆ์ง€ ํ•ญ์ƒ์„ฑ, ์‹ ํ˜ธ์ „๋‹ฌ ๊ฒฝ๋กœ, ์„ธํฌ๋ง‰ ๊ตฌ์กฐ๋ฅผ ์กฐ์ ˆํ•จ์œผ๋กœ์จ ์„ธํฌ์˜ ์„ฑ์žฅ๊ณผ ์ƒ์กด์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ์ง€๋ฐฉ๋Œ€์‚ฌ์˜ ์ด์ƒ ์กฐ์ ˆ์€ ๋Œ€์‚ฌ์„ฑ ์งˆํ™˜ ๋ฐ ์ข…์–‘ ํ˜•์„ฑ๊ณผ ๋ฐ€์ ‘ํ•˜๊ฒŒ ์—ฐ๊ด€๋˜์–ด ์žˆ๋‹ค. ๊ฐ„์—์„œ ๋‹ค๋Ÿ‰์œผ๋กœ ๋ฐœํ˜„ํ•˜๋Š” ์ „์‚ฌ์ธ์ž์ธ sterol regulatory element-binding protein 1c (SREPB1c)๋Š” ์ธ์Š๋ฆฐ์— ์˜ํ•ด ํ™œ์„ฑํ™”๋˜์–ด ์ง€๋ฐฉ๋Œ€์‚ฌ๋ฌผ ์ƒํ•ฉ์„ฑ์„ ์ด‰์ง„ํ•˜๋Š” ์—ญํ• ์„ ๊ด€์žฅํ•œ๋‹ค. ๋ฐ˜๋ฉด ๊ณต๋ณต์‹œ SREBP1c๋Š” ์–ต์ œ๋จ์œผ๋กœ์จ ๋ถˆํ•„์š”ํ•œ ์ง€๋ฐฉ๋Œ€์‚ฌ๋ฌผ์˜ ์ƒํ•ฉ์„ฑ์„ ์ œ์–ดํ•˜๋Š”๋ฐ ๊ทธ์— ๋Œ€ํ•œ ๊ธฐ์ „ ์—ฐ๊ตฌ๊ฐ€ ๋ถˆ๋ถ„๋ช…ํ•œ ์ƒํ™ฉ์ด๋‹ค. ์ด์™€ ํ•จ๊ป˜ ์•”์„ธํฌ์—์„œ SREBP1c์˜ ํ™œ์„ฑํ™”๋Š” ์ข…์–‘์˜ ๋ฐœ์ƒ, ์ง„ํ–‰ ๋ฐ ์ „์ด๋ฅผ ์ด‰์ง„ํ•จ์œผ๋กœ์จ ๊ถ๊ทน์ ์œผ๋กœ ํ™˜์ž์˜ ๋‚ฎ์€ ์ƒ์กด ์˜ˆํ›„์™€ ์—ฐ๊ด€๋˜์–ด ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์•”์„ธํฌ์—์„œ SREBP1c๊ฐ€ ์–ด๋–ป๊ฒŒ ์ง€๋ฐฉ๋Œ€์‚ฌ๋ฌผ์˜ ์ถ•์ ๊ณผ ์ข…์–‘ ๋ฐœ์ƒ์„ ์ด‰์ง„ํ•˜๋Š”์ง€์— ๋Œ€ํ•ด์„œ๋Š” ๋ถ„์ž์ˆ˜์ค€์˜ ์—ฐ๊ตฌ๊ฐ€ ๋ถ€์กฑํ•œ ์ƒํ™ฉ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด SREBP1c ์ „์‚ฌ์ธ์ž์˜ ์œ ๋น„ํ€ดํ‹ดํ™”๋ฅผ ํ†ตํ•œ ๋ถ„ํ•ด๋ฅผ ๋งค๊ฐœํ•˜๋Š” E3 ubiquitin ligase๋กœ ring finger protein 20 (RNF20)์„ ๋™์ •ํ•˜์˜€๋‹ค. ๊ฐ„์„ธํฌ์—์„œ RNF20๋Š” ๋‹จ์‹ ์กฐ๊ฑด์—์„œ ํ™œ์„ฑํ™”๋˜๋Š” protein kinase A (PKA) ์‹ ํ˜ธ์ „๋‹ฌ์„ ๊ฑฐ์ณ ๊ทธ ๋ฐœํ˜„์ด ์ฆ๊ฐ€ํ•˜๋ฉฐ, ์ด๋กœ ์ธํ•ด SREBP1c ํ™œ์„ฑ ๋ฐ ์ง€๋ฐฉ๋Œ€์‚ฌ๋ฌผ ์ƒํ•ฉ์„ฑ ํ”„๋กœ๊ทธ๋žจ์ด ํ†ต์ œ๋˜๋Š” ์ƒˆ๋กœ์šด ๊ธฐ์ „์„ ๊ทœ๋ช…ํ•˜์˜€๋‹ค. ๋‚˜์•„๊ฐ€ SREBP1c์™€ ์ง€๋ฐฉ๋Œ€์‚ฌ๋ฌผ ์ƒํ•ฉ์„ฑ์ด ์ฆ๊ฐ€๋˜์–ด ์žˆ๋Š” db/db ์ƒ์ฅ ๋ชจ๋ธ์˜ ๊ฐ„ ์กฐ์ง ํŠน์ด์  RNF20 ๊ณผ๋ฐœํ˜„์€ SREBP1c์™€ ์ง€๋ฐฉ๋Œ€์‚ฌ๋ฌผ ์ƒํ•ฉ์„ฑ ๊ด€๋ จ์ธ์ž๋“ค์˜ ๋ฐœํ˜„ ๊ฐ์†Œ๋ฅผ ํ†ตํ•˜์—ฌ ๊ถ๊ทน์ ์œผ๋กœ ์ง€๋ฐฉ๊ฐ„์„ ๊ฐœ์„ ์‹œ์ผฐ๋‹ค. ์ด์ƒ์˜ ๊ฒฐ๊ณผ๋“ค์„ ํ†ตํ•˜์—ฌ ๊ณต๋ณต ์‹œ RNF20๊ฐ€ SREBP1c๋ฅผ ์ œ๊ฑฐํ•จ์œผ๋กœ์จ ๋ถˆํ•„์š”ํ•œ ์ง€๋ฐฉ๋Œ€์‚ฌ๋ฌผ ์ƒํ•ฉ์„ฑ์ด ์–ต์ œ๋˜๋Š” ์ง€๋ฐฉ๋Œ€์‚ฌ ํ•ญ์ƒ์„ฑ ์กฐ์ ˆ ๊ธฐ์ „์„ ์ƒˆ๋กญ๊ฒŒ ์ œ์‹œํ•˜์˜€๋‹ค. ๊ณผ๋„ํ•œ ์ง€๋ฐฉ๋Œ€์‚ฌ๋ฌผ ์ถ•์ ์ด ๋™๋ฐ˜๋˜๋Š” ์‹ ์žฅ์•”์—์„œ RNF20๋Š” ์–ต์ œ๋˜๋ฉฐ ๋™์‹œ์— SREBP1c๋Š” ํ™œ์„ฑํ™”๋จ์„ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ์‹ ์žฅ์•” ์ข…์–‘ ์กฐ์ง์—์„œ RNF20 ๋ฐœํ˜„์ด ๊ฐ์†Œ๋˜์–ด ์žˆ์ง€๋งŒ ์ง€๋ฐฉ๋Œ€์‚ฌ๋ฌผ ์ƒํ•ฉ์„ฑ ๊ด€๋ จ ์œ ์ „์ž์˜ ๋ฐœํ˜„์€ ์ฆ๊ฐ€๋˜์–ด ์žˆ์œผ๋ฉฐ, RNF20 ๋ฐœํ˜„์ด ๋‚ฎ๊ฒŒ ๊ด€์ฐฐ๋˜๋Š” ์‹ ์žฅ์•” ํ™˜์ž์˜ ๋‚ฎ์€ ์ƒ์กด ์˜ˆํ›„๋ฅผ ๋ฐœ๊ฒฌํ•˜์˜€๋‹ค. ์‹ ์žฅ์•” ์„ธํฌ์ฃผ์™€ ์ด์ข… ์ด์‹ ์‹คํ—˜ ๊ฒฐ๊ณผ, RNF20 ๊ณผ๋ฐœํ˜„์— ์˜ํ•ด SREBP1c๊ฐ€ ์–ต์ œ๋จ์œผ๋กœ์จ ์ง€๋ฐฉ๋Œ€์‚ฌ๋ฌผ ์ƒํ•ฉ์„ฑ๊ณผ ์„ธํฌ์ฆ์‹์ด ๊ฐ์†Œํ•จ์„ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด pituitary tumor-transforming gene 1 (PTTG1)์„ SREBP1c์˜ ์ƒˆ๋กœ์šด ํ‘œ์  ์œ ์ „์ž๋กœ ๋™์ •ํ•˜์˜€์œผ๋ฉฐ, ์‹ ์žฅ์•” ์„ธํฌ์—์„œ SREBP1c์— ์˜ํ•œ PTTG1 ์œ ๋„๊ฐ€ ์„ธํฌ์ฃผ๊ธฐ ์กฐ์ ˆ์— ์žˆ์–ด ์ค‘์š”ํ•œ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•จ์„ ๋ฐํ˜”๋‹ค. ๋˜ํ•œ, ์‹ ์žฅ์•” ์„ธํฌ์—์„œ ์œ ์ „์ž ๋„‰๋‹ค์šด๊ณผ SREBP1c ์–ต์ œ ์•ฝ๋ฌผ์ธ ๋ฒ ํˆด๋ฆฐ์€ SREBP1c์˜ ์ €ํ•ด๋ฟ ์•„๋‹ˆ๋ผ PTTG1๊ณผ ์„ธํฌ์ฃผ๊ธฐ ์กฐ์ ˆ ์œ ์ „์ž๋“ค์˜ ๋ฐœํ˜„์„ ๊ฐ์†Œ์‹œํ‚ด์œผ๋กœ์จ ์„ธํฌ์ฆ์‹์„ ์–ต์ œํ•จ์„ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•˜์—ฌ RNF20-SREBP1c ์‹ ํ˜ธ์ „๋‹ฌ ๊ฒฝ๋กœ๋Š” ์ง€๋ฐฉ๋Œ€์‚ฌ๋ฌผ ์ƒํ•ฉ์„ฑ ๋ฐ ์„ธํฌ์ฃผ๊ธฐ๋ฅผ ์กฐ์ ˆํ•จ์œผ๋กœ์จ ์ง€๋ฐฉ๋Œ€์‚ฌ ํ•ญ์ƒ์„ฑ ์œ ์ง€์™€ ์‹ ์žฅ์•” ์ข…์–‘ ํ˜•์„ฑ ๊ณผ์ •์—๋„ ๊นŠ์ด ์—ฐ๊ด€๋˜์–ด ์žˆ์Œ์„ ๊ทœ๋ช…ํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ RNF20๋Š” SREBP1c ์ œ์–ด๋ฅผ ํ†ตํ•˜์—ฌ ์ง€๋ฐฉ๋Œ€์‚ฌ ๋ฐ ์„ธํฌ์ฃผ๊ธฐ ์กฐ์ ˆ์— ์ค‘์š”ํ•œ ๊ธฐ๋Šฅ์„ ๋‹ด๋‹นํ•จ์œผ๋กœ์จ ๋Œ€์‚ฌ์„ฑ ์งˆํ™˜ ๋ฐ ํŠน์ • ์ข…์–‘ ์น˜๋ฃŒ์ œ ๋ฐœ๊ตด์„ ์œ„ํ•œ ํ‘œ์ ์œผ๋กœ ์ œ์•ˆํ•  ์ˆ˜ ์žˆ๋‹ค.Lipid metabolism is crucial for cell growth and survival by regulating energy homeostasis, signaling cascade, and membrane integrity. Accordingly, abnormal regulation of lipid metabolism is closely associated with metabolic disorders and tumorigenesis. In liver, de novo lipogenesis is hormonally and nutritionally controlled by sterol regulatory element-binding protein 1c (SREBP1c). SREBP1c is a key transcription factor for fatty acid synthesis during the postprandial state. Hepatic SREBP1c is rapidly suppressed by fasting signals to prevent futile lipogenic pathways. However, the molecular mechanisms that control SREBP1c turnover in response to fasting status are not thoroughly understood. Moreover, accumulating evidences have demonstrated that activated SREBP1c is involved in lipid storage in cancer cells. Although SREBP1c is associated with tumor development, progression and migration, eventually leading to poor prognosis, it remains unclear how SREBP1c would contribute to ectopic lipid storage and tumorigenesis in cancer cells. In the chapter one, I demonstrated that SREBP1c is ubiquitinated by ring finger protein 20 (RNF20), an E3 ubiquitin ligase. The RNF20-induced SREBP1c ubiquitination suppresses hepatic lipid metabolism upon protein kinase A (PKA), a major signaling molecule for nutritional deprivation. In hepatocytes, glucagon and activated PKA stimulate RNF20 expression and subsequently downregulate lipogenic activity. In obese db/db mice, hepatic RNF20 overexpression alleviates fatty liver by reducing lipogenic activity via SREBP1c suppression. This study suggests that RNF20 would act as a negative regulator of hepatic lipid metabolism through SREBP1c degradation upon PKA activation. Thus, these findings enhance our understandings of how SREBP1c is able to turn off hepatic lipid metabolism during fasting. In the chapter two, I revealed that downregulation of RNF20 promotes tumorigenesis in clear cell renal cell carcinoma (ccRCC), which is characterized by ectopic lipid accumulation, following consequent activation of SREBP1c. In ccRCC tumor tissues, RNF20 is downregulated, accompanied with lipogenic activation and poor prognosis. In cultured ccRCC cells and xenograft studies, RNF20 overexpression represses lipogenesis and cell proliferation by inhibiting SREBP1c. In this study, pituitary tumor-transforming gene 1 (PTTG1) has been identified as a novel target gene of SREBP1c, and PTTG1 plays a crucial role in cell cycle progression in ccRCC through SREBP1c. In ccRCC cells, suppression of SREBP1 by either genetic knockdown or pharmacological inhibitor betulin attenuates cell proliferation, accompanied with decreased expression of PTTG1 and cell cycle genes. Taken together, this study provides a clue to understand how SREBP1c is regulated by RNF20 to modulate lipid homeostasis and underscores the close relationship between lipid metabolism and tumorigenesis in ccRCC, where the RNF20-SREBP1c axis would be important for lipogenesis and cell cycle progression. Therefore, these data suggest that RNF20 might be a useful target for ameliorating metabolic disorders and certain cancers associated with increased lipid metabolism, particularly with SREBP1c.BACKGROUNDS 1 1. Lipid metabolism in liver 1 1.1 De novo lipogenesis 4 1.2 Lipolysis and fatty acid oxidation 4 1.3 Lipid transport 5 2. Hormonal and nutritional regulation of de novo lipogenesis 6 2.1 Transcriptional regulation of de novo lipogenesis 6 2.2 Regulation of lipogenesis by hormonal and nutritional changes 8 2.3 Hepatic lipid accumulation and NAFLD 10 3. Sterol regulatory element-binding proteins (SREBPs) 11 3.1 SREBP isoforms 11 3.2 Nutritional control of SREBP1c 12 3.3 Post-translational regulation of SREBP1c 15 4. Lipid metabolism in cancer 19 4.1 Aberrant lipogenesis in cancer 20 4.2 Hyperactivation of SREBP1c in metabolic disease and cancers 21 5. Purpose of this study 21 โ…ฅ. CHAPTER ONE: RNF20 regulates hepatic lipid metabolism through PKA-dependent SREBP1c degradation 26 1. CHAPTER ONE: Abstract 27 2. CHAPTER ONE: Introduction 28 3. CHAPTER ONE: Materials and methods 31 4. CHAPTER ONE: Results 41 5. CHAPTER ONE: Discussion 82 โ…ฆ. CHAPTER TWO: RNF20 downregulation promotes tumorigenesis by SREBP1c-mediated lipogenesis and cell cycle regulation in ccRCC 95 1. CHAPTER TWO: Abstract 96 2. CHAPTER TWO: Introduction 97 3. CHAPTER TWO: Materials and methods 100 4. CHAPTER TWO: Results 111 5. CHAPTER TWO: Discussion 169 โ…ง. CONCLUSION & PERSPECTIVES 176 1. RNF20 is an E3 ubiquitin ligase for SREBP1c 176 2. RNF20 is downregulated in ccRCC 178 3. SREBP1c promotes lipogenesis and cell proliferation in ccRCC 180 4. SREBP1c-PTTG1 axis potentiates cell cycle progression and tumorigenesis 181 โ…จ. REFERENCES 184 โ…ฉ. ABSTRACT IN KOREAN 199Docto

    ์••์ถ•ํšจ๊ณผ๊ฐ€ ๋ฐœํ‘œ๊ธˆ์†์— ์ฑ„์›Œ์ง„ ์–‘๊ทน์˜ ์ „๊ธฐํ™”ํ•™์  ์„ฑ๋Šฅ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2017. 2. ์ฃผ์Šน๊ธฐ.๋ฆฌํŠฌ ์ด์˜จ ๋ฐฐํ„ฐ๋ฆฌ๋Š” 1990๋…„๋Œ€ ์ดํ›„๋กœ ๋งŽ์€ ์—ฐ๊ตฌ๊ฐ€ ๋˜์–ด ์™”๋‹ค. ๋ฆฌํŠฌ ์ด์˜จ ๋ฐฐํ„ฐ๋ฆฌ๋Š” ๋‹ค๋ฅธ 2์ฐจ ๋ฐฐํ„ฐ๋ฆฌ์— ๋น„ํ•ด ์—๋„ˆ์ง€ ๋ฐ€๋„๊ฐ€ ๋†’๊ณ  ์ถœ๋ ฅ ํŠน์„ฑ๋„ ์šฐ์ˆ˜ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํœด๋Œ€์šฉ ์ „์ž๊ธฐ๊ธฐ์— ์“ฐ์ด๊ณ , ๋” ๋‚˜์•„๊ฐ€ ๋“œ๋ก ์ด๋‚˜ ์ „๊ธฐ์ž๋™์ฐจ(Electrical Vehicle)์—๋„ ์‚ฌ์šฉ ํ•  ์ˆ˜ ์žˆ๋„๋ก ์—ฐ๊ตฌ๋ฅผ ํ•˜๊ณ  ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ์‹ค์ œ๋กœ ๋Œ€์šฉ๋Ÿ‰ ์—๋„ˆ์ง€ ์ €์žฅ์žฅ์น˜๋ฅผ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋ฆฌํŠฌ ์ด์˜จ ๋ฐฐํ„ฐ๋ฆฌ์˜ ์—๋„ˆ์ง€ ๋ฐ€๋„์™€ ์ „๊ธฐํ™”ํ•™์  ํŠน์„ฑ์ด ๋” ํ–ฅ์ƒ๋˜์–ด์•ผ ํ•œ๋‹ค. ์‹œ์ค‘์— ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋Š” ๋ฐฐํ„ฐ๋ฆฌ๋Š” ํฌ์ผํ˜• ์ง‘์ „์ฒด๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค. ํ•˜์ง€๋งŒ ํฌ์ผํ˜•์˜ ๋‹จ์ ์€ ํ™œ๋ฌผ์งˆ์„ ๋‘๊ป๊ฒŒ ์Œ“์•„ ์šฉ๋Ÿ‰์„ ํฌ๊ฒŒ ๋งŒ๋“ค๊ธฐ ํž˜๋“ค๋‹ค๋Š” ์ ์ด๋‹ค. ํœด๋Œ€์šฉ ์ „ํ™”๊ธฐ๊ธฐ์— ์‚ฌ์šฉ๋˜๋Š” ๋ฐฐํ„ฐ๋ฆฌ์˜ ํ™œ๋ฌผ์งˆ์˜ ๋‘๊ป˜๋Š” 60~80ฮผm์ •๋„ ๋˜๊ณ , ๋†’์€ ์ถœ๋ ฅํŠน์„ฑ์„ ๊ฐ–๋Š” ๋ฐฐํ„ฐ๋ฆฌ๋ฅผ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด์„œ๋Š” ํ™œ๋ฌผ์งˆ ๋‘๊ป˜๊ฐ€ 20~60ฮผm ์ •๋„๋กœ ๋” ์–‡๋‹ค. ํฌ์ผํ˜• ์ง‘์ „์ฒด ๋ฐฐํ„ฐ๋ฆฌ์˜ ์šฉ๋Ÿ‰์„ ํฌ๊ฒŒ ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋„“๊ฒŒ ๋งŒ๋“ค์–ด์•ผ ํ•˜๋ฉฐ, ๋ฐ˜์‘์— ์ง์ ‘์ ์œผ๋กœ ์ฐธ์—ฌํ•˜์ง€ ์•Š๋Š” ์ง‘์ „์ฒด์™€ ๋ถ„๋ฆฌ๋ง‰์˜ ๋Ÿ‰์ด ๋งŽ์•„์ง€๊ณ , ์ด๋Š” ๋ฌด๊ฑฐ์›Œ์ง€๊ณ  ๋” ํฌ๊ธฐ๊ฐ€ ํฌ๊ฒŒ ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฐœํฌ ๊ธˆ์†(Metal Foam)์„ ์–‘๊ทน(Cathode)์œผ๋กœ ์ด์šฉํ•ด์„œ ์—ฐ๊ตฌ๋ฅผ ํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. Cell size 450um์— ๋‘๊ป˜ 1.6mm ํฌ๊ธฐ์˜ NiCrAl foam๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋‹ค์„ฏ ๊ฐ€์ง€ ์ข…๋ฅ˜์˜ Metal Foam Cathode๋ฅผ ์ œ์กฐํ•˜์˜€๋‹คMetal foam์„ 1.6mm์—์„œ 0.5mm๋กœ ์••์ถ•(Press) ํ›„ ์Šฌ๋Ÿฌ๋ฆฌ ํ˜•ํƒœ๋กœ ๋งŒ๋“  ํ™œ๋ฌผ์งˆ์„ ์ฑ„์šด ๊ฒƒ, 1.6mm ๋‘๊ป˜์—์„œ ํ™œ๋ฌผ์งˆ์„ ์ฑ„์›Œ ๋„ฃ๊ณ  0.5mm๋กœ Pressํ•œ ๊ฒƒ, 1.6mm์—์„œ ํ™œ๋ฌผ์งˆ์„ ์ฑ„์›Œ ๋„ฃ๊ณ  firing ํ•œ ํ›„์— 0.5mm๋กœ Pressํ•œ ๊ฒƒ, 1.6mm ๋‘๊ป˜์— ํ™œ๋ฌผ์งˆ์„ ์ฑ„์šฐ๊ณ  press๊ฐ€ ์—†๋Š” ๊ฒƒ, ๊ทธ๋ฆฌ๊ณ  0.5mm๋กœ ์—ฐ๋งˆ๋ฅผ ํ•œ ํ›„ ํ™œ๋ฌผ์งˆ์„ ์ฑ„์šด ๊ฒƒ์„ ๋งŒ๋“ค์—ˆ๋‹ค. ์ด ๋‹ค์„ฏ ๊ฐ€์ง€ ์–‘๊ทน์„ ์ œ์ž‘ํ•˜์—ฌ ์ „๋ฅ˜๋ณ„ ์ถฉ๋ฐฉ์ „ ์‹คํ—˜(Charge-Discharge Testing), Charge-rate ์ถฉ๋ฐฉ์ „ ์‹คํ—˜, ์ˆœํ™˜์ „์••์ „๋ฅ˜๋ฒ•(Cyclic Voltammetry Analysis) ๊ทธ๋ฆฌ๊ณ  ๊ต๋ฅ˜์ €ํ•ญ๋ถ„์„๋ฒ•(AC Impedance Analysis) ์ธก์ •์„ ํ•˜์—ฌ ์ „๊ธฐํ™”ํ•™์  ํŠน์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. Press๋ฅผ ์ œ์ž‘ ๊ณผ์ • ์ค‘์— ์–ธ์ œ ํ•˜๋Š๋ƒ์— ๋”ฐ๋ผ ์„ฑ๋Šฅ์ด ๋‹ค๋ฅด๊ฒŒ ๋‚˜์™”๋‹ค. ํ™œ๋ฌผ์งˆ์„ ์ฑ„์šฐ๊ธฐ ์ „์— metal foam์„ pressํ•œ ์–‘๊ทน์ด ์†Œ์ž ์ €ํ•ญ(Bulk Resistance)์ด 4.6ฮฉ ๊ทธ๋ฆฌ๊ณ  ์ „ํ•˜์ด๋™์ €ํ•ญ(Charge Transfer Resistance)์€ 4.0ฮฉ์œผ๋กœ ๊ฐ€์žฅ ์ž‘๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ์ „๋ฅ˜ ๋ณ„๋กœ ๋‹จ์œ„ ๋ฌด๊ฒŒ๋‹น ์šฉ๋Ÿ‰ ๋˜ํ•œ ๊ฐ€์žฅ ์ปธ๊ณ  kinetic performance๋ฅผ ์•Œ ์ˆ˜ ์žˆ๋Š” Cyclic Voltammetry์—์„œ๋„ ์ตœ๋Œ€ ์ „๋ฅ˜(Peak current)๊ฐ€ 0.3A/g์œผ๋กœ ๊ฐ€์žฅ ํฌ๊ฒŒ ๋‚˜์™”๋‹ค. Press๋ฅผ ํ•˜์ง€ ์•Š์€ ์–‘๊ทน์€ ๋‘๊ป๊ณ , ๋ฆฌํŠฌ์ด ํ™•์‚ฐํ•˜๋Š” ์ด๋™๊ฑฐ๋ฆฌ๊ฐ€ ๊ธธ๊ธฐ ๋•Œ๋ฌธ์— ์†Œ์ž ์ €ํ•ญ์€ 9.6ฮฉ, ์ „ํ•˜์ด๋™์ €ํ•ญ์€ 11ฮฉ์œผ๋กœ ๊ฐ€์žฅ ํฌ๊ฒŒ ๋‚˜์™”๋‹ค. ๊ฐ™์€ ๋‘๊ป˜๋กœ ์—ฐ๋งˆ๋ฅผ ํ•œ ์–‘๊ทน๋ณด๋‹ค๋Š” metal frame์ด ๋งŽ๊ธฐ ๋•Œ๋ฌธ์— ์‚ผ์ค‘ ์ ‘ํ•ฉ(Triple Junction)์ด ๋งŽ์•„ ๋ฐ˜์‘์ด ๋” ๋น ๋ฅด๊ฒŒ ์ง„ํ–‰๋œ๋‹ค. ์ด ๊ฒฐ๊ณผ, metal foam์„ 1.6mm์—์„œ 0.5mm๋กœ ๋ˆ„๋ฅด๊ณ  ํ™œ๋ฌผ์งˆ์„ ์ฑ„์šด ์–‘๊ทน์ด ๊ฐ€์žฅ ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์„ ํ† ๋Œ€๋กœ, Press Effect์— ๋Œ€ํ•œ ์—ฐ๊ตฌ์ด๋ฉฐ, Metal Foam ์˜ ๋ฌด๊ฒŒ์™€ ๋‹จ๊ฐ€๋ฅผ ๋‚ฎ์ถ”๋ฉด, ๊ณ ์šฉ๋Ÿ‰ ๋ฆฌํŠฌ ์ด์˜จ ๋ฐฐํ„ฐ๋ฆฌ์˜ ์ƒ์—…์  ์‘์šฉ์— ์œ ๋งํ•œ ์ง‘์ „์ฒด ์ค‘์˜ ํ•˜๋‚˜๊ฐ€ ๋  ๊ฒƒ์ด๋‹ค.์ œ 1์žฅ ์„œ๋ก  1 1.1 Li-ion Battery 1 1.2 Metal Foam Current Collector 4 1.3 ๋ณธ ์—ฐ๊ตฌ์˜ ๋ชฉํ‘œ ๋ช‡ ๋‚ด์šฉ 9 ์ œ 2์žฅ ์‹คํ—˜๋ฐฉ๋ฒ• 10 2.1 Metal Foam cathode์˜ ์ œ์ž‘ 10 2.2 Li ๋ฐฐํ„ฐ๋ฆฌ ์…€ ์ œ์ž‘ 16 2.3 ์ „๊ทน์˜ ์ธก์ • 18 ์ œ 3์žฅ ์‹คํ—˜๊ฒฐ๊ณผ 20 3.1 Thickness Effect 20 3.2 Press Effect 34 3.3 Press vs. Non-Press 46 ์ œ 4์žฅ ๊ฒฐ๋ก  56 ์ฐธ ๊ณ  ๋ฌธ ํ—Œ 58 Abstract 62Maste

    High versus low attenuation thresholds to determine the solid component of ground-glass opacity nodules.

    Get PDF
    OBJECTIVES: To evaluate and compare the diagnostic accuracy of high versus low attenuation thresholds for determining the solid component of ground-glass opacity nodules (GGNs) for the differential diagnosis of adenocarcinoma in situ (AIS) from minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IA). METHODS: Eighty-six pathologically confirmed GGNs < 3 cm observed in 86 patients (27 male, 59 female; mean age, 59.3 ยฑ 11.0 years) between January 2013 and December 2015 were retrospectively included. The solid component of each GGN was defined using two different attenuation thresholds: high (-160 Hounsfield units [HU]) and low (-400 HU). According to the presence or absence of solid portions, each GGN was categorized as a pure GGN or part-solid GGN. Solid components were regarded as indicators of invasive foci, suggesting MIA or IA. RESULTS: Among the 86 GGNs, there were 57 cases of IA, 19 of MIA, and 10 of AIS. Using the high attenuation threshold, 44 were categorized as pure GGNs and 42 as part-solid GGNs. Using the low attenuation threshold, 13 were categorized as pure GGNs and 73 as part-solid GGNs. The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy for the invasive focus were 55.2%, 100%, 100%, 22.7%, and 60.4%, respectively, for the high attenuation threshold, and 93.4%, 80%, 97.2%, 61.5%, and 91.8%, respectively, for the low attenuation threshold. CONCLUSION: The low attenuation threshold was better than the conventional high attenuation threshold for determining the solid components of GGNs, which indicate invasive fociope

    State-Dependent Riccati Equation ๊ธฐ๋ฒ•์„ ์ด์šฉํ•œ ์œ ๋„ํƒ„์˜ ๊ฐ€์†๋„ ์ž๋™์กฐ์ข…์žฅ์น˜ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2019. 8. ๊น€์œ ๋‹จ.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ผฌ๋ฆฌ๋‚ ๊ฐœ๋ฅผ ์ด์šฉํ•œ Skid-to-turn ๊ธฐ๋™ ์œ ๋„ํƒ„์˜ ๊ฐ€์†๋„ ์ž๋™์กฐ์ข…์žฅ์น˜๋ฅผ SDRE(State-Dependent Riccati Equation) ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์„ค๊ณ„ํ•˜๊ณ , ๋ฏธ๋ฆฌ ์„ค์ •๋œ ์œ ๋„ํƒ„์˜ ์šด์šฉ ๋ฒ”์œ„๋‚ด์—์„œ ํ๋ฃจํ”„ ์‹œ์Šคํ…œ์˜ ์ ๊ทผ ์•ˆ์ •์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. SDRE ๊ธฐ๋ฒ• ๊ธฐ๋ฐ˜์˜ ์ œ์–ด๊ธฐ๋ฅผ ํฌํ•จํ•œ ํ๋ฃจํ”„ ์‹œ์Šคํ…œ์„ ํ•ด์„์ ์œผ๋กœ ํ‘œํ˜„ํ•˜๊ธฐ ์œ„ํ•ด ์ƒํƒœ๋ณ€์ˆ˜๋ฅผ ํฌํ•จํ•˜๋Š” ๋Œ€์ˆ˜ ๋ฆฌ์นดํ‹ฐ ๋ฐฉ์ •์‹์˜ ํ•ด์„ํ•ด๋ฅผ ๊ตฌํ–ˆ์œผ๋ฉฐ, ์ด๋ฅผ ์ ๊ทผ ์•ˆ์ •์„ฑ ๋ถ„์„์— ์‚ฌ์šฉํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋จผ์ € ๊ผฌ๋ฆฌ๋‚ ๊ฐœ ์ œ์–ด ์œ ๋„ํƒ„์˜ 6-์ž์œ ๋„ ์šด๋™๋ฐฉ์ •์‹์„ ์œ ๋„ํ•˜์˜€๋‹ค. ์œ ๋„๋œ ๋ฐฉ์ •์‹์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์œ ๋„ํƒ„์˜ ์ข…๋ฐฉํ–ฅ ๋ฐ ํšก๋ฐฉํ–ฅ์˜ ์šด๋™์„ ๋ชจ์‚ฌํ•˜๋Š” ๋ชจ๋ธ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ์œ ๋„ํƒ„ ์ข…๋ฐฉํ–ฅ ์šด๋™๋ฐฉ์ •์‹์— ๋Œ€ํ•˜์—ฌ ์‹œ์Šคํ…œ ์ž์ฒด์˜ ํŠน์„ฑ๊ณผ ๊ทผ์‚ฌ ๋ชจ๋ธ ๊ธฐ๋ฐ˜์˜ ์ œ์–ด๊ธฐ๋ฅผ ํฌํ•จํ•œ ํ๋ฃจํ”„ ์‹œ์Šคํ…œ์˜ ํŠน์„ฑ์„ ์ˆ˜ํ•™์ ์œผ๋กœ ๋ถ„์„ํ•˜์˜€๋‹ค. ์œ ๋„ํƒ„์˜ ์ •์ƒ์šด์šฉ ๋ฒ”์œ„๋‚ด์—์„œ ์œ ํšจํ•œ ์ •๊ทœํ˜• ๋ฐฉ์ •์‹์œผ๋กœ์˜ ๋ณ€ํ™˜์„ ์ œ์‹œํ•˜์˜€์œผ๋ฉฐ, ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์œ ๋„ํƒ„์˜ ๋น„์ตœ์†Œ ์œ„์ƒ ํŠน์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๊ทผ์‚ฌ ๋ชจ๋ธ ๊ธฐ๋ฐ˜์˜ ์ œ์–ด๊ธฐ๋ฅผ ํฌํ•จํ•œ ํ๋ฃจํ”„ ์‹œ์Šคํ…œ์— ๋Œ€ํ•˜์—ฌ ๋น„์ตœ์†Œ ์œ„์ƒ์„ ์œ ๋ฐœํ•˜๋Š” ํ•ญ์„ ์™ธ๋ถ€ ์ž…๋ ฅ์œผ๋กœ ๊ณ ๋ คํ•œ ์ž…์ถœ๋ ฅ ์•ˆ์ •์„ฑ์„ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ˆ˜์น˜ ์˜ˆ์‹œ๋ฅผ ํ†ตํ•ด ์ œ์•ˆํ•œ ํ•ด์„ ๊ฒฐ๊ณผ๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ํ•œํŽธ, SDRE ๊ธฐ๋ฒ•์œผ๋กœ ์„ค๊ณ„๋œ ์ž๋™์กฐ์ข…์žฅ์น˜๋ฅผ ํฌํ•จํ•œ ํ๋ฃจํ”„ ์‹œ์Šคํ…œ์˜ ์ ๊ทผ ์•ˆ์ •์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ํ๋ฃจํ”„ ์‹œ์Šคํ…œ์„ ํ•ด์„์ ์œผ๋กœ ํ‘œํ˜„ํ•˜๊ธฐ ์œ„ํ•ด ์ƒํƒœ๋ณ€์ˆ˜๋ฅผ ํฌํ•จํ•˜๋Š” ๋Œ€์ˆ˜ ๋ฆฌ์นดํ‹ฐ ๋ฐฉ์ •์‹์˜ ํ•ด์„ํ•ด๋ฅผ ํ–‰๋ ฌ ๋ถ€ํ˜ธ ํ•จ์ˆ˜์™€ ํ•ด๋ฐ€ํ† ๋‹ˆ์•ˆ ํ–‰๋ ฌ์˜ ์ฃผ์š” ์ œ๊ณฑ๊ทผ์„ ์ด์šฉํ•˜์—ฌ ๊ตฌํ•˜์˜€๋‹ค. SDRE ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์œ ๋„ํƒ„ ๊ฐ€์†๋„ ์ž๋™์กฐ์ข…์žฅ์น˜๋ฅผ ๊ผฌ๋ฆฌ๋‚ ๊ฐœ ์ œ์–ด ์œ ๋„ํƒ„์˜ ์ข…๋ฐฉํ–ฅ ์šด๋™๋ฐฉ์ •์‹์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์„ค๊ณ„ํ•˜์˜€์œผ๋ฉฐ, ์œ ๋„ํƒ„์˜ ์ •์ƒ ์šด์šฉ ๋ฒ”์œ„์—์„œ์˜ ํŠน์„ฑ์— ๊ธฐ๋ฐ˜ํ•œ ๊ฐ€์ •์„ ๊ณ ๋ คํ•˜์—ฌ ์„ค๊ณ„ํ•œ ๊ฐ€์†๋„ ์ž๋™์กฐ์ข…์žฅ์น˜๋ฅผ ํฌํ•จํ•œ ํ๋ฃจํ”„ ์‹œ์Šคํ…œ์˜ ์ ๊ทผ ์•ˆ์ •์„ฑ์„ ๋ฅด์•ผํ”„๋…ธํ”„ ์•ˆ์ •์„ฑ ์ด๋ก ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์ฆ๋ช…ํ•˜์˜€๋‹ค. ์ด๋•Œ, ํ๋ฃจํ”„ ์‹œ์Šคํ…œ์˜ ํ•ด์„์  ํ‘œํ˜„์„ ์œ„ํ•ด ์ƒํƒœ๋ณ€์ˆ˜๋ฅผ ํฌํ•จํ•˜๋Š” ๋Œ€์ˆ˜ ๋ฆฌ์นดํ‹ฐ ๋ฐฉ์ •์‹์˜ ํ•ด์„ํ•ด๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ˆ˜์น˜ ์˜ˆ์‹œ๋ฅผ ํ†ตํ•ด ์ œ์•ˆํ•œ ์•ˆ์ •์„ฑ ํ•ด์„ ๊ฒฐ๊ณผ๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์„ค๊ณ„ํ•œ ์œ ๋„ํƒ„ ๊ฐ€์†๋„ ์ž๋™์กฐ์ข…์žฅ์น˜์˜ ์ œ์–ด ์„ฑ๋Šฅ์„ ํ™•์ธํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ€์†๋„ ์ถ”์ข…์„ ์œ„ํ•œ 6-์ž์œ ๋„ ์ˆ˜์น˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. Skid-to-turn ๊ธฐ๋™์˜ ์œ ๋„ํƒ„์˜ ์ถ•๋Œ€์นญ์„ ๊ณ ๋ คํ•˜์—ฌ ์œ ๋„ํƒ„ ์ข…๋ฐฉํ–ฅ ์šด๋™๋ฐฉ์ •์‹์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์„ค๊ณ„๋œ ์ž๋™์กฐ์ข…์žฅ์น˜๋ฅผ ์œ ๋„ํƒ„์˜ ํ”ผ์น˜ ๋ฐ ์š” ํ‰๋ฉด์— ์ ์šฉํ•œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค.An acceleration autopilot for a tail-fin controlled skid-to-turn maneuver missile is designed using a state-dependent Riccati equation (SDRE) method. The asymptotic stability of the closed-loop system controlled by the designed autopilot is analyzed in a predefined missile operational range. To analytically represent the closed-loop system, the analytic solution of the state-dependent algebraic Riccati equation (ARE) is obtained and utilized in analyzing the asymptotic stability. In the first part of this study, six-degrees-of-freedom equations are derived for the tail-fin controlled missile, and reduced equations for longitudinal and lateral motions are introduced based on a linear approximation. For the longitudinal dynamics of the missile, mathematical analyses of its characteristics and closed-loop system behavior are given. A valid transformation to normal form equations with a normal acceleration output is presented, and non-minimum phase behavior of the tail-fin controlled missile is analyzed, based on the normal form equations. For the closed-loop system behavior with an approximate model-based controller, input-output stability, specifying an external input as a term causing the non-minimum phase behavior, is proved for the non-zero acceleration command. Furthermore, perfect regulation of the closed-loop system is shown for the zero acceleration command. A numerical example is given to illustrate the analytical results. In the second part of this study, the asymptotic stability of the closed-loop system controlled by the SDRE method is analyzed in the predefined operational range of the missile. The analytic solution of the state-dependent ARE is obtained for two-dimensional nonlinear systems, where a matrix sign function and matrix principal square root are utilized. Next, a SDRE method-based missile acceleration autopilot is designed using the longitudinal dynamics of the missile. Incorporating assumptions about the properties of the tail-fin controlled missile in the normal operational range, the asymptotic stability of the closed-loop system controlled by the designed acceleration autopilot is analyzed, using the Lyapunov stability theorem. The analytical result of the asymptotic stability is demonstrated with a numerical simulation. Finally, a numerical simulation based on the six-degrees-of-freedom equations of the missile is performed to verify the control performance of the proposed autopilot.Abstract i Contents iii List of Tables vii List of Figures ix 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Survey 5 1.2.1 Application and Theoretical Studies on State-Dependent Riccati Equation Method 5 1.2.2 Analytic Solution of the Algebraic Riccati Equation 6 1.2.3 Characteristics of the Tail-Fin Controlled Missile 7 1.2.4 Missile Acceleration Autopilot 8 1.3 Contributions 10 1.4 Dissertation Outline 13 2 System Model and State-Dependent Riccati Equation Method 15 2.1 System Model 15 2.1.1 Six-Degrees-of-Freedom Equations 15 2.1.2 Longitudinal and Lateral Motions of Equations 19 2.2 State-Dependent Riccati Equation Method 22 3 Analysis of Missile Longitudinal Dynamics 25 3.1 Problem Statement 25 3.2 Analysis Results of Missile Longitudinal Dynamics 28 3.2.1 Characteristics of the Tail-Fin Controlled Missile 28 3.2.2 System Behavior with Approximate Model-Based Controller 35 3.3 Numerical Example 43 4 Analysis of State-Dependent Riccati Equation Method for Missile Longitudinal Autopilot 49 4.1 Problem Statement 49 4.2 Analytic Solution of State-Dependent Riccati Equation 50 4.2.1 Process of Obtaining Analytic Solution 51 4.2.2 Properties of Analytic Solution 57 4.3 Stability Analysis of Missile Longitudinal Closed-Loop System 59 4.3.1 Design of Missile Longitudinal Autopilot Using State-Dependent Riccati Equation Method 59 4.3.2 Stability Analysis Using Analytic Solution 62 4.4 Numerical Example 72 5 Three-Axes and Full-Order Missile Autopilots 81 5.1 Problem Statement 81 5.2 Three-Axes and Full-Order Autopilot Design 82 5.2.1 Three-Axes Autopilot Design 82 5.2.2 Full-Order Autopilot Design 84 5.3 Numerical Simulation 90 5.3.1 Simulation Setup 90 5.3.2 Simulation Results 94 6 Conclusion 103 6.1 Concluding Remarks 103 6.2 Further Works 105 Bibliography 107 ๊ตญ๋ฌธ์ดˆ๋ก 119Docto

    ํ•„๋ฆ„๊ตํ™˜์‹ ๊ฟ€๋ฒŒ ์•Œ ์ˆ˜์ง‘ ์‹œ์Šคํ…œ(FECS)์˜ ๊ฐœ๋ฐœ๊ณผ ๊ฟ€๋ฒŒ ์œ ์ „์ฒด ํŽธ์ง‘์— ๋Œ€ํ•œ ์‘์šฉ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ๋†์ƒ๋ช…๊ณตํ•™๋ถ€, 2019. 2. ์ด์‹œํ˜.Despite the huge potential of genome editing in honey bee research and breeding program, only a few successful cases of honey bee genome editing have been reported so far. With an aim of improving conventional protocol, I developed film-assisted honey bee egg collection system (FECS), which provides streamlined protocol in egg collection and microinjection procedure as well as potential applicability to other researches that require massive collection of high quality honey bee eggs. By employing FECS in honey bee genome editing to generate spinosad-resistant honey bee, I could generate mutant honey bees with their nicotinic acetylcholine receptor alpha 6 subunit (nAChR ฮฑ6) knocked down in a high germline genome editing rate. To my knowledge, this is the first report of successful honey bee genome editing using Cas9 ribonucleoprotein(RNP) instead of Cas9 mRNA. Although there were problems in assessing spinosad resistance with a limited number of mutant drones, I proved that haploid honey bees without functional nAChR ฮฑ6 gene can develop into adult drones, of which various phenotypes, including behavioral characteristics and spinosad resistance, can be further analyzed.์ตœ๊ทผCRISPR-Cas9 ๊ธฐ์ˆ ์˜ ๋ฐœ๋‹ฌ์— ํž˜์ž…์–ด ๊ทธ ์–ด๋Š๋•Œ๋ณด๋‹ค ๋‹ค์–‘ํ•œ ์ƒ๋ช…์ฒด๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ •๊ตํ•œ ์œ ์ „์ฒด ํŽธ์ง‘์ด ๊ฐ€๋Šฅ ํ•ด์กŒ์œผ๋ฉฐ, 2016๋…„ Kohno ๋“ฑ์˜ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๊ฟ€๋ฒŒ์—์„œ๋„ CRISPR-Cas9์„ ์ด์šฉํ•œ ์œ ์ „์ฒด ํŽธ์ง‘์ด ์ด๋ฃจ์–ด ์งˆ ์ˆ˜ ์žˆ์Œ์ด ์ž…์ฆ๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ธฐ์กด์˜ ๊ฟ€๋ฒŒ ํ˜•์งˆ์ „ํ™˜ ๊ธฐ์ˆ ์˜ ํ”„๋กœํ† ์ฝœ์„ ๊ฐœ์„ ํ•˜๊ณ  CRISPR Cas9 ๊ธฐ์ˆ ์„ ํ†ตํ•œ ์‚ด์ถฉ์ œ ์ €ํ•ญ์„ฑ ๊ฟ€๋ฒŒ ๊ฐœ๋ฐœ์— ๋Œ€ํ•œ ๊ฐœ๋…์ฆ๋ช…์„ ๋ชฉํ‘œ๋กœ ์‹คํ–‰๋˜์—ˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ํ•„๋ฆ„๊ตํ™˜์‹ ๊ฟ€๋ฒŒ ์•Œ ์ˆ˜์ง‘ ์‹œ์Šคํ…œ(FECS)์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. FECS๋Š” ํ•„๋ฆ„๋ฉด์— ์‚ฐ๋ž€์„ ์œ ๋„ํ•จ์œผ๋กœ์จ ์—ฌ์™•๋ฒŒ์„ ๋ฐ˜๋ณตํ•ด์„œ ๊ฐ€๋‘˜ ํ•„์š”๊ฐ€ ์—†๋„๋ก ์„ค๊ณ„๋˜์—ˆ์œผ๋ฉฐ ์ด๋ฅผ ํ†ตํ•ด ์•Œ ์ˆ˜์ง‘๊ณผ์ • ์ „๋ฐ˜์ด ๊ฐ„์†Œํ™”๋˜์–ด ์ž‘์—…์‹œ๊ฐ„ ๋‹จ์ถ• ๋ฐ ์‚ฌ๊ณ ๋ฐฉ์ง€๋ฅผ ํ†ตํ•œ ์ž‘์—…ํšจ์œจ ํ–ฅ์ƒ์„ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ์—ฌ์™•๋ฒŒ์ด ์‚ฐ๋ž€ํ•ด ๋†“์€ ๋ฐฐ์—ด ๊ทธ๋Œ€๋กœ ํ‰ํ‰ํ•œ ํ•„๋ฆ„๋ฉด ์œ„์— ์•Œ์ด ์ •๋ ฌ๋˜์–ด ์žˆ์œผ๋ฏ€๋กœ ๋งˆ์ดํฌ๋กœ์ธ์ ์…˜์„ ์œ„ํ•œ ๋ณ„๋‹ค๋ฅธ ์ค€๋น„๊ฐ€ ํ•„์š”ํ•˜์ง€ ์•Š์œผ๋ฉฐ, ์ธ์ ์…˜ ๊ณผ์ •์—์„œ ๋ณ„๋„์˜ ๊ตฌ์กฐ๋ฌผ์— ์˜ํ•œ ๋ฐฉํ•ด๋ฅผ ๋ฐ›์ง€ ์•Š์œผ๋ฏ€๋กœ ์ธ์ ์…˜ ์ค€๋น„ ๋ฐ ์ž‘์—…์„ ๋ณด๋‹ค ์†์‰ฝ๊ฒŒ ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ๋˜ํ•œ, ๋’ท๋ฉด์— ์‹ค๋ฆฌ์ฝ˜ ์ฝ”ํŒ…์„ ์ ์šฉํ•˜์—ฌ ํ•„๋ฆ„์˜ ๋ถ€์ฐฉ๋ ฅ์„ ๋†’์ด๊ณ  ์†์‰ฌ์šด ํƒˆ๋ถ€์ฐฉ์ด ๊ฐ€๋Šฅํ•˜๋„๋ก ํ•˜์˜€๋‹ค. FECS๋ฅผ ํ†ตํ•œ ๊ฟ€๋ฒŒ ์•Œ์˜ ๋Œ€๋Ÿ‰์ˆ˜์ง‘์„ ํ†ตํ•ด CRISPR-Cas9๊ธฐ์ˆ ์„ ์ด์šฉํ•œ ๊ฟ€๋ฒŒ ์œ ์ „์ฒด ํŽธ์ง‘์„ ์ง„ํ–‰ํ•˜์—ฌ ๋‹ˆ์ฝ”ํ‹ด์„ฑ ์•„์„ธํ‹ธ์ฝœ๋ฆฐ์ˆ˜์šฉ์ฒด ์•ŒํŒŒ6 ์„œ๋ธŒ์œ ๋‹› ์œ ์ „์ž๊ฐ€ ํŽธ์ง‘๋œ ๊ฟ€๋ฒŒ์„ ๊ฐœ๋ฐœํ•˜๋Š”๋ฐ ์„ฑ๊ณตํ•˜์˜€๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ์—์„œ๋Š” Cas9 mRNA๋ฅผ ์ด์šฉํ•˜์—ฌ ์ง„ํ–‰๋˜์—ˆ์œผ๋ฏ€๋กœ, ์ด๋Š” Cas9 ๋‹จ๋ฐฑ์งˆ ์ฃผ์ž…์„ ํ†ตํ•œ ๊ฟ€๋ฒŒ ์œ ์ „์ฒด ํŽธ์ง‘์œผ๋กœ๋Š” ์ตœ์ดˆ์˜ ๋ณด๊ณ ์ด๋‹ค. ๋น„๋ก ํ˜•์งˆ์ „ํ™˜ ๊ฐœ์ฒด์ˆ˜์˜ ๋ถ€์กฑ์œผ๋กœ ์ •์ƒ์ ์ธ ์ƒ๋ฌผ๊ฒ€์ •์ด ์ง„ํ–‰๋˜์ง€๋Š” ๋ชปํ•˜์˜€์œผ๋‚˜, ์•ŒํŒŒ 6 ์œ ์ „์ž๊ฐ€ ๋‚™์•„์›ƒ ๋œ ๊ฟ€๋ฒŒ์ด ์„ฑ์ถฉ ์ˆ˜๋ฒŒ๋กœ ์ •์ƒ์ ์œผ๋กœ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์Œ์„ ์ž…์ฆํ•˜์˜€์œผ๋ฉฐ, ํ›„์†์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์Šคํ”ผ๋…ธ์‚ฌ๋“œ ์ €ํ•ญ์„ฑ ๋ฐ ๊ธฐํƒ€ ํ‘œํ˜„ํ˜•์„ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.ABSTRACT 1 LIST OF TABLES 8 LIST OF FIGURES 9 CHAPTER 1. Development of Film-assisted Honey Bee Egg Collection System (FECS) 1 Abstract 2 1. Introduction 3 2. Materials and methods 6 2.1. Source of honey bees 6 2.2. Design, 3D printing and post processing of FECS components 6 2.3. Use of plug-based system 7 2.4. Comparison of collection efficiency and hatching rate 9 2.5. Statistical analysis 10 3. Results 12 3.1. Specification of FECS components 12 3.2. Feature of FECS 29 3.3. Comnparison of collection efficiency and hatching rate 18 4. Discussion 20 Appendix: User Guide of FECS 20 Part1. 3d printing of FECS comb box and queen excluder 23 Part2. Silicone coating of the comb box 29 Part3. Installation and egg harvesting manual 35 CHAPTER 2. Knockout of Nicotinic Acetylcholine Receptor ฮฑ6 Subunit (nAChR ฮฑ6) in the Western Honey Bee Apis mellifera - The Application of FECS to Genome Editing 39 Abstract 40 1. Introduction 41 2. Materials and methods 44 2.1. Source of Honey bee and egg collectioin 44 2.2. DAPI (4โ€ฒ,6-diamidino-2-phenylindole) staining and fluorescent imaging 44 2.3. Design, synthesis, and purificatno of single-guide RNA (sgRNA) 45 2.4. Design of single-stranded oligo DNA (ssODN) 48 2.5. Cas9 RNP assembly and In-vitro cleavage assay 49 2.6. Microinjection, in vitro rearing and grafting 50 2.7. Maintenance of mosaic queens and F1 drones 51 2.8. Bioassay 52 2.8. Sequencing of F1 drones 52 3. Results 53 3.1. Florescne imaging of early embryos 53 3.2. In-vitro cleavage asssay 56 3.3. Microinjection, grafting, and maintenance 57 3.4. Sequencing of F1 drones 59 3.5. Bioassay and phenotype observation 60 4. Discussion 63 LITERATURE CITED 68 KOREAN ABSTRACT 73Maste

    ์ฃผ์น˜์˜๋“ฑ๋ก์ œ ์‹œํ–‰์— ๊ด€ํ•œ ์กฐ์‚ฌ์—ฐ๊ตฌ : ๊ฐ€์ •์˜ํ•™ ์ „๋ฌธ์˜๋ฅผ ๋Œ€์ƒ์œผ๋กœ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋ณด๊ฑด๋Œ€ํ•™์› :๋ณด๊ฑดํ•™๊ณผ ๋ณด๊ฑด์‚ฌํšŒํ•™์ „๊ณต,1998.Maste

    ๋ผ์ดํ”„๋‹ˆ์ฏ” ์ฒ ํ•™์—์„œ ์ž์œ ์™€ ์šฐ์—ฐ์„ฑ์˜ ๋ฌธ์ œ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ฒ ํ•™๊ณผ ์„œ์–‘์ฒ ํ•™์ „๊ณต,1996.Maste
    • โ€ฆ
    corecore