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ABSTRACT 

 

Roles of RNF20, an E3 Ubiquitin Ligase,  

in Hepatic Lipid Metabolism and Kidney Cancer 

 

Jae Ho Lee 

 

Lipid metabolism is crucial for cell growth and survival by regulating 

energy homeostasis, signaling cascade, and membrane integrity. Accordingly, 

abnormal regulation of lipid metabolism is closely associated with metabolic 

disorders and tumorigenesis. In liver, de novo lipogenesis is hormonally and 

nutritionally controlled by sterol regulatory element-binding protein 1c (SREBP1c). 

SREBP1c is a key transcription factor for fatty acid synthesis during the 

postprandial state. Hepatic SREBP1c is rapidly suppressed by fasting signals to 

prevent futile lipogenic pathways. However, the molecular mechanisms that control 

SREBP1c turnover in response to fasting status are not thoroughly understood. 

Moreover, accumulating evidences have demonstrated that activated SREBP1c is 

involved in lipid storage in cancer cells. Although SREBP1c is associated with 

tumor development, progression and migration, eventually leading to poor 

prognosis, it remains unclear how SREBP1c would contribute to ectopic lipid 

storage and tumorigenesis in cancer cells. 

In the chapter one, I demonstrated that SREBP1c is ubiquitinated by ring 

finger protein 20 (RNF20), an E3 ubiquitin ligase. The RNF20-induced SREBP1c 
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ubiquitination suppresses hepatic lipid metabolism upon protein kinase A (PKA),  

a major signaling molecule for nutritional deprivation. In hepatocytes, glucagon 

and activated PKA stimulate RNF20 expression and subsequently downregulate 

lipogenic activity. In obese db/db mice, hepatic RNF20 overexpression alleviates 

fatty liver by reducing lipogenic activity via SREBP1c suppression. This study 

suggests that RNF20 would act as a negative regulator of hepatic lipid metabolism 

through SREBP1c degradation upon PKA activation. Thus, these findings enhance 

our understandings of how SREBP1c is able to turn off hepatic lipid metabolism 

during fasting. 

In the chapter two, I revealed that downregulation of RNF20 promotes 

tumorigenesis in clear cell renal cell carcinoma (ccRCC), which is characterized by 

ectopic lipid accumulation, following consequent activation of SREBP1c.       

In ccRCC tumor tissues, RNF20 is downregulated, accompanied with lipogenic 

activation and poor prognosis. In cultured ccRCC cells and xenograft studies, 

RNF20 overexpression represses lipogenesis and cell proliferation by inhibiting 

SREBP1c. In this study, pituitary tumor-transforming gene 1 (PTTG1) has been 

identified as a novel target gene of SREBP1c, and PTTG1 plays a crucial role in 

cell cycle progression in ccRCC through SREBP1c. In ccRCC cells, suppression of 

SREBP1 by either genetic knockdown or pharmacological inhibitor betulin 

attenuates cell proliferation, accompanied with decreased expression of PTTG1 and 

cell cycle genes. 

Taken together, this study provides a clue to understand how SREBP1c is 

regulated by RNF20 to modulate lipid homeostasis and underscores the close 

relationship between lipid metabolism and tumorigenesis in ccRCC, where the 
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RNF20-SREBP1c axis would be important for lipogenesis and cell cycle 

progression. Therefore, these data suggest that RNF20 might be a useful target for 

ameliorating metabolic disorders and certain cancers associated with increased 

lipid metabolism, particularly with SREBP1c. 
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BACKGROUNDS 

 

I. Lipid metabolism in liver 

 About 40% of the body‟s caloric intake is derived from lipids. Lipids 

consist of diverse water-insoluble molecules including triacylglycerides, 

phosphoglycerides, sterols, and sphingolipids. Various lipid metabolites act as 

energy sources, signaling molecules, and structural components of cellular 

membranes. For example, fatty acids are one of key components of 

triacylglycerides, which are primarily used for energy storage. Phosphoglycerides, 

together with sterols and sphingolipids, represent the major structural components 

of cellular membranes. Furthermore, lipids contribute to act as insulating material 

in the subcutaneous tissues. Lipid metabolites are also involved in signaling 

pathways by acting as second messengers. Thus, it is likely that alteration in lipid 

metabolism would influence various cellular processes including cell growth, 

proliferation, differentiation, and survival (Bretscher and Raff, 1975; Divecha and 

Irvine, 1995; Liscovitch and Cantley, 1994). 

Liver is one of the key organs in the regulation of lipid metabolism. In 

liver, fatty acids are originated from three major sources; (i) absorption from 

dietary lipid (chylomicrons), (ii) hydrolysis of triglycerides from adipose tissues 

(lipolysis), and (iii) liver-specific lipases de-esterify triglycerides to release free 

fatty acids (Lands, 1965; Nguyen et al., 2008). As a central organ for cholesterol 

metabolism (Schroepfer, 1981), liver synthesizes various lipoproteins involved in 

transporting cholesterol and other lipid metabolites throughout the body (Schaefer 

et al., 1978). Thus, lipid metabolism is regulated by energy demands (Figure 1). 
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Figure 1. Homeostatic regulation of hepatic lipid metabolism. Signals from 

sites of lipid storage communicate the energy state of the body to the central 

nervous system, which also receives environmental inputs. The central nervous 

system integrates these signals and responds to control behavior, energy uptake, 

storage, and utilization (modified from Ashrafi et al, 2007) 
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Figure 1 
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1. De novo lipogenesis 

Excess energy supply beyond energy needs is converted into storage with 

various forms of lipid metabolites. Fatty acid synthesis and their further processes 

into phospholipids and triglycerides are referred as de novo lipogenesis. Any 

metabolite that yields acetyl-CoA is a potential supplier for lipogenesis. De novo 

lipogenesis is a complicated anabolic pathway that is composed of sequential 

processes. The first step of lipogenic reactions is the transportation of acetyl-CoA 

across the inner mitochondrial membrane into the cytoplasm and conversion of 

citrate to acetyl-CoA by ATP-citrate lyase (ACLY). The resulting acetyl-CoA is 

carboxylated to become malonyl-CoA by acetyl-CoA carboxylase (ACC), which is 

the key rate-limiting step for synthesis of fatty acid. Malonyl-CoA is further 

processed to generate long-chain fatty acids by fatty acid synthase (FASN). 

Following step is the desaturation of long-chain fatty acids catalyzed by stearoyl-

CoA desaturase (SCD). For instance, palmitic acid (C16:0) and stearic acid (C18:0) 

can be unsaturated to their respective monounsaturated forms palmitoleic acid 

(C16:1) and oleic acid (C18:1), which is catalyzed in endoplasmic reticulum (ER) 

membrane and provides fatty acids for phospholipid biosynthesis. And further 

acylation steps are mediated by several enzymes such as glycerol-3-phosphate 

acyltransferase (GPAT) and diacylglycerol acyltransferase (DGAT) to synthesize 

triglycerides (Karmen et al., 1963; Pearce, 1983). Further elongation and oxidation 

can occur in either mitochondrion or ER. 

 

2. Lipolysis and fatty acid oxidation 

Liver is also involved in lipid retrieval. The major source of lipids entering 
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to liver is free fatty acids released from adipose tissue and transported in systemic 

blood plasma complexed with albumin. Lipolysis is mainly catalyzed in cytosol 

and further processed in mitochondria. Triglycerides are hydrolyzed by several 

lipases including adipose tissue lipase (ATGL), hormone sensitive lipase (HSL), 

and monoacylglycerol lipase (MGL) (Jensen, 1997; Zechner et al., 2005). 

Hydrolyzed free fatty acids are transported into mitochondria through carnitine-

palmitoyl transferase (CPT). In the matrix of mitochondria, fatty acid β-oxidation 

is the catabolic process in which fatty acid molecules are broken down to generate 

acetyl-CoA, which enters the tricarboxylic acid (TCA) cycle. TCA cycle generates 

numerous biochemical energy sources including adenosine triphosphate (ATP), 

precursors of certain amino acids, and the reducing agent NADH that is used in 

numerous cellular reactions (Krebs, 1948). 

 

3. Lipid transport 

Lipid delivery is a key metabolic process for transportation of lipid 

metabolites via various lipoproteins in bloodstream. Most metabolic tissues 

facilitate lipid uptake to utilize lipids as energy sources. In intestine, transposable 

forms of lipids are converted into lipoprotein particles, which are water-soluble in 

bloodstream. There are five types of lipoproteins such as chylomicrons, very low-

density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density 

lipoprotein (LDL), and high-density lipoprotein (HDL). Chylomicrons are the 

largest lipoprotein produced in the intestine. Chylomicrons regulate transport of 

exogenous lipid metabolites into liver, heart, muscle, and adipose tissues, which is 

required for lipoprotein lipase (LPL). Both HDL and LDL contain high cholesterol 
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contents and play a key role in the regulation of cholesterol homeostasis. In 

contrast, both VLDL and IDL contain high triglyceride contents (Jackson et al., 

1976; Karmen et al., 1963). Each lipoprotein has a different subset of surface 

proteins which bind to corresponding surface receptors in target cells for delivering 

their contents. 

 

II. Hormonal and nutritional regulation of de novo lipogenesis 

De novo lipogenesis encompasses the processes of fatty acid synthesis and 

subsequent triglyceride synthesis, which are active in liver and adipose tissue. 

Lipogenic flux is tightly controlled by hormonal and nutritional changes (Girard et 

al., 1994; Kersten, 2001). During postprandial state, glucose increases lipogenesis 

by stimulating the release of insulin and inhibiting the release of glucagon from the 

pancreas. Insulin is the most important hormonal factor influencing lipogenesis. 

Insulin promotes lipogenesis by activating insulin downstream signaling cascades. 

In contrast, fasting reduces lipogenesis, which is accompanied with an increased 

rate of lipolysis. Thus, lipolysis eventually leads to net loss of triglycerides. Fasting 

is associated with significant changes in plasma hormone. For example, fasting 

decreases plasma insulin, while fasting increases plasma growth hormone and 

glucagon. Collectively, hormonal and nutritional changes are crucial factors to 

maintain energy homeostasis by regulating lipid metabolism in liver and adipose 

tissue. 

 

1. Transcriptional regulation of de novo lipogenesis 

During fasting-feeding cycle, most enzymes that are involved in de novo 
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lipogenesis are regulated at the transcriptional level. As an anabolic hormone, 

insulin transcriptionally activates most lipogenic pathway with transcription factors 

such as sterol regulatory element-binding protein 1c (SREBP1c) and liver X 

receptors (LXRs) (Farmer, 2006; Wang et al., 2015). In hepatocytes, 

overexpression of SREBP1c directly activates lipogenic genes such as FASN, ACC, 

and SCD1 even in the absence of insulin, whereas dominant-negative form of 

SREBP1c counteracts insulin-dependent induction of those genes. It has been well 

established that SREBP1c plays a critical role to activate lipogenic programming 

(Foretz et al., 1999; Kim and Spiegelman, 1996). In liver, overexpression of 

SREBP1c leads to increased hepatic lipid accumulation and insulin resistance 

(Shimano et al., 1997). In accordance with these, insulin-resistant obese animals 

with hepatic steatosis express elevated SREBP1c in liver (Ferre and Foufelle, 

2010). On the other hand, LXRs are member of nuclear receptor superfamily and 

are activated by oxysterols. Among two LXR isoforms, LXRα is abundantly 

expressed in lipogenic tissues such as liver and adipose tissue and it stimulates 

lipogenic gene expression by upregulating SREBP1c as a target gene (Janowski et 

al., 1996). LXRα deficient mice decreased expression of SREBP1c, FAS, ACC, and 

SCD1 (Kalaany et al., 2005). In addition, it has been shown that the effect of 

glucose on the expression of lipogenic genes is modulated by carbohydrate-

responsive element-binding protein (ChREBP) (Postic et al., 2007). In hepatocytes, 

activation of ChREBP in response to glucose results in the import of ChREBP into 

the nucleus where it binds to carbohydrate responsive elements (ChoREs). 

Although ChREBP activates a similar subset of genes of SREBP1c, ChREBP does 

not affect expression of SREBP1c. ChREBP deficient mice reduce basal and high-
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carbohydrate diet-stimulated hepatic expression of FASN, ACC, and L-PK (Ishii et 

al., 2004). Thus, these factors coordinately stimulate lipogenic gene expression in 

response to nutrients and hormones during feeding and fasting cycle (Table 1). 

 

2. Regulation of lipogenesis by hormonal and nutritional changes 

During postprandial state, insulin stimulates conversion of excess energy 

into triglycerides for long-term energy storage (Saltiel and Kahn, 2001). Insulin 

binds to the insulin receptor (IR) and activates phosphoinositide-3 kinase (PI3K) 

pathways through activating tyrosine kinase activity of IR. The activation of IR, 

insulin receptor substrates (IRSs), and PI3K leads to stimulate phosphoinositide-3-

dependent protein kinase 1 (PDK1), which in turn phosphorylates the 

serine/threonine kinase Akt/PKB (Taniguchi et al., 2006). Activated Akt/PKB 

phosphorylates several factors including mechanistic target of rapamycin (mTOR) 

and SREBP1c, which directly or indirectly mediate the effects of insulin on certain 

gene expression such as lipogenic pathways (Porstmann et al., 2008). On the 

contrary, during fasting state, glucose-producing system is activated in liver to 

supply glucose into the brain. The systemic adaptation to low glucose state is 

mediated by catabolic hormones such as glucagon, glucocorticoid s, and 

catecholamine, whereas it is counter-regulated by insulin (Jiang and Zhang, 2003). 

Glucagon, secreted from pancreatic α-cells under fasting conditions, binds to the 

membrane receptor coupled to GTP-binding proteins so that it induces intracellular 

cyclic adenosine monophosphate (cAMP) level, which in turn activates protein 

kinase A (PKA) pathways (Shabb, 2001). In hepatocytes, PKA phosphorylates 

SREBP1c and consequently suppresses lipogenic activity (Lu and Shyy, 2006). 
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Table 1 

 

 

 

 

 

 

 

Table 1. Lipogenic transcription factors and the types of modifications that 

activate or repress its target genes 
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Glucocorticoids, which are steroid hormones synthesized in the adrenal cortex, are 

released as part of acute stress response and mediate many metabolic actions. 

Similar to glucagon, glucocorticoids have an inhibitory effect of lipogenesis in 

adipose tissue (Leung and Munck, 1975). In addition, catecholamine is released 

from adrenal medulla as an adaptive response to emotional and physical stresses 

such as starvation and exercise. Catecholamine promotes catabolic metabolisms 

including lipolysis and fatty acid oxidation, whereas it represses anabolic lipid 

synthesis upon stress (Sharman, 1973). Nonetheless, the factors that are involved in 

SREBP1c suppression under fasting conditions are poorly understood. 

 

3. Hepatic lipid accumulation and NAFLD 

Non-alcoholic fatty liver disease (NAFLD) is associated with excessive 

lipid accumulation in hepatocytes and is the most common liver disease affecting 

10-30% of the general population. NAFLD encompasses a serial spectrum of 

conditions characterized by hepatic steatosis in individuals without significant 

alcohol consumption nor viral, congenital, and autoimmune liver disease markers 

(Cohen et al., 2011). NAFLD is resulted from an imbalance between lipid 

availability from de novo lipogenesis and lipid disposal via fatty acid oxidation or 

transport (Hebbard and George, 2011). In NAFLD, accumulated extra lipid often 

causes inflammation and eventually induces scar in liver. Thus, hepatic steatosis 

can progress to NASH (non-alcoholic steatohepatitis). Subsequently, NAFLD and 

NASH lead to development of cirrhosis and hepatocellular carcinoma (HCC). 

Furthermore, NAFLD is related to insulin resistance and metabolic syndromes. 
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III. Sterol regulatory element-binding proteins (SREBPs) 

SREBPs play key roles in lipid homeostasis from yeast to humans 

(Osborne, 2000). SREBP1c was cloned by the Spiegelman group as an adipocyte 

determination and differentiation-dependent factor 1 (ADD1) (Tontonoz et al., 1993) 

and was independently cloned by the Brown and Goldstein group as a member of 

SREBP transcription factor family, which are involved in cholesterol metabolism 

by binding to the sterol regulatory element in the promoter of LDL receptor (LDLR) 

gene (Wang et al., 1993). Since the members of SREBP family exhibit similar 

amino acid sequences and structures, they appear to share several molecular 

regulatory mechanisms to modulate their target genes (Horton et al., 2002). 

 

1. SREBP isoforms 

SREBPs belong to the basic helix-loop-helix-leucine zipper (bHLH-LZ) 

family of transcription factors. In mammals, three SREBP isoforms, including 

SREBP1a, SREBP1c (also known as ADD1), and SREBP2, are encoded by two 

genes (Horton et al., 2002). Both SREBP1a and SREBP1c are generated from a 

single SREBF1 gene through the use of alternative transcription start sites encoding 

different first exons that are spliced into a common second exon, designated 1a and 

1c, whereas SREBP2 is transcribed from a separate SREBF2 gene (Shimomura et 

al., 1997). SREBP1c mainly regulates fatty acid metabolism whereas SREBP2 

primarily controls cholesterol metabolism (Eberle et al., 2004b). 

Each SREBP precursor is composed of three functional domains; (i) a 

NH2-terminal domain that contains acidic transactivation domain and DNA binding 

domain, (ii) two hydrophobic transmembrane spanning domains interrupted by a 
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short loop that projects into the lumen of the ER, and (iii) a COOH-terminal 

domain that recruits regulatory protein complexes (Figure 2). Upon activation, ER 

anchored SREBP precursor proteins undergo complex proteolytic processes, 

leading to release the NH2-terminal active form of SREBPs (Yang et al., 2002). 

Subsequently, the NH2-terminal active form of SREBPs is translocated into the 

nucleus, where it stimulates target gene expression by binding to sterol response 

elements (SREs) or E-Box (CANNTG) in the promoter/enhancer regions of their 

own target genes (Amemiya-Kudo et al., 2000). While SREBP1a is highly 

expressed in most cultured cell lines, SREBP1c is predominantly expressed in 

metabolic tissues such as liver and adipose tissue (Shimomura et al., 1997). 

Overexpression of SREBP1c selectively promotes the expression of lipogenic 

genes, whereas deletion of SREBP1c leads to decrease expression of lipogenic 

enzymes (Liang et al., 2002). On the other hand, SREBP2 is responsible for 

cholesterol synthetic genes. Transgenic mice overexpressing SREBP2 shows 

preferential induction of genes involved in cholesterol biosynthesis (Horton et al., 

1998b). 

 

2. Nutritional control of SREBP1c 

SREBP1c is selectively regulated by several metabolic cues such as 

insulin and fasting/refeeding regimes in the liver, adipose tissue, and skeletal 

muscle (Bizeau et al., 2003; Horton et al., 1998a; Kim et al., 1998). During 

nutrient-rich conditions, insulin, which is released from pancreatic β-cells, 

stimulates the expression and activity of SREBP1c, leading to increase in de novo 

lipogenesis. Insulin activates SREBP1c through at least two levels; (i) it increases 
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Figure 2. Domain structure of SREBP1c. SREBP1c controls lipid metabolism by 

regulating the expression of enzymes required for fatty acid synthesis. SREBP1c is 

synthetized as precursor forms bound to the endoplasmic reticulum membranes. 

Upon activation, the precursor undergoes a sequential two step cleavage process to 

release the NH2-terminal active domain in the nucleus. 

 

 

 

 

 

 

 

 

 

 



14 

Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 

SREBP1c transcription, (ii) it stimulates post-translational modifications including 

proteolytic cleavage of SREBP1c from an inactive ER membrane-bound precursor 

to release the NH2-terminal active form, which is capable of translocating to the 

nucleus to promote target gene expression. Several studies have demonstrated that 

inhibition of PI3K by chemical inhibitors or expression of dominant-negative Akt 

inhibits ER-to-Golgi transport and proteolytic activation of SREBP1c (Du et al., 

2006). Since fasting/refeeding responses of lipogenic gene expression are severely 

blunted in SREBP1c deficient mice (Liang et al., 2002), SREBP1c has been 

considered as a key factor to mediate fatty acid metabolism upon nutritional 

changes. 

Under nutritionally deprived states, the expression of SREBP1c and 

lipogenic genes is suppressed by glucagon, which is secreted from pancreatic α-

cells. Activation of PKA and/or AMP-activated protein kinase (AMPK), results in 

decrease in SREBP1c expression, eventually leading to downregulate lipogenesis 

(Foretz et al., 1998; Zhou et al., 2001). Although SREBP1c-mediated lipogenic 

program is rapidly repressed by nutritional deprivations, it is largely unknown how 

SREBP1c and lipogenic programming might be shut down upon fasting. 

 

3. Post-translational regulation of SREBP1c 

The precursor of SREBP1c is retained in the ER membrane by SREBP 

cleavage-activating protein (SCAP) and insulin-induced gene (INSIG) proteins 

(Yang et al., 2002). Under the certain conditions such as depletion of 

phosphatidylcholine or polyunsaturated fatty acids, SCAP escorts the precursor of 

SREBP1c from the ER to the Golgi apparatus (Walker et al., 2011). The precursor 
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of SREBP1c is sequentially cleaved by certain proteases, translocating the mature 

form of SREBP1c into the nucleus (Sakai et al., 1998; Wang et al., 1994). It has 

been suggested that Akt and mechanistic target of rapamycin complex 1 (mTORC1) 

might be involved in SREBP1c processing upon insulin (Bakan and Laplante, 

2012). Akt-mediated SREBP1c phosphorylation increases the affinity of SCAP-

SREBP1c complex found on COPⅡ-coated vesicles, which accelerates the 

transport of SREBP1c to the Golgi, where SREBP1c can undergo proteolysis 

(Yellaturu et al., 2009). Also, mTORC1 and its downstream target kinases such as 

ribosomal protein S6 kinase β1 (S6K1) modulate SREBP1c processing upon 

insulin (Owen et al., 2012). In the nucleus, the activity and stability of mature 

SREBP1c appears to be regulated by several post-translational modifications such 

as phosphorylation, sumoylation, acetylation, and ubiquitination (Figure 3). For 

instance, SREBP1c is phosphorylated by glycogen synthase kinase 3 (GSK3), 

which is inactivated by Akt (Kim et al., 2004). In addition, SREBP1c is 

phosphorylated and repressed by PKA, resulting in decrease of the transcription of 

SREBP1c target genes (Lu and Shyy, 2006). SREBP1c is also modulated by the 

small ubiquitin-related modifier (SUMO)-1 (Hirano et al., 2003; Lee et al., 2014a). 

Besides, SREBP1c undergoes acetylation and deacetylation processes. SREBP1c is 

acetylated by p300/CREB-binding protein (CBP) under high glucose and insulin 

conditions (Naar et al., 1999), whereas SREBP1c is deacetylated by sirtuin 1 

(SIRT1). SIRT1-dependent deacetylation of SREBP1c inhibits its binding to its 

target gene promoters. Accordingly, deacetylation of SREBP1c promotes its 

ubiquitination and degradation (Ponugoti et al., 2010; Walker et al., 2010). 
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Figure 3. Post-translational modifications of SREBP1c. Regulation of SREBP1c 

occurs at the level of SREBP1c expression, proteolytic processing, transcriptional 

activity, and post-translational modifications. Multiple signals regulate ER-to-

Golgi transport and the proteolytic activation of SREBP1c by controlling INSIG. 

SREBP1c is rapidly modulated by post-translational modifications, including 

phosphorylation, sumoylation, acetylation, and ubiquitination. 
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Together, it has been proposed that various post-translational modifications of 

SREBP1c appear to affect lipid metabolism upon nutritional and hormonal changes. 

 

IV. Lipid metabolism in cancer 

Cancer cells differ from normal cells in many aspects that allow them to 

abnormal cell growth and become invasive. Cancer cells undergo a complex 

metabolic reprogramming characterized by changes in anaerobic glycolysis and 

lipid synthetic processes (DeBerardinis et al., 2008; Schulze and Harris, 2012). The 

relevance of metabolic rearrangement of cancer cells has been included in the 

updated version of the review “Hallmarks of Cancer” where dysregulation of 

energy metabolism is included as one of emerging hallmarks (Hanahan and 

Weinberg, 2000, 2011). Tumorigenesis is dependent on the metabolic 

reprogramming as both direct and indirect consequences of oncogenic signaling 

(DeBerardinis et al., 2008). Cancer cells need to generate large amounts of 

precursors for macromolecule biosynthesis to allow the accumulation of cellular 

building blocks during cell growth and proliferation. Most cancer cells utilize 

aerobic glycolysis to support the production of intermediates for the synthesis of 

lipids, proteins and nucleic acids (Vander Heiden et al., 2009). In addition, cancer 

cells have increased glutamine uptake and glutaminolysis, which replenish 

intermediates of the TCA cycle that are redirected into biosynthetic reactions; a 

process known as anaplerosis (Hensley et al., 2013). The alterations in intracellular 

and extracellular metabolites that can accompany cancer-associated metabolic 

reprogramming have profound effects on gene expression, cellular differentiation, 

and the tumor microenvironment (Hsu and Sabatini, 2008). 
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1. Aberrant lipogenesis in cancer 

During tumorigenesis, lipids contribute to several aspects including tumor 

growth, energy and redox homeostasis, and metastasis. Certain cancer cells often 

show an increased de novo lipogenesis (Menendez and Lupu, 2007). Fatty acids are 

the major building blocks for the synthesis of phospholipids and triglycerides, 

which are mainly used for membrane biogenesis and energy storage, respectively 

(Bretscher and Raff, 1975; Divecha and Irvine, 1995). In cancer cells, most lipid 

metabolites are derived from de novo lipogenesis rather than from extracellular 

lipid uptake (Medes et al., 1953). Thus, increased lipogenesis provides the majority 

of lipids required for rapid proliferation of cancer cells. It has been reported that 

the shift from lipid uptake to de novo lipogenesis in cancer cells leads to increased 

membrane lipid saturation, resulting in higher levels of saturated and 

monounsaturated phospholipids, potentially protecting cancer cells from oxidative 

damage by reducing lipid peroxidation (Santos and Schulze, 2012). In addition, 

lipids are important signaling molecules in tumorigenesis (Spiegel et al., 1996). 

Some lipid metabolites are parts of paracrine hormones and growth factors, 

including prostaglandins, lyophosphatidic acid (LPA) or steroid hormones. Many 

studies have demonstrated that inhibition of several lipogenic enzymes such as 

FASN, ACC, and SCD1 can repress cancer cell growth (Currie et al., 2013). 

Although aberrant lipogenesis likely contributes to tumorigenesis in cancers, it has 

been poorly elucidated which factors are linked to lipid metabolism for 

tumorigenesis. 
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2. Hyperactivation of SREBP1c in metabolic disease and cancers 

It has been suggested that SREBP1c would be closely associated with type 

2 diabetes, insulin resistance, and pathogenesis of metabolic diseases (Shao and 

Espenshade, 2012). Accordingly, sequence variations at SREBF1 locus are linked 

to type 2 diabetes and increased expression of SREBP1c with genetic 

polymorphisms is associated with metabolic syndromes including cardiovascular 

diseases (Eberle et al., 2004a). Furthermore, hepatic SREBP1c is elevated in 

several animal models with insulin resistance and NAFLD (Marchesini et al., 2001; 

Muoio and Newgard, 2006). In addition, it has been reported that SREBP1c and its 

target genes are enhanced in certain cancers (Griffiths et al., 2013; Guo et al., 2014) 

and that SREBP1c promotes proliferation, migration, and invasion in glioblastoma 

and prostate cancers (Guo et al., 2009; Huang et al., 2012). On the other hand, it 

has been shown that inhibition of SREBP1c attenuates tumor growth in 

glioblastoma xenografts and that SREBP1c is defined a gene signature associated 

with poor survival in glioblastoma (Guo et al., 2009). Together, these findings 

imply that SREBP1c may play an important function in tumorigenesis, 

accompanied with lipid metabolism. 

 

V. Purpose of this study 

SREBP1c is tightly controlled by nutritional and hormonal changes to 

maintain whole-body energy homeostasis. To date, most studies have focused on 

the lipogenic roles of SREBP1c by coupling insulin action in metabolic organs. 

During postprandial states, insulin promotes SREBP1c activity to upregulate 

lipogenic programing. Conversely, hepatic SREBP1c is rapidly suppressed by 
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fasting signals to prevent futile lipogenic pathways. However, the molecular 

mechanisms that control SREBP1c turnover in response to nutritional deprivation 

are not thoroughly elucidated (Figure 4). Both animal models and human subjects 

with metabolic complications such as obesity, NAFLD, and certain cancers 

constitutively exhibit elevated SREBP1c. Thus, the elucidation of molecular 

mechanisms by which SREBP1c and lipogenic activity might be downregulated 

upon physiological cues appears to be important. Excess lipid accumulation is one 

of the hallmarks in clear cell renal cell carcinoma (ccRCC), the most common 

subtype of kidney cancers. To date, it has not been thoroughly understood the 

relationship between lipid metabolism and tumorigenesis in ccRCC. 

In this study, I have elucidated two novel findings for SREBP1c; (i) the 

suppression of SREBP1c during fasting and (ii) upregulation of SREBP1c in 

ccRCC. In the chapter one, to reveal which factors are involved in the inactivation 

of SREBP1c, I attempted to identify SREBP1c-interacting proteins by mass 

spectrometry analysis. I have identified that ring finger protein 20 (RNF20) is a 

novel E3 ubiquitin ligase for SREBP1c. Also, I have shown that RNF20-induced 

SREBP1c degradation downregulates hepatic lipid metabolism upon PKA 

activation. In the chapter two, I demonstrated that downregulation of RNF20 

stimulates tumorigenesis through SREBP1c activation in ccRCC. Moreover, in 

cultured ccRCC cells and xenograft models, RNF20 overexpression repressed 

lipogenesis and cell proliferation by inhibiting SREBP1c. To further explore which 

factors might be involved in SREBP1c-induced cell cycle progression in ccRCC, I 

tried to identify novel SREBP1c target genes, particularly, involving in cell cycle 

regulation. I discovered that pituitary tumor-transforming gene 1 (PTTG1) is a 
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Figure 4. The unsolved question on the molecular mechanisms of SREBP1c 

suppression upon fasting. SREBP1c is a key transcription factor for de novo 

lipogenesis during the postprandial state. During nutritional deprivation, SREBP1c 

is rapidly suppressed by fasting signals to turn off lipogenic program. However, the 

molecular mechanisms that control SREBP1c activity in response to fasting status 

are not thoroughly understood. 
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Figure 4 
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novel target gene of SREBP1c and plays a crucial role in cell cycle control in 

ccRCC. Therefore, I would like to propose the idea that RNF20 would act as a 

tumor suppressor gene through inhibiting SREBP1c which modulates not only lipid 

metabolism but also cell cycle progression in ccRCC. 
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Ring finger protein 20 regulates hepatic lipid metabolism 

through protein kinase A-dependent sterol regulatory 

element-binding protein 1c degradation 
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Abstract 

SREBP1c is a key transcription factor for de novo lipogenesis during the 

postprandial state. During nutritional deprivations, hepatic SREBP1c is rapidly 

suppressed by fasting signals to prevent lipogenic pathways. However, the 

molecular mechanisms that control SREBP1c turnover in response to fasting status 

are not thoroughly understood. To elucidate which factors are involved in the 

inactivation of SREBP1c, I attempted to identify SREBP1c-interacting proteins by 

mass spectrometry analysis. As a result, RNF20 was identified as a novel E3 

ubiquitin ligase for SREBP1c. In this work, I reveal that RNF20 physically 

interacts with SREBP1c, leading to degradation of SREBP1c via ubiquitination. In 

accordance with these findings, RNF20 represses the transcriptional activity of 

SREBP1c and turns off the expression of lipogenic genes that are targets of 

SREBP1c. In contrast, knockdown of RNF20 stimulates the expression of 

SREBP1c and induces lipogenic activity in primary hepatocytes. Furthermore, 

activation of PKA with glucagon or forskolin enhances the expression of RNF20 

and potentiates the ubiquitination of SREBP1c via RNF20. In wild-type and db/db 

mice, adenoviral overexpression of RNF20 markedly suppresses FASN promoter 

activity and reduces the level of hepatic triglycerides, accompanied by a decrease 

in the hepatic lipogenic program. Taken together, these data suggest that RNF20 

acts as a negative regulator of hepatic fatty acid metabolism through degradation of 

SREBP1c upon PKA activation. Knowledge regarding this process enhances 

understanding of how SREBP1c is able to turn off hepatic lipid metabolism during 

nutritional deprivation. 
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Introduction 

Sterol regulatory element-binding proteins (SREBPs) play key roles in 

lipid homeostasis from yeast to humans (Osborne, 2000; Tontonoz et al., 1993). In 

mammals, three different SREBP isoforms, including SREBP1a, SREBP1c (also 

known as ADD1), and SREBP2, are encoded by two genes: SREBF1 and SREBF2. 

SREBP1 regulates fatty acid metabolism, whereas SREBP2 controls cholesterol 

metabolism (Horton et al., 2002). When the cellular sterol level is low, SREBP 

cleavage-activating protein (SCAP) escorts the SREBP precursors from the 

endoplasmic reticulum (ER) to the Golgi, where SREBPs are cleaved by Site-1 and 

Site-2 proteases (Yang et al., 2002). Subsequently, the mature forms of SREBPs are 

translocated into the nucleus and stimulate the expression of target genes (Briggs et 

al., 1993; Wang et al., 1993). SREBP1a and SREBP1c are generated through 

transcription from alternative promoters and splicing from a single SREBF1 gene.  

In metabolic tissues such as adipose tissue and liver, SREBP1c is the 

predominant isoform of SREBP1 (Shimomura et al., 1997; Tontonoz et al., 1993). 

SREBP1c governs de novo lipogenesis by stimulating its target genes, including 

fatty acid synthase (FASN), acetyl-CoA carboxylase1 (ACC1), stearoyl-CoA 

desaturase1 (SCD1), and long-chain fatty acid elongase (ELOVL6) (Eberle et al., 

2004b; Kim and Spiegelman, 1996; Kumadaki et al., 2008). Furthermore, 

SREBP1c is sensitively regulated by nutritional and hormonal changes to achieve 

energy balance. For example, SREBP1c is suppressed by fasting, whereas 

SREBP1c is activated by feeding in adipose tissue and liver (Horton et al., 1998a; 

Kim et al., 1998). In parallel, the expression of most lipogenic genes, including 

FASN, ACC1, and SCD1, is also modulated in a fashion analogous to that of 
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nutritionally regulated SREBP1c (Foufelle et al., 1994; Girard et al., 1994; Kim et 

al., 1998). Accordingly, it has been reported that various hormones, such as insulin, 

glucagon, and adrenaline, participate in the regulation of SREBP1c and its target 

lipogenic genes (Foretz et al., 1999; Zhang et al., 2003). Insulin, a key postprandial 

hormone, stimulates the expression and activity of SREBP1c to accommodate 

anabolic processes, such as fatty acid synthesis, upon feeding (Flier and Hollenberg, 

1999; Kim et al., 1998). In contrast, glucagon, a key catabolic hormone, suppresses 

the activity of SREBP1c in fasting states, leading to a decrease in lipogenesis (Lu 

and Shyy, 2006). 

In the nucleus, mature SREBPs are very unstable and are rapidly degraded 

by the proteasome (Hirano et al., 2003; Hirano et al., 2001). Previous reports have 

shown that SREBP1 is phosphorylated by glycogen synthase kinase-3 beta (GSK-

3β), which leads to F-box- and WD repeat domain-containing 7 (FBXW7)-

dependent ubiquitination of SREBP1 (Punga et al., 2006; Sundqvist et al., 2005). 

However, a recent in vivo study revealed that inhibition of FBXW7 does not alter 

the expression of SREBP1c or lipogenic genes in the liver (Kumadaki et al., 2011). 

Although SREBP1c-mediated lipogenic program in liver is rapidly 

repressed by nutritional deprivations, the factors that are involved in the 

suppression of SREBP1c activity during fasting have not been thoroughly 

characterized. In this study, I demonstrate that ring finger protein 20 (RNF20) 

promotes polyubiquitination and degradation of SREBP1c. Overexpression of 

RNF20 represses SREBP1c activity, leading to a decrease in the expression of 

lipogenic genes. In obese db/db mice, RNF20 overexpression alleviates hepatic 

steatosis by reducing the lipogenic program via SREBP1c downregulation. 
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Furthermore, activated protein kinase A (PKA), a major signaling cascade that 

mediates the fasting state, induces degradation of SREBP1c by increasing RNF20 

expression. Taken together, these data suggest that RNF20 plays a critical role in 

the regulation of hepatic lipid metabolism by modulating the protein stability and 

transcriptional activity of SREBP1c during hormonal changes. 
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Materials and Methods 

Cell culture and reagents 

HEK293T, COS-1, and H4IIE cells were maintained in Dulbecco‟s 

modified Eagle‟s medium (DMEM) supplemented with 10% fetal bovine serum 

(FBS, Gibco/BRL) and cultured at 37°C in a 5% CO2 incubator. Cycloheximide 

(CHX), H-89, insulin, T0901317 were purchased from Sigma-Aldrich (St. Louis, 

MO, USA). Forskolin and MG132 were purchased from Calbiochem (San Diego, 

CA, USA). 

 

Plasmids and recombinant adenoviruses 

The nuclear form of SREBP1c, encoding amino acids 1–403 of rat 

SREBP1c, was cloned into the pcDNA3.1-Myc A plasmid (Invitrogen, Carlsbad, 

CA) and p3×FLAG-CMV-10 vector (Sigma-Aldrich). The full-length RNF20 

cDNA was cloned into the pcDNA3.1-Myc A and p3×FLAG-CMV-10 vectors. A 

small interfering RNA duplex for RNF20 was generated by GenePharma (Shanghai, 

China), and its target sequence was as follows: forward 5‟-

GGAGAGAGAACGAGAGAAA (dTdT)-3‟. The FASN-luciferase plasmid 

containing a –220 to +25 bp fragment of the FASN promoter ahead of a luciferase 

reporter gene was described previously (Kim et al., 1998). An RNF20-expressing 

adenovirus was generated through homologous recombination between a linearized 

transfer vector, pAd-Track, and the adenoviral vector pAd-Easy, as previously 

described (He et al., 1998). Ad-RNF20 contained the full-length murine RNF20 

cDNA with a C-terminal Myc-tag. An adenovirus encoding GFP only (Ad-Mock) 

was used as a control in all experiments. I produced adenoviruses in HEK293A 
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cells and purified them by CsCl gradient centrifugation, as described previously 

(Becker et al., 1994). Ad-FASN luc was generated based on FASN (–150/–43) 

luciferase as described (Dentin et al., 2007; Magana et al., 2000). 

 

Primary hepatocyte culture and infection with adenovirus 

Eight-week-old C57BL/6 male mice from Samtako (South Korea) were 

used for isolation of primary hepatocytes. After the animals were anesthetized, 

primary hepatocytes were isolated as previously described (Berry and Friend, 

1969). Briefly, total liver tissues were perfused with HBSS buffer (50 mM HEPES 

[pH 7.4], 5.5 mM glucose, 138 mM NaCl, 5.4 mM KCl, 4.17 mM NaHCO3, 0.34 

mM Na2HPO4 [dibasic], and 0.44 mM KH2PO4) into the portal vein. After 

perfusion, the liver tissues were dissociated into hepatocytes using collagenase 

buffer (HBSS buffer supplemented with 0.25% type IV collagenase (Sigma-

Aldrich) and 5 mM CaCl2). Subsequently, the isolated hepatocytes were washed 

with serum-free M199 medium (HyClone, South Logan, USA) and suspended in 

M199 medium supplemented with 10% FBS, 100 units/mL penicillin, and 100 

mg/mL streptomycin. Cell viability was assessed by the trypan blue exclusion test. 

Isolated hepatocytes were seeded at a density of 2.5×106 cells/dish in 100-mm 

tissue culture dishes and maintained at 37°C in 5% CO2. After cell attachment 

(approximately 4 hours), the culture media were replaced with fresh media. For 

adenoviral infections, hepatocytes were cultured for approximately 16 hours after 

cell attachment and subsequently incubated for 5 hours at 37°C in serum-free 

M199 either with or without adenovirus. Then, the culture media were replaced 

with fresh media, and the cells were incubated for 24 hours. 
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Flag affinity purification of the SREBP1c complex 

Adenoviruses encoding green fluorescent protein (GFP) or Flag-SREBP1c, 

which contains the transcriptionally active fragment of rat SREBP1c (amino acids 

1–403) fused with a Flag-tag, were used to infect primary hepatocytes. The 

infected hepatocytes were then gently washed with ice-cold phosphate-buffered 

saline (PBS) and lysed in hypotonic buffer (20 mM HEPES [pH 7.9], 1 mM EDTA, 

1 mM EGTA, 1 mM DTT, 0.5 mM PMSF, 0.2% Nonidet P-40 (NP-40), and 

protease inhibitor cocktail (Roche, Rotkreuz, Switzerland)). After incubation in 

hypotonic buffer for 10 minutes, the homogenates were centrifuged at 8,000 rpm 

for 1 minute at 4°C, and the supernatants (cytosolic fraction) were transferred to a 

fresh tube. The pellet was homogenized in ice-cold high salt buffer (10 mM 

HEPES [pH 7.9], 420 mM NaCl, 20% glycerol, 1 mM EDTA, 1 mM EGTA, 1 mM 

DTT, 0.5 mM PMSF, and protease inhibitor cocktail) on a rotating shaker for 30 

minutes at 4°C and subsequently centrifuged at 12,000 rpm for 15 minutes at 4°C. 

Consequently, the supernatants (nuclear fraction) were incubated with anti-Flag 

M2-agarose affinity gel (Sigma-Aldrich) for 2 hours at 4°C on a rotating shaker. 

The beads were then rinsed four times for 10 minutes each in washing buffer (20 

mM HEPES [pH 7.9], 150 mM NaCl, 0.5 mM EDTA, 0.5 mM PMSF, 1% Triton 

X-100, and protease inhibitor cocktail), followed by elution with sodium dodecyl 

sulfate (SDS) buffer (250 mM Tris-HCl [pH 6.6], 10% SDS, 50% glycerol, 500 

mM DTT, and 0.5% bromophenol blue). The eluates were then subjected to mass 

spectrometry. 
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GST pull-down assay 

GST pull-down assays were performed as previously described (Lee et al., 

2003). Briefly, GST and GST-SREBP1c recombinant proteins were bound to 

glutathione beads and incubated with 35S-Met-labeled RNF20 protein. The beads 

were washed with Tris-buffered saline containing 0.1% Tween-20 (TBST, 25 mM 

Tris-HCl [pH 8.0], 137 mM NaCl, 2.7 mM KCl, and 0.1% Tween-20) and 

analyzed by autoradiography after SDS-PAGE. 

 

Western blot analysis 

The cells were lysed on ice with modified radioimmunoprecipitation assay 

(RIPA) buffer (50 mM Tris-HCl [pH 7.4], 150 mM NaCl, 1 mM EDTA, 1 mM 

PMSF, 1% NP-40, 0.25% Na-deoxycholate, and protease inhibitor cocktail) and 

subjected to immunoprecipitation or western blotting analyses. For 

immunoprecipitation, equal amounts of the total cell extracts were incubated with 

Myc or Flag antibody, and the immunoprecipitated complexes were collected using 

protein A-sepharose beads (GE Healthcare, UK). Further, the pellets were washed 

extensively and subjected to western blotting analyses according to previously 

described protocols (Kim et al., 2009). The following antibodies were used in the 

western blotting analyses: RNF20 (Abcam, MA; #ab32629; 1:1,000), FASN (Cell 

Signaling, MA; #3180; 1:1,000), GAPDH (AbFrontier, South Korea; #LF-PA0018; 

1:1,000), Pol II (Santa Cruz Biotechnology, CA; #SC-5943; 1:1,000), Lamin B1 

(Abcam; #ab16048; 1:1,000), β-actin (Sigma-Aldrich; #A5316; 1:2,000), Flag-tag 

(Sigma-Aldrich; #F1804; 1:1,000), Myc-tag (Cell Signaling; #2276; 1:1,000) and 

HA-tag (Covance Research, PA; #16B12; 1:1,000). SREBP1 antibodies were 
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produced by AbFrontier using the nuclear form of recombinant SREBP1 as an 

immunogen. Relative amounts of each protein were calculated using ImageJ 

software. 

 

Cell-based ubiquitination assay 

COS-1 cells were transfected with plasmids encoding Myc-SREBP1c, 

Flag-RNF20 and HA-ubiquitin in the presence or absence of forskolin (20 μM). 

After transfection for 36 hours, the cells were incubated with MG132 (10 μM) for 

12 hours and lysed with cold RIPA buffer. Equal amounts of total cell lysates were 

incubated with the Myc antibodies for 2 hours at 4°C. Immunocomplexes were 

collected using protein-A sepharose beads for 1 hour at 4°C. Further, the 

immunoprecipitates were washed with RIPA buffer and subjected to SDS-PAGE 

followed by western blotting analyses with anti-HA antibodies. 

 

Transient transfection and luciferase assay 

HEK293T cells were transiently transfected with several DNA constructs 

according to the calcium-phosphate method described previously (Seo et al., 

2004a). After incubation for 24 hours, transfected cells were harvested and assayed 

for luciferase and β-galactosidase activity. Total cell extracts were prepared with 

lysis buffer (25 mM Tris-phosphate [pH 7.8], 10% glycerol, 2 mM CDTA, 2 mM 

DTT, and 1% Triton X-100), and the activities of luciferase and β-galactosidase 

were measured according to the manufacturer‟s instructions (Promega). The 

relative luciferase activity was normalized to β-galactosidase activity in each 

sample. Transfections of SREBP1c, RNF20 and the siRNA duplex for RNF20 into 
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COS-1 and mouse primary hepatocytes were carried out with 

Lipofectamine2000TM reagent (Invitrogen) according to the manufacturer‟s 

instructions. 

 

Immunocytochemistry 

Flag-tagged nuclear SREBP1c and Myc-tagged RNF20 plasmids were co-

transfected into HeLa cells cultured in a 6-well plate. After transfection for 24 

hours, the cells were rinsed with PBS and fixed in 4% paraformaldehyde for 10 

minutes. The fixed cells were incubated with 0.5% Triton X-100-PBS for 5 

minutes and 3% bovine serum albumin (BSA)-PBS for 1 hour. The cells were then 

incubated with anti-Flag (Sigma-Aldrich; #F1804; 1:200) and anti-Myc (Cell 

Signaling; #2276; 1:200) antibodies at 4°C overnight followed by incubation with 

fluorophore-conjugated secondary antibodies (1:200) for 1 hour in the dark at room 

temperature. All images were recorded and processed under equivalent conditions. 

 

Oil Red O staining 

To assess intracellular lipid accumulation, hepatocytes were fixed with 10% 

formaldehyde (Merck, Germany) in PBS and stained with Oil Red O as described 

previously (Kim et al., 2010). Mouse primary hepatocytes were transfected with 

siRNA targeted against RNF20 in M199 medium. After 48 hours, the transfected 

cells were washed twice with PBS, fixed for 1 hour with 3.7% formaldehyde in 

PBS and subsequently dehydrated with 100% propylene glycol (AMRESCO, USA) 

for 5 minutes. After removing the propylene glycol, Oil Red O dye was added to 

the plate and incubated overnight. Subsequently, Oil Red O was removed, and 85% 
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propylene glycol was added to the plate, which was allowed to stand for 5 minutes. 

Finally, excess dye was washed away with distilled water until the background was 

clear. To detect hepatic lipid contents in liver section, OCT compound-embedded, 

snap-frozen liver tissues were fixed and stained with Oil Red O. Images were 

obtained using an EVOS®  ORIGINAL microscope (Advanced Microscopy Group) 

and a Nikon TMS inverted microscope. 

 

RNA isolation and quantitative RT-PCR 

Cell As described previously (Jeong et al., 2010), total RNA was isolated 

with TRIzol reagent (Molecular Research Center, OH, USA), and cDNA was 

synthesized with M-MuLV reverse transcriptase (Fermentas, MD, USA). qRT-

PCR analyses were performed with the MyiQ quantitative real-time PCR detection 

system (Bio-Rad Laboratories, CA, USA) using SYBR Green I (BioWhittaker 

Molecular Applications). The relative levels of each mRNA were normalized to the 

levels of TBP, GAPDH, or cyclophilin mRNA. The qRT-PCR primers used in this 

study were synthesized by Bioneer, and the primer sequences are listed in Table 2. 

 

Animals 

All animal experiments were approved by the Seoul National University 

Animal Experiment Ethics Committee. Male C57BL/6 mice were obtained from 

Samtako (South Korea), and db/db mice were obtained from Central Lab (South 

Korea). The animals were housed in colony cages in 12 hours light/12 hours dark 

cycles. Standard chow (Purina Mills) was given ad libitum. 
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Table 2. Primers sequences for qRT-PCR 

Species Gene Sequence (5’ to 3’) Direction 

Mouse 

RNF20 TGCAGATGACCTCAAAGCAC Forward 

TCATCACACTTGGGCACATT Reverse 

FASN 
GCCTACACCCAGAGCTACCG Forward 

GCCATGGTACTTGGCCTTG Reverse 

SCD1 
CCGGAGACCCCTTAGATCGA Forward 

TAGCCTGTAAAGATTTCTGCAAACC Reverse 

ELOVL6 
TGCCATGTTCATCACCTTGT Forward 

TACTCAGCCTTCGTGGCTTT Reverse 

SREBP1a 
GGCCGAGATGTGCGAACT Forward 

TTGTTGATGAGCTGGAGCATGT Reverse 

SREBP2 
GCGTTCTGGAGACCATGGA Forward 

ACAAAGTTGCTCTGAAAACAAATCA Reverse 

HMGCR 
CTTGTGGAATGCCTTGTGATTG Forward 

AGCCGAAGCAGCACATGAT Reverse 

SQS 
CCAACTCAATGGGTCTGTTCCT Forward 

TGGCTTAGCAAAGTCTTCCAACT Reverse 

LDLR 
AGGCTGTGGGCTCCATAGG Forward 

TGCGGTCCAGGGTCATCT Reverse 

PPARγ 
TCACAAGAGCTGACCCAATGG Forward 

GGCTCTACTTGATCGACTTTG Reverse 

LXRα 
GGAGGCAACACTTGCATCCT Forward 

AGGGCTGTAGGCTCTGCTGA Reverse 

ChREBP 
GCATCCTCATCCGACCTTTA Forward 

GATGCTTGTGGAAGTGCTGA Reverse 

FBXW7 
CCATGTTCAGCAACACCAAC Forward 

TGGAACTGGGGCTCTATCAC Reverse 

G6Pase 
ACACCGACTACTACAGCAACAG Forward 

CCTCGAAAGATAGCAAGAGTAG Reverse 

GAPDH 
TTCACCACCATGGAGAAGG Forward 

CTAAGCAGTTGGTGGTGCAG Reverse 

TBP 
 

GGGAGAATCATGGACCAGAA Forward 

CCGTAAGGCATCATTGGACT 
 

Reverse 
 

Mouse 
 

Rat 

SREBP1c GGAGCCATGGATTGCACATT Forward 

CAGGAAGGCTTCCAGAGAGG Reverse 

RNF20 
 

GCATCACACCATGTCTCAGG Forward 

CACCCGCTCTAGGACTTCAG 
 

Reverse 
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In vivo imaging system 

Ten-week-old C57BL/6 mice and nine-week-old db/db mice were injected 

through the tail vein with adenoviruses encoding GFP (Ad-Mock), RNF20 (Ad-

RNF20) and FASN luciferase (Ad-FASN-luc). After 7 days, adenovirus-infected 

mice were injected intraperitoneally with 100 mg/kg sterile D-luciferin. The mice 

were then anaesthetized with Zoletil®  and imaged using the IVISTM 100 Imaging 

System (Xenogen) as described previously (Dentin et al., 2007). 

 

Oral glucose tolerance test 

For the oral glucose tolerance test, db/db mice were fasted for 12 hours 

and basal blood samples were taken, followed by oral glucose administration (1.5 

g/kg of body weight). Blood samples were drawn at 15, 30, 45, 60, and 90 minutes 

after administration. 

 

Hepatic triglyceride analysis 

Hepatic triglycerides were measured in cell lysates using a colorimetric 

assay and expressed as μg of lipid per mg of cellular protein as described 

previously (Jo et al., 2013). In brief, liver tissue samples were homogenized in 5% 

Triton X-100, and total tissue extracts were incubated in a water bath at 80°C and 

subsequently cooled down to room temperature twice. After centrifugation at 

12,000 rpm for 5 minutes at room temperature, the supernatant was collected and 

used in triglyceride assays. Measurement of hepatic triglycerides was performed 

using the InfinityTM triglycerides reagent (Thermo Scientific). 
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Statistical analysis 

All observed data are presented as the mean ± standard deviation (SD). 

Error bars represent SD, and P values were calculated by Student‟s t test. The SD 

values were considered statistically significant at *P < 0.05 and **P < 0.01. 
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Results 

SREBP1c is decreased by ubiquitination upon PKA activation. 

Ectopic SREBP1c is tightly regulated by hormonal and nutritional changes 

to reflect the energy status (Foretz et al., 1999; Zhang et al., 2003). When I 

examined the protein stability of SREBP1c in the presence of cycloheximide, an 

inhibitor of protein synthesis, the degradation rate of nuclear SREBP1c was 

reduced in the presence of MG132, an inhibitor of the 26S proteasome (Figures 5A 

and 5B), indicating that the rapid turnover of SREBP1c protein might be mediated 

by proteasomal degradation. Although it has been demonstrated that the 

cAMP/PKA pathway is involved in the suppression of SREBP1c (Lu and Shyy, 

2006; Yamamoto et al., 2007; Yellaturu et al., 2005), it is largely unknown how 

PKA affects SREBP1c protein stability. To address this issue, primary hepatocytes 

were treated with forskolin, an activator of the PKA cascade. The level of SREBP1 

protein was reduced by forskolin (Figures 5C and 5D), while that of SREBP1 

protein was restored by MG132 in a dose-dependent manner (Figures 6A and 6B), 

implying that PKA would be involved in the regulation of SREBP1c protein 

stability through the ubiquitin-proteasome system. Next, to investigate whether 

SREBP1c is indeed ubiquitinated by PKA activation, cell-based ubiquitination 

assays were carried out. As shown in Figure 6C, forskolin efficiently 

polyubiquitinated the SREBP1c protein, while H-89, the inhibitor of PKA, greatly 

attenuated forskolin-induced SREBP1c ubiquitination. Therefore, these data 

suggest that SREBP1c is degraded by ubiquitination upon PKA activation. 
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Figure 5. PKA activation decreases SREBP1c protein stability. (A) Mouse 

primary hepatocytes were treated with cycloheximide (20 μM) for the indicated 

periods with or without MG132 (20 μM) treatment for 3 hours. After the 

preparation of nuclear extracts, western blotting analyses were performed with the 

indicated antibodies. DMSO, dimethyl sulfoxide; CHX, cycloheximide; nSREBP1, 

nuclear SREBP1. (B) Quantification of the amounts of nSREBP1 protein in the 

presence of MG132 in Figure 5A. Relative level of nSREBP1 protein was 

calculated by ImageJ software and normalized with Pol II using nonlinear 

regression curve fitTM program (GraphPad Prism). The level of nSREBP1 protein at 

time zero in each condition was normalized to 100%. (C) Mouse primary 

hepatocytes were treated with forskolin (50 μM) for 6 hours and harvested at the 

indicated time points after cycloheximide (50 μM) treatment. After isolating 

nuclear extracts, western blotting analyses were performed with the indicated 

antibodies. (D) Quantification of the amounts of nSREBP1 protein in the presence 

of forskolin in Figure 5C. Relative level of nSREBP1 protein was calculated by 

ImageJ software and normalized with Lamin B1 using nonlinear regression curve 

fitTM program (GraphPad Prism). The level of nSREBP1 protein at time zero in 

each condition was normalized to 100%. 
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Figure 5 
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Figure 6. SREBP1c is decreased by ubiquitination upon PKA activation.    

(A) Mouse primary hepatocytes were treated with or without forskolin (50 μM) in 

the presence of MG132 with indicated dose for 4 hours. Nuclear extracts were 

isolated and analyzed by western blotting analyses with the indicated antibodies.  

(B) Quantification of the amounts of nSREBP1 protein in Figure 6A. Relative level 

of nSREBP1 protein was calculated by ImageJ software and normalized with 

Lamin B1. The level of nSREBP1 protein without MG132 and forskolin was 

normalized to 100%. (C) COS-1 cells were co-transfected with plasmids encoding 

Myc-SREBP1c and HA-ubiquitin. After transfection, the cells were treated with 

MG132 (10 μM) for 12 hours and subsequently pretreated with H-89 (20 μM) for  

1 hour. Then, the cells were treated with or without forskolin (20 μM) for another  

3 hours. Total cell lysates were subjected to co-immunoprecipitation with anti-Myc 

antibody, followed by western blotting analyses with the indicated antibodies. IP, 

immunoprecipitation; IB, immunoblotting; IgG, immunoglobulin G. All 

experiments were repeated independently at least three times, and representative 

results are shown. 
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Figure 6 

 

 

 

A          A 

 

 

 

 

A         B 

 

 

 

 

 

A          C 

 

 

 

 

 

 

 

 

 

 



46 

RNF20 physically interacts with SREBP1c. 

To investigate which factors are involved in the degradation and 

ubiquitination of nuclear SREBP1c protein, I attempted to identify SREBP1c-

interacting proteins; particularly, I was eager to identify an E3 ubiquitin ligase. 

Mouse primary hepatocytes were infected with adenovirus expressing nuclear 

SREBP1c, and affinity purifications were conducted. Mass spectrometry analyses 

indicated that RNF20 (also known as BRE1A) was a potential SREBP1c-

interacting protein (Figures 7A and 7B). To validate the physical interaction 

between RNF20 and SREBP1c, GST pull-down assays were performed. Because 

SREBP1c forms homodimers, 35S-Met labeled SREBP1c was used as a positive 

control (Figure 8A, lane 5). RNF20 protein was detected in the fractions eluted 

from the GST-SREBP1c protein complex (Figure 8A, lane 6). Further, when I 

biochemically tested the physical interaction between RNF20 and SREBP1c, 

RNF20 was co-immunoprecipitated with SREBP1c (Figure 8B), indicating that 

RNF20 could physically interact with SREBP1c. Moreover, I observed that 

endogenous RNF20 formed immuno-complex with endogenous SREBP1 in liver 

nuclear extracts (Figure 8C). In parallel immunocytochemistry experiments, 

exogenous Flag-SREBP1c and Myc-RNF20 proteins co-localized in the nucleus 

(Figure 8D), implying that RNF20 can interact with SREBP1c in the nucleus. 

 

RNF20 promotes ubiquitination and degradation of SREBP1c. 

Given that the E3 ubiquitin ligase RNF20 associates with SREBP1c, the 

effect of RNF20 on SREBP1c stability was examined. As shown in Figure 9A, the 

level of SREBP1c protein was decreased by RNF20 in a dose-dependent manner. 
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Figure 7. Nuclear SREBP1c interacting proteins are identified by using 

affinity purification. (A) Mouse primary hepatocytes were infected with 

adenovirus expressing either GFP alone (Mock) or Flag-tagged nuclear SREBP1c 

(Flag-SREBP1c). Nuclear extracts were subjected to flag affinity purification 

followed by SDS-PAGE. After affinity purification, SREBP1c interacting candidate 

proteins were visualized by silver staining. (B) The list of nuclear SREBP1c 

interacting candidates identified by affinity purification with LC-MS/MS analyses. 
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Figure 7 
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Figure 8. RNF20 physically interacts with SREBP1c. (A) GST pull-down assays 

were performed as described in “Materials and Methods”. Inputs of in vitro-

translated 35S-Met-labeled SREBP1c (nuclear form) and RNF20 are shown in lanes 

1 and 2, respectively. Radioisotope-labeled proteins were mixed with GST or GST-

SREBP1c recombinant proteins, and GST pull-down analyses were performed. 

GST, glutathione S-transferase. (B) HEK293T cells were transiently co-transfected 

with Flag-SREBP1c and/or Myc-RNF20 expression vectors. After preparing total 

cell lysates, co-immunoprecipitation with anti-Flag antibody and western blotting 

analyses were performed with the indicated antibodies. IP, immunoprecipitation; IB, 

immunoblotting; IgG, immunoglobulin G. (C) Nuclear extracts were isolated from 

mouse livers and subsequently co-immunoprecipitated with IgG or the indicated 

antibody. Immuno-protein complexes were detected by western blotting analyses 

with the indicated antibodies. nSREBP1, nuclear SREBP1. (D) Immuno-

cytochemistry analyses of co-expressed Flag-SREBP1c and Myc-RNF20 in HeLa 

cells. DAPI, 4‟,6-diamidino-2-phenylindole; Scale bar, 10 μm. 
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Figure 8 
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Moreover, the RNF20-induced reduction of SREBP1c protein was alleviated by 

MG132 (Figure 9A, lane 6), indicating that RNF20 would stimulate SREBP1c 

degradation via ubiquitin-proteasomal degradation. Consistent with these data, 

cycloheximide-chase assays revealed that the half-life of SREBP1c was shortened 

by ectopic expression of RNF20 (Figure 9B). Next, as RNF20 exhibits E3 ubiquitin 

ligase activity, I tested whether SREBP1c is ubiquitinated by RNF20. As shown in 

Figure 10A, RNF20 greatly promoted the level of SREBP1c polyubiquitination. To 

confirm whether endogenous RNF20 plays a role in SREBP1c ubiquitination, I 

investigated the effect of RNF20 knockdown via siRNA on the ubiquitination of 

SREBP1c. I found that suppression of RNF20 relieved the level of SREBP1c 

polyubiquitination (Figure 10B). These data indicate that RNF20 can act as an E3 

ubiquitin ligase for SREBP1c and can accelerate polyubiquitination and 

degradation of SREBP1c protein. 

 

RNF20 suppresses the transcriptional activity of SREBP1c. 

To understand the biological significance of SREBP1c degradation by 

RNF20, I investigated the transcriptional activity of SREBP1c with or without 

RNF20 overexpression. Consistent with previous reports (Kim et al., 1998; Seo et 

al., 2004b), SREBP1c transactivated the promoters of FASN and adiponectin 

(Acrp30) genes, whereas coexpression with RNF20 suppressed the transcriptional 

activity of SREBP1c (Figure 11A). When the level of SREBP1 protein was 

investigated with or without RNF20 overexpression in primary hepatocytes, 

RNF20 overexpression clearly decreased in endogenous and ectopic nuclear 

SREBP1 protein (Figure 11B). Moreover, RNF20 overexpression indeed decreased 
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Figure 9. RNF20 represses the protein stability of SREBP1c. (A) HEK293T 

cells transfected with Flag-SREBP1c and/or Myc-RNF20 expression vectors were 

incubated with or without MG132 (20 μM) for 4 hours, and total cell lysates were 

subjected to SDS-PAGE followed by western blotting analyses with the indicated 

antibodies. (B) COS-1 cells transfected with Myc-SREBP1c and/or Myc-RNF20 

expression vectors were harvested at 0, 2, 4, and 8 hours after cycloheximide 

treatment (30 μM). After isolating total cell lysates, western blotting analyses were 

performed with the indicated antibodies. CHX, cycloheximide. 
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Figure 9 
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Figure 10. RNF20 mediates ubiquitination and degradation of SREBP1c.   

(A) COS-1 cells were co-transfected with Myc-SREBP1c, HA-tagged ubiquitin 

and/or Flag-RNF20 expression vectors. After incubation for 36 hours, the cells 

were treated with MG132 (10 μM) for 12 hours. Total cell lysates were isolated and 

subjected to cell-based ubiquitination assays. IP, immunoprecipitation; IB, 

immunoblotting; IgG, immunoglobulin G. (B) COS-1 cells were transfected with 

non-specific control siRNA (siControl) or RNF20-specific siRNA (siRNF20). After 

incubation for 36 hours, the cells were incubated with MG132 (10 μM) for      

12 hours. Total cell lysates were isolated and subjected to cell-based ubiquitination 

assays. The data shown are representative results of at least three independent 

experiments. 
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Figure 10 
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elevated endogenous SREBP1 protein in the presence of insulin and/or T0901317, 

a LXR agonist (Figure 11C). Next, to address the question whether RNF20 could 

affect the expression of SREBP1c target genes, I analyzed the mRNA levels of its 

target genes in RNF20 and/or SREBP1c-overexpressing hepatocytes. In primary 

hepatocytes, RNF20 overexpression alone significantly decreased many lipogenic 

genes including SREBP1c, FASN, SCD1, ACC1, and ELOVL6 (Figure 12A, lane 2). 

Consistent with previous reports (Horton et al., 2002; Kim et al., 1998), SREBP1c 

elevated the mRNA expression of lipogenic genes such as FASN, SCD1, and 

ELOVL6 in primary hepatocytes (Figure 12A, lane 3). However, the effects of 

RNF20 overexpression on lipogenic suppression were marginal in SREBP1c-

overexpressing hepatocytes (Figure 12A, lane 4). It is feasible to speculate that 

high level of SREBP1c protein may partly stimulate lipogenic gene expression 

even in the presence of RNF20 overexpression. On the other hand, overexpression 

of RNF20 did not significantly alter the mRNA level of other SREBP isoforms, 

including SREBP1a and 2 (Figure 12A). Moreover, in primary hepatocytes, RNF20 

overexpression decreased intracellular lipid accumulation as determined by Oil 

Red O staining (Figure 12B). These data indicate that RNF20 can indeed 

downregulate lipogenic gene expression by suppressing SREBP1c. 

 

Suppression of RNF20 enhances hepatic lipid metabolism via SREBP1c. 

To determine whether endogenous RNF20 influences lipogenic activity, I 

investigated the effect of RNF20 suppression via siRNA on lipogenic gene 

expression in primary hepatocytes. When the level of RNF20 was decreased (by 

approximately 25%), the mRNA levels of SREBP1c and its target genes, including 
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Figure 11. RNF20 suppresses the transcriptional activity of SREBP1c.      

(A) HEK293T cells were co-transfected with luciferase reporter plasmids 

containing the FASN or Acrp30 promoter along with pRSV-β-gal, Myc-SREBP1c 

and/or Myc-RNF20 expression vectors. Total cell lysates were subjected to 

luciferase and β-galactosidase assays. The values presented are representative data 

from three independent experiments carried out in triplicate. Each bar represents 

the mean ± SD of three individual samples. #P < 0.05 vs. negative control; ##P < 

0.01 vs. negative control; *P < 0.05; RLU, relative luminescence units. (B) Mouse 

primary hepatocytes were infected with adenovirus containing GFP alone (Ad-

Mock), Flag-SREBP1c (Ad-SREBP1c) and/or Myc-RNF20 (Ad-RNF20) as 

indicated. After infection for 12 hours, total cell lysates were subjected to SDS-

PAGE followed by western blotting analyses with the indicated antibodies. 

nSREBP1, nuclear SREBP1. (C) Mouse primary hepatocytes were infected with 

Ad-Mock or Ad-RNF20 for 12 hours. Subsequently, the culture media were 

replaced with fresh media and 24 hours. And then the cells were incubated for   

12 hours with or without insulin (100 nM) and T0901317 (3 μM). Total cell lysates 

were subjected to SDS-PAGE followed by western blotting analyses with the 

indicated antibodies. pSREBP1, precursor SREBP1; nSREBP1, nuclear SREBP1. 
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Figure 11 
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Figure 12. RNF20 downregulates the expression of SREBP1c and its target 

genes. (A) Mouse primary hepatocytes were infected with Ad-SREBP1c and/or 

Ad-RNF20. After infection for 12 hours, the culture media were replaced with 

fresh media and subsequently incubated for 36 hours. The relative mRNA levels 

were measured using qRT-PCR. The relative values were normalized to the level of 

GAPDH mRNA. Each bar represents the mean ± SD of three individual samples. 

#P < 0.05 vs. negative control; ##P < 0.01 vs. negative control; *P < 0.05;      

**P < 0.01. (B) Mouse primary hepatocytes were transduced with Ad-SREBP1c 

and/or Ad-RNF20 adenoviruses. After incubation for 48 hours, intracellular lipid 

droplets were visualized by Oil Red O staining, and the cells were photographed. 

Microscopic views of cells at a magnification of ×200 are shown. Scale bar,    

100 μm. 
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Figure 12 
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FASN and ELOVL6, were significantly elevated (Figure 13A). On the contrary, the 

mRNA levels of other SREBP isoforms, including SREBP1a and 2, were not 

altered by RNF20 suppression (Figure 13A), whereas the level of SREBP1c mRNA 

was upregulated, probably, through an auto-regulatory mechanism (Amemiya-

Kudo et al., 2000; Dif et al., 2006). Consistently, suppression of RNF20 with 

siRNA in primary hepatocytes increased the level of endogenous SREBP1 protein 

(both precursor and nuclear forms) (Figure 13B) and promoted intracellular neutral 

lipid accumulation as determined by Oil Red O staining (Figure 14A). Additionally, 

RNF20-suppressed hepatocytes stored more intracellular cellular triglycerides than 

control primary hepatocytes (Figure 14B). On the contrary, the mRNA expression 

levels of other lipogenic transcription factors, such as peroxisome proliferator-

activated receptor-gamma (PPARγ), liver X receptor-alpha (LXRα), and 

carbohydrate responsive element-binding protein (ChREBP), were not altered by 

RNF20 suppression (Figure 13A and 14C). Besides, the mRNA levels of fatty acid 

oxidation pathway genes, including peroxisome proliferator-activated receptor-

alpha (PPARα), carnitine palmitoyltransferase 1A (CPT1A), medium-chain acyl-

CoA dehydrogenase (MCAD) and aconitase 1 (ACO1), were not changed by 

RNF20 suppression in primary hepatocytes (Figure 14C), implying that RNF20 can 

selectively downregulate lipogenic gene expression via SREBP1c in hepatocytes. 

 

Hepatic RNF20 is regulated by nutritional changes. 

Nutritional and hormonal changes coordinate energy homeostasis, 

including lipid and glucose metabolism. Thus, I examined whether the nutritional 

status might modulate hepatic RNF20 expression. In the liver of fasted mice, the 
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Figure 13. Suppression of RNF20 enhances hepatic lipid metabolism via 

SREBP1c. (A) Mouse primary hepatocytes were transfected with siControl or 

siRNF20, and relative mRNA levels were determined using qRT-PCR. The level of 

each mRNA was normalized to the mRNA level of the TATA-binding protein 

(TBP) gene. Each bar represents the mean ± SD of three individual samples.    

*P < 0.05 and **P < 0.01 were considered significant. SQS, squalene synthetase; 

LDLR, low-density lipoprotein receptor. (B) Mouse primary hepatocytes were 

transfected with siControl or siRNF20. After isolating nuclear extracts, western 

blotting analyses were performed with the indicated antibodies. Relative amounts 

of RNF20 and nuclear SREBP1 proteins were calculated using Labworks software 

(UVP Bioimaging System) and normalized to Lamin B1. The western blots shown 

are representative of three independent experiments. pSREBP1, precursor SREBP1; 

nSREBP1, nuclear SREBP1. 
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Figure 13 
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Figure 14. RNF20 negatively regulates hepatic lipogenesis. (A) Mouse primary 

hepatocytes were transfected with siControl or siRNF20. After incubation for    

48 hours, intracellular lipid droplets were visualized by Oil Red O staining, and the 

cells were photographed. Microscopic views of cells at a magnification of ×200 are 

shown. Scale bar, 100 μm. (B) Intracellular triglyceride contents were measured 

biochemically. (C) Mouse primary hepatocytes were transfected with siControl or 

siRNF20. Relative mRNA levels of PPARα, ChREBP and their target genes were 

determined using qRT-PCR. The level of each mRNA was normalized to the 

mRNA level of the TATA-binding protein (TBP) gene. 
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Figure 14 
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expression of RNF20 mRNA was significantly increased (Figure 15A), whereas 

that of SREBP1c and FASN mRNA was decreased. These observations indicate 

that the change in RNF20 expression might be associated with the regulation of 

SREBP1c during nutritional changes. In contrast, the mRNA level of FBXW7, an 

E3 ligase of SREBP proteins, was unchanged by either feeding or fasting 

conditions (Figure 15A). Upon fasting, glucagon stimulates the PKA cascade to 

regulate lipid and glucose metabolism to accomplish catabolic responses (Girard et 

al., 1994; Jitrapakdee, 2012). Thus, to address the question of whether RNF20 

expression might be regulated by PKA activation, I examined the level of RNF20 

mRNA in hepatocytes with or without forskolin. Notably, forskolin increased the 

level of RNF20 mRNA, whereas it decreased SREBP1c and SCD1 mRNA levels 

(Figure 15B). Furthermore, in primary hepatocytes, both glucagon and forskolin 

increased the RNF20 protein level and decreased the nuclear SREBP1 protein level 

(Figure 15C). Next, to determine whether cytosolic or nuclear RNF20 is regulated 

upon PKA activation, cytosolic and nuclear extracts were isolated from hepatoma 

cells with or without forskolin treatment. As shown in Figure 15D, forskolin 

enhanced the nuclear RNF20 protein level and reduced the nuclear SREBP1 

protein level. However, unlike RNF20, FBXW7 expression was not altered by 

forskolin (Figure 15B). In addition, I investigated the mRNA levels of SREBP1c 

target genes in RNF20-suppressed hepatocytes treated with forskolin. As shown in 

Figure 16A, the mRNA levels of lipogenic genes such as SREBP1c, FASN, and 

SCD1 were decreased by forskolin, whereas RNF20 suppression via siRNA 

restored the expression of lipogenic genes, even in the presence of forskolin 

(Figure 16A). To understand whether RNF20 is involved in the PKA-dependent 
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Figure 15. Expression of hepatic RNF20 is nutritionally regulated. (A) The 

levels of each mRNA in the livers of fed and fasted mice were determined by qRT-

PCR analysis. The TBP mRNA level was used for normalization. The fed control 

(Fed) was allowed free access to food, and the fasted groups (Fast) were denied 

access to food for 24 hours. The refed group (Refed) was allowed free access to 

food for 7 hours after 24 hours of fasting. n = 4 for each group. *P < 0.05 and **P 

< 0.01 were considered significant. (B) Mouse primary hepatocytes were incubated 

with or without forskolin (+ indicates 10 µM forskolin and ++ indicates 100 µM 

forskolin) for 6 hours. Each relative mRNA level was determined using qRT-PCR 

and normalized to the TBP mRNA level. As a positive control, the expression of 

G6Pase mRNA was greatly enhanced by forskolin. Each bar represents the mean ± 

SD of three individual samples. *P < 0.05 and **P < 0.01 were considered 

significant. N.D., not detected. (C) Mouse primary hepatocytes were incubated 

with glucagon (100 nM) or forskolin (50 μM) for 4 hours. Total cell lysates were 

subjected to western blotting analyses with the indicated antibodies. nSREBP1, 

nuclear SREBP1. (D) H4IIE rat hepatoma cells were incubated with forskolin (50 

μM) for 5 hours. Cytosolic and nuclear extracts were subjected to western blotting 

analyses with the indicated antibodies. The results are representative of three 

independent experiments. 
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Figure 15 
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Figure 16. RNF20 is a negative regulator of SREBP1c and the lipogenic 

program upon PKA activation. (A) Mouse primary hepatocytes transfected with 

siControl or siRNF20 were incubated with forskolin (10 μM) for 6 hours. The level 

of each mRNA was determined using qRT-PCR and normalized to the TBP mRNA 

level. Each bar represents the mean ± SD of experiments carried out in triplicate. 

*P < 0.05 and **P < 0.01 were considered significant. (B) COS-1 cells were co-

transfected with DNA plasmids and siRNAs as indicated. After incubation for   

36 hours, the cells were incubated with MG132 (10 μM) for 12 hours and 

subsequently treated with forskolin (20 μM) for 4 hours. Then, the cells were 

treated with or without forskolin (20 μM) for another 3 hours. Total cell lysates 

were isolated and subjected to cell-based ubiquitination assays. IP, 

immunoprecipitation; IB, immunoblotting; IgG, immunoglobulin G. 
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Figure 16 

 

 

A      A 

 

 

 

 

 

 

 

 

 

 

A      B 

 

 

 

 

 

 

 

 

 

 

 



71 

SREBP1c ubiquitination, I examined the level of SREBP1c ubiquitination upon 

PKA activation with RNF20 suppression. As shown in Figure 16B, knockdown of 

RNF20 with siRNA successfully decreased the level of PKA-mediated SREBP1c 

ubiquitination, implying that PKA-dependent SREBP1c degradation would require 

for RNF20. These data strongly indicate that RNF20 is a negative regulator of 

SREBP1c and the lipogenic program upon PKA activation in hepatocytes. 

 

RNF20 represses hepatic lipid metabolism in vivo. 

To further examine whether RNF20 confers hepatic lipid metabolism via 

SREBP1c in vivo, adenovirus expressing RNF20 was intravenously injected into 

wild-type mice. In agreement with the above data, in vivo RNF20 overexpression 

decreased the level of hepatic SREBP1 protein (Figure 17A). Consistently, the 

hepatic triglyceride level was decreased by RNF20 overexpression (Figure 17B). 

To confirm the possibility that the decrease in hepatic lipid metabolism is mediated 

by RNF20-dependent SREBP1c suppression, I tested FASN promoter activity in 

vivo. As shown in Figure 17C, optical in vivo imaging analyses revealed that 

adenoviral RNF20 overexpression repressed FASN promoter activity compared 

with control mice. In addition, I found that the expression of lipogenic genes such 

as SREBP1c, FASN, SCD1, and ELOVL6 was significantly attenuated in the liver of 

RNF20-overexpressing mice (Figure 17D). However, hepatic RNF20 over-

expression did not significantly alter the mRNA level of other SREBPs such as 

SREBP1a and 2 (Figure 17D). Moreover, adenovirally ovevexpressed RNF20 in 

vivo did not change the mRNA levels of other lipogenic transcription factors, 

including PPARγ, LXRα and ChREBP, and fatty acid oxidation pathway genes in 
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Figure 17. RNF20 overexpression inhibits the hepatic lipogenic program in 

vivo. (A) Ten-week-old male C57BL/6 mice were infected through the tail vein 

with adenovirus encoding GFP (Ad-Mock) as the control or mouse RNF20 (Ad-

RNF20) (adenoviral dose of 1×1010 viral particles per mouse). After 7 days of 

adenoviral injection, the mice were sacrificed in fed states. The expression levels of 

RNF20, nSREBP1 and FASN protein in the livers of mice infected with Ad-Mock 

or Ad-RNF20 were monitored by western blotting analyses. nSREBP1, nuclear 

SREBP1. (B) The hepatic triglyceride level was measured from 100 mg liver tissue 

as described in “Materials and Methods”. *P < 0.05 was considered significant (vs. 

the Ad-Mock control group). (C) Live imaging of in vivo FASN-luciferase (FASN-

luc) activity in response to RNF20 overexpression in C57BL/6 mice. In vivo 

luminescence was measured 7 days post-adenoviral infection as described in 

“Materials and Methods”. (D) In C57BL/6 mouse liver injected Ad-Mock or Ad-

RNF20, the effects of adenoviral RNF20 overexpression on lipogenic gene 

expression were determined by qRT-PCR analyses. The level of TBP mRNA was 

used for normalization. Each mRNA level is shown as a ratio relative to the Ad-

Mock control group. *P < 0.05 was considered significant (vs. the Ad-Mock 

control group). n = 3 for each group in panel A, and n = 4 for each group in all other 

panels. 

 

 

 



73 

Figure 17 
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liver (Figure 17D). Thus, these in vivo data confirm the notion that RNF20 plays an 

important role in the regulation of hepatic lipogenesis via SREBP1c. 

 

RNF20 alleviates hepatic steatosis in db/db mice. 

Several obese rodent animals, including db/db mice, exhibit hepatic 

steatosis with enhanced SREBP1c and lipogenic activity (Li et al., 2005; 

Marchesini et al., 2001; Muoio and Newgard, 2006). To investigate whether 

RNF20 overexpression might alleviate fatty liver through the regulation of 

SREBP1c, RNF20 was overexpressed by adenovirus in the liver of db/db mice. In 

db/db mice, adenoviral overexpression of RNF20 did not cause major differences 

in body weight and fasting blood glucose (Figures 18A and 18B). Similar to lean 

mice, hepatic RNF20 overexpression decreased both precursor and nuclear forms 

of SREBP1 protein in db/db mice (Figure 19A). In accordance with reduced 

SREBP1 expression, hepatic steatosis was alleviated by RNF20 overexpression in 

db/db mice (Figures 19B and 19C). Furthermore, hepatic RNF20 overexpression in 

db/db mice significantly lowered FASN promoter activity (Figure 19D) and 

reduced the expression of lipogenic genes (Figure 20A). However, similar to lean 

mice, hepatic RNF20 overexpression in db/db mice did not alter the mRNA levels 

fatty acid oxidation pathway genes (Figure 20B), indicating that hepatic RNF20 

overexpression would alleviate hepatic steatosis by suppression of SREBP1c and 

lipogenic gene expression. Next, to investigate whether hepatic RNF20 might be 

involved in glucose homeostasis in diabetic db/db mice, oral glucose tolerance tests 

were examined. As shown in Figure 20C, RNF20 overexpression improved glucose 

intolerance in db/db mice. Together, these data propose the idea that hepatic 
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Figure 18. In db/db mice, RNF20 overexpression did not cause differences in 

body weight and fasting blood glucose. Nine-week-old male db/db mice were 

infected through the tail vein with adenovirus encoding GFP or RNF20 (adenoviral 

dose of 2×1010 viral particles per mouse). After 7 days of adenoviral injection, the 

mice were sacrificed. (A) Body weight (grams) of Ad-Mock or Ad-RNF20 injected 

db/db mice. (B) Fasting glucose levels (mg/dL) of Ad-Mock or Ad-RNF20 injected 

db/db mice after 12 hours of fasting. 
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Figure 18 
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Figure 19. RNF20 overexpression alleviates hepatic steatosis in db/db mice.  

(A) Nine-week-old male db/db mice were infected through the tail vein with 

adenovirus encoding GFP or RNF20 (adenoviral dose of 2×1010 viral particles per 

mouse). After 7 days of adenoviral injection, the mice were sacrificed in fed states. 

The liver tissue was then subjected to SDS-PAGE followed by western blotting 

analyses with the indicated antibodies. n = 3 for each group. (B) The level of 

hepatic triglycerides was measured from 100 mg liver tissue in db/db mice infected 

with each adenovirus. n = 5 for each group. *P < 0.05 was considered significant 

(vs. the Ad-Mock control group). (C) Representative hematoxylin and eosin (H&E) 

and Oil Red O staining of liver sections of db/db mice infected with Ad-Mock or 

Ad-RNF20. Scale bar, 100 μm. (D) Live imaging of in vivo FASN-luciferase 

(FASN-luc) activity in response to RNF20 overexpression in db/db mice. n = 2 for 

each group. 
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Figure 19 
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Figure 20. RNF20 overexpression improved glucose intolerance in db/db mice. 

Nine-week-old male db/db mice were infected through the tail vein with 

adenovirus encoding GFP or RNF20 (adenoviral dose of 2×1010 viral particles per 

mouse). (A) The relative mRNA levels of various lipogenic genes in the livers of 

db/db mice infected with Ad-Mock or Ad-RNF20. Each mRNA level was 

determined by qRT-PCR analyses and normalized to the TBP mRNA level. Each 

relative mRNA level is presented as a ratio relative to the Ad-Mock-infected db/db 

control group. n = 3 for each group. *P < 0.05 and **P < 0.01 were considered 

significant (vs. the Ad-Mock control group). (B) The relative mRNA levels of 

PPARα and ChREBP pathway genes in the livers of db/db mice infected with Ad-

Mock or Ad-RNF20. Each mRNA level was determined by qRT-PCR analyses and 

normalized to the TBP mRNA level. n = 3 for each group. (C) db/db mice were 

infected with Ad-Mock or Ad-RNF20 and subjected to oral glucose tolerance test. 

n = 5 at each time point. *P < 0.05 and **P < 0.01 were considered significant  

(vs. the Ad-Mock control group). And this result was confirmed by area-under-the-

curve (AUC) analysis. 
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Figure 20 
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RNF20 might also affect the regulation of whole body energy metabolisms such as 

lipid and glucose. 
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Discussion 

Due to its key roles in lipid metabolism, several metabolic diseases are 

associated with SREBP1c dysregulation. Both animal models and human subjects 

with obesity and diabetes mellitus often suffer from hepatic steatosis and 

hyperlipidemia, accompanied by elevated SREBP1c (Li et al., 2005; Marchesini et 

al., 2001; Muoio and Newgard, 2006). Thus, elucidation of the molecular 

mechanisms of SREBP1c function and its lipogenic activity under physiological 

conditions is important. SREBP1c is controlled by several different mechanisms, 

including transcriptional regulation, proteolytic maturation and post-translational 

modifications (Giandomenico et al., 2003; Hirano et al., 2003; Hirano et al., 2001; 

Kim et al., 2004; Li et al., 2011; Ponugoti et al., 2010; Sundqvist et al., 2005). It 

has been reported that PKA, one of the fasting-induced kinases, phosphorylates 

SREBP1c and consequently suppresses lipogenic activity (Lu and Shyy, 2006). 

However, the factors that are involved in SREBP1c degradation under fasting 

conditions are poorly understood. Here, I demonstrated that SREBP1c protein is 

ubiquitinated and degraded by an E3 ubiquitin ligase concurrent with PKA 

activation during fasting (Figure 21). 

RNF20 was first identified as yeast Bre1 and possesses a RING finger 

domain that primarily functions as an E3 ligase for histone H2B 

monoubiquitination, which regulates transcription of certain genes (Hwang et al., 

2003; Kim et al., 2005; Wood et al., 2003). In addition, it has been reported that 

knockdown of RNF20 leads to abrogation of H2B monoubiquitination and elevated 

expression of several proto-oncogenes for tumorigenesis, indicating that RNF20 

could act as a tumor suppressor protein (Shema et al., 2011; Shema et al., 2008). 
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Figure 21. Model illustrating the regulatory pathway for RNF20-mediated 

degradation of SREBP1c upon PKA activation. RNF20 physically interacts with 

SREBP1c, leading to degradation of SREBP1c via ubiquitination. RNF20 represses 

SREBP1c activity and turns off the expression of lipogenic program in hepatocytes. 

Furthermore, PKA activation enhances the expression of RNF20 and potentiates 

the ubiquitination of SREBP1c. Taken together, RNF20-induced SREBP1c 

ubiquitination downregulates hepatic lipogenic activity upon PKA activation. 
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Figure 21 
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However, to date, there is no report that RNF20 could selectively regulate hepatic 

lipid metabolism. In this work, I have identified that RNF20 would act as a 

negative regulator of hepatic lipid metabolism in a SREBP1c-dependent pathway. 

Several lines of evidence from in vitro and in vivo data support the above idea. 

First, ectopic expression of RNF20 repressed SREBP1c and lipogenic gene 

expression in primary hepatocytes (Figure 12A) and the mouse liver (Figures 17D 

and 20A). Second, the level of nuclear SREBP1 protein and the expression of its 

target genes were increased by RNF20 knockdown in primary hepatocytes, 

accompanied by augmentation of intracellular lipid accumulation (Figures 13 and 

14). Moreover, the mRNA levels of other lipogenic factors, such as PPARγ, LXRα 

and ChREBP, and fatty acid oxidation pathway genes were not significantly altered 

by RNF20-overexpressing or suppressing conditions (Figures 13A, 14C, 17D, and 

20B), indicating that RNF20 would control hepatic lipid metabolism through 

SREBP1c modulation. 

In order to examine the effect of RNF20 on other SREBP isoforms such as 

SREBP1a and 2, I have tested the effect of RNF20 on degradation of SREBP1a 

and 2. As shown in Figure 22, RNF20 was also able to induce the degradation of 

nuclear SREBP1a and 2, implying that RNF20 may regulate the stability of all 

isoforms of SREBP proteins, at least, in vitro cell culture system. Although RNF20 

may influence hepatic lipid metabolism via SREBP1a, 1c and/or 2, several current 

in vitro and in vivo data supported the idea that hepatic lipid metabolism would be 

primarily regulated by SREBP1c rather than 1a or 2 (Figures 12A, 13A, 16A, and 

17D). Nevertheless, future studies are necessary to clarify whether RNF20 might 

be involved in the regulation of other SREBP isoforms in vivo. 
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Figure 22. RNF20 regulates the stability of all isoforms of SREBP proteins. 

HEK293T cells were co-transfected with Myc-SREBP1a, Myc-SREBP1c, Myc-

SREBP2 and/or Flag-RNF20 expression vectors. Total cell lysates were subjected 

to SDS-PAGE followed by western blotting analyses with the indicated antibodies. 
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Figure 22 
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Next, to test the possibility that the expression of hepatic RNF20 might be 

altered in pathophysiological conditions, I have examined the mRNA level of 

hepatic RNF20 by comparison with db/+ vs. db/db and normal-chow diet vs. high-

fat diet fed mice. Although the levels of lipogenic genes such as SREBP1c, FASN, 

and SCD1 were increased in the liver of insulin-resistant mouse models, the level 

of hepatic RNF20 was not significantly altered (Figures 23A and 23B). Thus, it is 

likely that RNF20 might regulate lipogenic activity upon hormonal changes in 

normal conditions rather than pathophysiological conditions. However, since 

overexpression of hepatic RNF20 markedly improved glucose intolerance in 

diabetic db/db mice (Figure 20C), I cannot exclude the possibility that hepatic 

RNF20 might affect glucose metabolism in vivo. Further studies are required to 

understand the detail mechanisms for the role of RNF20 in whole body energy 

homeostasis. 

Recently, it has been demonstrated that SREBP1c is dynamically modified 

by various post-translational modifications. For example, SIRT1 promotes the 

deacetylation-mediated ubiquitination of SREBP1c and represses lipogenic activity 

during fasting (Ponugoti et al., 2010; Walker et al., 2010). Additionally, another 

study showed that fasting-induced cyclin-dependent kinase 8 (CDK8) 

phosphorylates and sequentially degrades SREBP1c (Zhao et al., 2012). Although 

it is unknown whether RNF20-mediated ubiquitination of SREBP1c might be 

required for prerequisite post-translational modifications under catabolic conditions, 

I cannot exclude the possibility that any modification of SREBP1c might change 

the association with an E3 ligase activity of RNF20 during fasting. 
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Figure 23. The expression of RNF20 is not altered in mouse liver under obese 

and diabetic conditions. (A) Ten-week-old male db/+ and db/db mice were 

sacrificed and isolated the liver tissues in fed states. The mRNA levels of RNF20, 

SREBP1c, FASN, and SCD1 were determined by qRT-PCR analyses. The level of 

cyclophilin mRNA was used for normalization. n = 3 for each group. *P < 0.05 and 

**P < 0.01 were considered significant. (B) Eight-week-old male C57BL/6 mice 

were fed normal chow diet (NCD) and then were administered a 60% high-fat diet 

(HFD) for ten weeks. Then, on the day of sacrifice, all of the HFD-fed mice were 

compared to age-matched NCD-fed mice. In the mouse liver, the mRNA levels of 

RNF20, SREBP1c, SCD1, and IL-6 were determined by qRT-PCR analyses. The 

level of cyclophilin mRNA was used for normalization. n = 2 for each group.    

*P < 0.05 and **P < 0.01 were considered significant. IL-6, interleukin-6. 
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Figure 23 
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In addition to RNF20, FBXW7 is another E3 ubiquitin ligase for SREBP1 

(Sundqvist et al., 2005). FBXW7-dependent SREBP1 degradation requires for 

GSK-3β-mediated phosphorylation of SREBP1 (Kim et al., 2004; Sundqvist et al., 

2005). It is of interest to note that RNF20 would induce the ubiquitination and 

degradation of SREBP1c upon PKA activation. In contrast, the expression level of 

FBXW7 was not altered by nutritional states such as feeding and fasting    

(Figure 15A). Furthermore, PKA activation did not change the level of FBXW7. 

Given that PKA plays a crucial role in immediate catabolic responses, PKA 

activation with forskolin significantly decreased lipogenic gene expression with an 

increase in RNF20 in primary hepatocytes, whereas suppression of RNF20 

reversed the effect of forskolin on lipogenic gene expression (Figure 16A), 

indicating that RNF20 might mediate the PKA signaling cascade to downregulate 

hepatic lipid metabolism via SREBP1c degradation. Additionally, it has been 

reported that suppression of FBXW7 in vivo causes fatty liver through the 

induction of PPARγ rather than SREBP1c (Kumadaki et al., 2011). On the contrary, 

RNF20 overexpression did not affect the protein levels of PPARγ and LXRα 

(Figure 24), implying that RNF20 functions as a “turn-off” switch in hepatic 

lipogenesis through the regulation of SREBP1c, but not PPARγ, protein stability. 

Therefore, these data clearly support the hypothesis that RNF20 acts as a negative 

regulator of SREBP1c and hepatic lipogenesis under catabolic conditions. 

Here, I have elucidated a novel mechanism of ubiquitination and 

degradation of SREBP1c by RNF20 during nutritional deprivation (Figure 21). It is 

plausible to speculate that RNF20 is a suppressor of hepatic lipogenesis through the 

downregulation of SREBP1c upon PKA activation. Furthermore, these data 
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Figure 24. RNF20 overexpression did not affect the protein levels of PPARγ 

and LXRα. HEK293T cells were co-transfected with Myc-PPARγ, Myc-LXRα 

and/or Flag-RNF20 expression vectors. Total cell lysates were subjected to SDS-

PAGE followed by western blotting analyses with the indicated antibodies. 
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Figure 24 
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provide a clue to understand how SREBP1c is rapidly regulated by fasting signals 

to prevent excess lipid metabolism. Because there is a positive correlation between 

lipogenic activity and metabolic complications such as obesity, non-alcoholic fatty 

liver disease (NAFLD), and certain cancers, it is likely that treatments that activate 

RNF20 might be useful tools for ameliorating metabolic disorders associated with 

increased lipid metabolism. 
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Abstract 

In cancer cells, elevated lipid metabolism plays an important role by 

providing building blocks for tumor growth. Particularly, clear cell renal cell 

carcinoma (ccRCC), the most common subtype of kidney cancers, is characterized 

by ectopic intracellular lipid accumulation. However, the relationship between lipid 

metabolism and tumorigenesis in ccRCC has not been thoroughly elucidated. Here 

I demonstrate that ring finger protein 20 (RNF20) acts as a tumor suppressor in 

ccRCC. In ccRCC tumor tissues, RNF20 is downregulated, accompanied with 

sterol regulatory element-binding protein 1c (SREBP1c) activation and poor 

prognosis. In ccRCC cells, RNF20 overexpression repressed lipogenesis and cell 

proliferation by inhibiting SREBP1c. Notably, SREBP1c regulates cell cycle 

progression by inducing pituitary tumor-transforming gene 1 (PTTG1) as a novel 

SREBP1c target gene. Moreover, suppression of SREBP1 by either knockdown or 

small-molecule inhibitor betulin attenuated cell proliferation with decreased 

expression of PTTG1 and several cell-cycle regulators in ccRCC cells. 

Furthermore, xenograft studies showed that ectopic RNF20 expression reduced 

tumor growth and lipid storage. Taken together, these data suggest that RNF20 

suppresses tumorigenesis in ccRCC by regulating SREBP1c-dependent lipogenesis 

and PTTG1 axes. 
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Introduction 

Increased demands for building blocks and membrane biogenesis during 

excessive cell proliferation of cancer cells are satisfied by complex metabolic 

reprogramming (DeBerardinis et al., 2008; Schulze and Harris, 2012). Especially, 

most lipid metabolites are derived from de novo lipogenesis in cancer cells rather 

than from extracellular lipid uptake (Medes et al., 1953; Ookhtens et al., 1984). 

Moreover, it has been reported that lipogenesis and lipid accumulation are 

upregulated in various cancers (Kuhajda, 2000; Menendez and Lupu, 2007). 

Ectopic lipid accumulation is a hallmark of clear cell renal cell carcinoma (ccRCC), 

which is the most common subtype of kidney cancers (Rezende et al., 1999; Valera 

and Merino, 2011). To date, the primary etiology of ccRCC follows the loss or 

inactivation of von Hippel-Lindau (VHL) and a consequent activation of hypoxia-

inducible factor (HIF) (Kaelin, 2008; Shen and Kaelin, 2013). Recently, it has been 

reported that HIF2α-selective antagonist, PT2399, effectively suppresses 

tumorigenesis in ccRCC (Chen et al., 2016; Cho et al., 2016). Although lipid and 

glucose metabolic pathways are frequently dysregulated in ccRCC (Linehan and 

Ricketts, 2013; Qiu et al., 2015), the underlying tumorigenic mechanisms that lead 

to aberrant lipogenesis in ccRCC remain poorly understood. 

Ring finger protein 20 (RNF20) is an E3 ubiquitin ligase that plays various 

roles in transcription regulation, DNA damage responses, stem cell differentiation, 

and lipid metabolism (Lee et al., 2014b; Nakamura et al., 2011; Shema et al., 2008). 

RNF20 promotes the monoubiquitination of histone H2B, which regulates the 

transcription of a subset of genes and contributes to chromatin remodeling (Minsky 

et al., 2008; Shema et al., 2008). Moreover, it has been suggested that RNF20 acts 
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as a tumor suppressor in inflammation-associated cancer (Tarcic et al., 2016). 

I demonstrated that hepatic RNF20 is an E3 ubiquitin ligase for sterol 

regulatory element-binding protein 1c (SREBP1c), which is a key transcription 

factor in de novo lipogenesis (Brown and Goldstein, 1997; Tontonoz et al., 1993). 

RNF20 promotes polyubiquitination and degradation of SREBP1c upon PKA 

activation, thereby suppressing hepatic lipid metabolism (Lee et al., 2014b). In 

mammals, SREBP1a and SREBP1c are encoded by the SREBF1 gene, whereas 

SREBP2 is encoded by the SREBF2 gene (Brown and Goldstein, 1997; Horton et 

al., 2002). SREBP1 primarily activates genes that are involved in fatty acid 

synthesis, including fatty acid synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), 

and long-chain fatty acid elongase (ELOVL6), whereas SREBP2 mainly promotes 

the expression of genes for cholesterol homeostasis, such as HMG-CoA reductase 

(HMGCR) (Brown and Goldstein, 1997; Horton et al., 2002). It has been reported 

that activated SREBP1c upregulates lipogenic genes and enhances lipogenesis in 

certain cancers (Griffiths et al., 2013; Guo et al., 2014). In addition, SREBP1c 

promotes lipid metabolism and tumor development, potentiating progression, 

migration, and leading to poor prognosis for several cancers (Guo et al., 2009; 

Huang et al., 2012). However, the molecular mechanisms by which SREBP1c 

promotes cancer cell proliferation are not clearly understood. 

In this study, I uncover that RNF20 suppressed ccRCC tumorigenesis by 

inhibiting SREBP1c, and RNF20 downregulation stimulated SREBP1c-mediated 

lipogenesis and cell proliferation. In accordance with these data, genetic and 

pharmacologic inhibition of SREBP1 decreased lipogenesis and cell growth in 

ccRCC cells. Notably, downregulation of RNF20 in ccRCC cells augmented cell 
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cycle progression by activating SREBP1c-mediated pituitary tumor-transforming 

gene 1 (PTTG1). Together, these findings suggest that RNF20 functions as a tumor 

suppressor by inhibiting SREBP1c-dependent lipogenesis and PTTG1 signaling in 

ccRCC. 
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Materials and Methods 

Cell culture and reagents 

ACHN, A498, HEK293, Caki-2, and human primary renal cortical 

epithelial (HRCE) cells were obtained from American Type Culture Collection 

(ATCC). ACHN and A498 cells were grown in in Eagle‟s minimum essential 

medium (MEM; HyClone, Logan, UT; #SH30024.01) supplemented with 10% 

fetal bovine serum (FBS; HyClone; #SH30919.03) and penicillin (100 U/ml)-

streptomycin (100 μg/ml). HEK293 and Caki-2 cells were grown in Dulbecco‟s 

modified Eagle medium (DMEM; HyClone; #SH30243.01) supplemented with  

10% FBS and penicillin-streptomycin. HRCE cells were cultured in renal epithelial 

cell basal medium (ATCC; #PCS-400-030) with the following supplements: 0.5% 

FBS, 10 nM triiodothyronine, 10 ng/ml epidermal growth factor, 100 ng/ml 

hydrocortisone, 5 μg/ml insulin, 1 μM epinephrine, 5 μg/ml transferrin, 2.4 mM  

L-Alanyl-L-Glutamine, and penicillin-streptomycin. All cells were cultured at 

37°C in a 5% CO2 incubator. Betulin and BODIPY 493/503 were purchased from 

Sigma-Aldrich (St. Louis, MO; #B8936 and #D3922, respectively). C75 and TOFA 

were obtained from Abcam (Cambridge, MA; #ab141397 and #ab141578, 

respectively). Propodium iodide was provided by BD Biosciences (San Jose, CA; 

#51-66211E). 

 

Human ccRCC samples 

Fresh frozen human ccRCC and matched normal kidney tissue samples 

were obtained from the Seoul National University Hospital (SNUH). The 

Institutional Review Board at SNUH approved this study (approval number:    
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H-1501-011-636). Informed consent documents from patients were not required 

due to the retrospective nature of the study. 

 

TCGA RNA-Seq analysis 

RNA sequencing data, VHL mutation status, and clinicopathological data 

for 533 ccRCC and 72 normal kidney samples were downloaded from TCGA 

ccRCC project (http://cancergenome.nih.gov) in September 2015. Box and whisker 

plots are presented with 1–99th percentiles (bars), 25–75th percentiles (box), and 

median values (line in box). 

 

Survival analysis 

Available patient survival data were obtained from TCGA ccRCC project. 

Patients were ranked on tumor expressions of the genes shown in TCGA RNA-Seq 

data. The top half of ranked patients was defined as the „high‟ group, and the lower 

half were defined as the „low‟ group. Overall survival curves were estimated using 

Kaplan–Meier survival analyses, and survival outcomes between the two groups 

were compared using the Log-rank test. 

 

Tissue arrays and immunohistochemistry 

Immunohistochemistry was performed on tissue microarrays of ccRCC 

and normal kidney tissue sections (SuperBioChips Laboratories, South Korea; 

#CL2) according to the supplier‟s protocol (Ventana Medical Systems; #760-700). 

Briefly, the streptavidin–biotin complex method was used to detect RNF20 and 
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SREBP1 in immunohistochemistry analyses with corresponding primary antibodies 

from Abcam (#ab32629; 1:30) and BD Biosciences (#557036; 1:25), respectively. 

 

Preparation of recombinant adenovirus 

Adenovirus plasmids were constructed as previously described (Lee et al., 

2014b). Briefly, nuclear rat SREBP1c encoding amino acids 1–403, and full-length 

mouse RNF20 cDNAs were incorporated into the AdTrack-CMV shuttle vector 

and recombinant vectors were generated using Ad-Easy adenoviral vector systems. 

An adenovirus encoding GFP only was used as a negative control in all 

experiments. Adenoviruses were amplified in HEK293A cells and were purified 

using CsCl gradient centrifugation as described previously (Becker et al., 1994). 

 

Lentivirus production and viral transduction 

Full-length RNF20 or nuclear SREBP1c cDNAs with Flag-tags were 

incorporated into the lentiviral vector pLVX-EF1α-AcGFP1-N1 (Clontech, 

Mountain View, CA; #631983). Lentiviruses were then transfected into HEK293T 

cells with the indicated expression vectors, pAX2 (Addgene, Cambridge, MA; 

#35002) and pMD2.G (Addgene; #12259) using Lipofectamine 2000 Reagent 

(Invitrogen, Grand Island, NY; #11668-027). At 48 hours after transfection, viruses 

were harvested and filtered through 0.45-μm filters. Subsequently, ACHN cells 

were incubated with medium containing virus and 8 μg/ml polybrene (Sigma-

Aldrich; #107689) for 18 hours. Infected cells were then allowed to recover for  

48 hours before selection of puromycin resistant colonies for experiments. 
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Western blot analysis 

Cells and tissues were lysed on ice in modified radioimmunoprecipitation 

assay (RIPA) buffer containing 150 mM NaCl, 50 mM Tris-HCl (pH 7.4), 1%  

NP-40, 0.25% Na-deoxycholate, 1 mM EDTA, 1 mM PMSF, and protease 

inhibitor cocktail (GeneDEPOT, Katy, TX; #P3100). Equal amounts of protein 

from each sample were separated on SDS-PAGE gels and were then transferred to 

polyvinylidene difluoride membranes (Merck Millipore, Germany; #IPVH00010). 

After transfer, membranes were blocked with 5% non-fat milk or 3% bovine serum 

albumin in TBS containing 0.1% Tween-20 (TBST) and were probed with primary 

antibodies against RNF20 (Abcam; #ab32629; 1:1,000), SREBP1 (BD Biosciences; 

#557036; 1:1,000), FASN (Cell Signaling, Danvers, MA; #3180; 1:1,000), SCD1 

(Santa Cruz Biotechnology, Dallas, TX; #SC-58420; 1:500), PTTG1 (Thermo 

Fisher Scientific, Waltham, MA; #MS-1511-P0; 1:1,000), Cyclin B1 (Santa Cruz 

Biotechnology; #SC-752; 1:500), Cyclin E (Santa Cruz Biotechnology; #SC-198; 

1:500), Myc-tag (Cell Signaling; #2276; 1:1,000), Flag-tag (Sigma-Aldrich; 

#F1804; 1:1,000), or β-actin (Sigma-Aldrich; #A5316; 1:2,000). Subsequently, 

membranes were incubated with horseradish peroxidase-conjugated secondary 

anti-rabbit IgG or anti-mouse IgG antibodies (Sigma-Aldrich; #A0545 and #A9044, 

respectively), and protein bands were visualized using enhanced 

chemiluminescence with a LuminoImager (LAS-3000). 

 

RNA isolation and quantitative RT-PCR 

Total RNA was isolated using TRIzol Reagent (Thermo Fisher Scientific; 

#15596026). Subsequently, equal amounts of RNA were subjected to cDNA 
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synthesis using RevertAid reverse transcriptase (Thermo Fisher Scientific; 

#EP0441), and relative mRNA expression was evaluated using a CFX Real-Time 

System (Bio-Rad Laboratories, Hercules, CA) and was normalized to GAPDH or 

cyclophilin mRNA expression. The primer sequences used for quantitative real-

time PCR (qRT-PCR) analyses are listed in Table 3. 

 

siRNA transfection 

Small-interference RNA (siRNA) duplexes for RNF20, SREBP1, PTTG1, 

and FASN were synthesized by Bioneer (South Korea). The sequence information 

for siRNAs is provided in Table 4. ACHN cells were transfected using 

Lipofectamine RNAiMAX Reagent (Invitrogen; #13778-150) according to the 

manufacturer‟s protocol. 

 

Cell proliferation assays with CCK-8 reagent 

Cell proliferation rates were determined using a Cell Counting Kit-8 

(CCK-8) reagent as described previously (Kim et al., 2010). Briefly, cell growth 

curves were generated using the sensitive colorimetric assay for viable cells 

according to the manufacturer‟s protocol (Dojindo Molecular Technologies, 

Rockville, MD; #CK04-11). 

 

Colony formation assays 

ACHN cells with lentiviral RNF20 and/or SREBP1c overexpression were 

seeded on 6-well plates (5,000 cells/well). Cells were cultured at 37°C in 5% CO2 
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Table 3. Primers sequences for qRT-PCR 

 

Species Gene Sequence (5’ to 3’) Direction 

Human 

RNF20 CACAGGAGAGCCAAAAGGAG Forward 

GCATCCTCATCAGCCATTTT Reverse 

SREBP1c 
CCATGGATTGCACTTTCGAA Forward 

CCAGCATAGGGTGGGTCAAA Reverse 

FASN 
GCCTACACCCAGAGCTACCG Forward 

GCCATGGTACTTGGCCTTG Reverse 

ACC1 
CAACGAGATTTCACTGTGGCT Forward 

TTCTGCATTGGCTTTAAGGTCT Reverse 

SCD1 
ACAAACCTGGCTTGCTGATG Forward 

CCACAGCTCCAAGTGAAACC Reverse 

ELOVL6 
CTCTGGTCTCTGACCCTTGC Forward 

CTCCTAGTTCGGGTGCTTTG Reverse 

SREBP2 
CAAGCTTCTAAAGGGCATCG Forward 

GGCTCATCTTTGACCTTTGC Reverse 

HMGCR 
ATTTGGCAGCTCAGCCATT Forward 

TGAGGAGAAGGATCAGCTATCC Reverse 

PCNA 
CATGGGCGTGAACCTCACC Forward 

CACAGCTGTACTCCTGTTCTGG Reverse 

Cyclin A 
CCTTAGGGAAATGGAGGTTAAA Forward 

CCAAATGCAGGGTCTCATTC Reverse 

Cyclin D1 
TTCCTCTCCAAAATGCCAGA Forward 

CAGTCCGGGTCACACTTGAT Reverse 

Cyclin E 
TCAGTGGTGCGACATAGAGAA Forward 

TGTCCAGCAAATCCAAGCTG Reverse 

PTTG1 
GGGTCTGGACCTTCAATCAA Forward 

GGCAGGAACAGAGCTTTTTG Reverse 

GAPDH 
TTCACCACCATGGAGAAGG Forward 

CTAAGCAGTTGGTGGTGCAG Reverse 

Cyclophilin 
 

TGCTGGACCCAACACAAATG Forward 

GTCCACAGTCAGCAATGGTG 

 
Reverse 
 

Mouse 

SREBP1c 
GGAGCCATGGATTGCACATT Forward 

CAGGAAGGCTTCCAGAGAGG Reverse 

PTTG1 
GGCATCTAAGGATGGGTTGA Forward 

GGGGTTTGCCAGTCTTCATA Reverse 

TBP 
 

GGGAGAATCATGGACCAGAA Forward 

CCGTAAGGCATCATTGGACT 
 

Reverse 
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Table 4. Sequences of siRNA oligos 

Species Gene Sequence (5’ to 3’) Direction 

Human 

RNF20 GGAUAAAGAGAAAGGCAAA Sense 

UUUGCCUUUCUCUUUAUCC Antisense 

SREBP1 
CCACCGUUUCUUCGUGGAU Sense 

AUCCACGAAGAAACGGUGG Antisense 

PTTG1 
CUCAGAUGAAUGCGGCUGU Sense 

ACAGCCGCAUUCAUCUGAG Antisense 

FASN 
 

UCAACCUGGACAGCUCACU Sense 

AGUGAGCUGUCCAGGUUGA 
 

Antisense 
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for 7 days, and colonies were then fixed with formaldehyde and were stained with 

crystal violet. 

 

Cell cycle analysis 

Trypsinized cells were washed with phosphate-buffered saline (PBS) and 

were then fixed in 70% ethanol at 4°C for 30 minutes. Fixed cells were washed 

with PBS twice and incubated with propodium iodide (PI) solution containing   

0.1% Nonidet P-40, 100 μg/ml RNase, and 2.5 μg/ml PI for 30 minutes. Stained 

cells were then analyzed by flow cytometry using a FACS Canto II instrument (BD 

Biosciences), and numbers of cells in each stage were calculated using the ModFit 

LTTM cell cycle analysis program (Verity Software House) according to the 

manufacturer‟s instructions. 

 

Intracellular triglyceride measurements 

Intracellular triglycerides were determined in cell lysates using a 

colorimetric assay, and were expressed as mg of lipid per mg of cellular protein as 

described previously (Lee et al., 2014b). Briefly, total cell contents were extracted 

using 5% Triton X-100 and were incubated in a water bath at 80°C and 

subsequently cooled to room temperature twice. After centrifugation at 12,000 rpm 

for 5 minutes at room temperature, supernatants were collected and intracellular 

triglycerides were assayed using Infinity Triglycerides Reagent (Thermo Fisher 

Scientific; #TR22321). Values were normalized to total protein contents, which 

were estimated using a BCA Protein Assay Kit that is compatible with reducing 

agents (Thermo Fisher Scientific; #23250). 
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BODIPY staining 

ACHN cells were treated with or without betulin (10 μM) for 24 hours, 

were rinsed twice with PBS, and were then fixed in 4% paraformaldehyde for   

10 minutes. Subsequently, fixed cells were washed twice with PBS containing 

Tween-20, and were stained with fluorescein isothiocyanate (FITC)-conjugated 

BODIPY 493/503 (Thermo Fisher Scientific; #D3922) for 1 hour in the dark at 

room temperature. Samples were then stained with a Vectashield solution (Vector 

Laboratories, Burlingame, CA; #H-1200) containing 4‟,6-diamidino-2-

phenylindole (DAPI) and were observed using a Zeiss LSM 700 confocal 

microscope (Carl Zeiss, Germany). 

 

PTTG1 reporter and luciferase assays 

The PTTG1 luciferase reporter containing −908 to +25 nucleotides from 

the transcription start site of the human PTTG1 promoter was cloned into a pGL3-

basic vector (Promega, Madison, WI; #E1751). HEK293 cells were transiently 

transfected with various DNA plasmids using the calcium-phosphate method as 

described previously (Jang et al., 2016). After incubation for 36 hours, transfected 

cells were harvested and extracted using lysis buffer containing 25 mM Tris-

phosphate (pH 7.8), 10% glycerol, 2 mM EDTA, 2 mM DTT, and 1% Triton X-

100, and luciferase and β-galactosidase activities were measured according to the 

manufacturer‟s protocol (Promega; #E1500). Relative luciferase activity was 

normalized to β-galactosidase activity in each sample. 
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Xenograft studies 

Subcutaneous xenograft experiments were approved by the Institutional 

Animal Care and Use Committee (IACUC) of SNUH (IACUC number: 13-0080). 

Five female BALB/c athymic nude mice (Central Lab Animal, South Korea) were 

subcutaneously injected in both flanks with 1 × 107 vector control ACHN cells or 

ACHN cells stably expressing RNF20. Before injections, cells were resuspended in 

200 μl of PBS and were mixed with equal volumes of matrigel (Corning, NY; 

#354234). Following establishment of palpable tumors, tumor sizes were measured 

once a week using calipers, and tumor volumes were calculated according to the 

following formula: volume (mm3) = (length × width2) × π/6. After transplantation 

for 5 weeks, mice were killed by CO2 inhalation, and xenograft tumors were 

dissected and weighed. 

Xenograft tissue samples were fixed in 4% paraformaldehyde, equilibrated 

in 30% sucrose, and then embedded in OCT (Scigen Scientific, Gardena, CA; 

#4583). Sections (10 μm) were then cut stained with Hematoxylin and eosin (H&E) 

and Oil Red O as previously described (Ham et al., 2016). Immunohistochemistry 

analyses of xenograft tumor sections were performed according to the supplier‟s 

protocol (SuperBioChips Laboratories). Briefly, Ki67 and TUNEL proteins were 

detected using the streptavidin–biotin complex method with primary antibodies 

against Ki67 (Abcam; #ab66155) and TUNEL (R&D Systems; #4810-30-K). 

Images were obtained using an EVOS ORIGINAL microscope (Thermo Fisher 

Scientific; Advanced Microscopy Group) and a Nikon TMS inverted microscope. 
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Statistical analysis 

All results reported in the main and Supplementary figures are presented 

as mean ± SD or mean ± SEM (for Figures 46B and 46C). Multiple comparisons 

were performed using one-way analysis of variance (ANOVA), and two-way 

ANOVA when two conditions were involved. Statistical significance was assessed 

by the two-tailed Student‟s t-test. Statistical analyses were performed using Prism 

(GraphPad Software), and differences were considered significant when P < 0.05. 
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Results 

RNF20 is downregulated in ccRCC. 

Ectopic lipid accumulation is profoundly upregulated in ccRCC (Rezende 

et al., 1999; Valera and Merino, 2011). Because RNF20 reportedly acts as a 

negative regulator of de novo lipogenesis by inhibiting SREBP1c (Lee et al., 

2014b), I investigated whether RNF20 might be dysregulated in ccRCC tumors. As 

shown in Figure 25A, RNF20 mRNA expression was greatly downregulated in 

ccRCC tumors compared with that in patient-matched normal kidney tissues. 

Similarly, RNA-Seq data from the Cancer Genome Atlas (TCGA) show significant 

reductions in RNF20 mRNA expression in ccRCC tumors (Figure 25B) and 

indicate that low RNF20 expression is closely correlated with advanced tumor 

stages (Figure 25C). Furthermore, immunohistochemistry (IHC) analyses showed 

that RNF20 protein expression was lower in ccRCC tumors than adjacent normal 

kidney tissues (Figure 25D). In agreement, RNF20 staining data from patient-

matched normal kidney and tumor tissues revealed decreased RNF20 expression in 

ccRCC (Figure 25E). RNF20 expression was also decreased in ccRCC cell lines 

A498, Caki-2, and ACHN compared with that in human primary renal cortical 

epithelial (HRCE) and HEK293 normal kidney cells (Figure 25F). In a previous 

study, the promoter region of RNF20 was selectively hypermethylated in breast 

cancer tissues (Shema et al., 2008). Thus, to determine whether hypermethylation 

of RNF20 promoter might downregulate RNF20 expression in ccRCC, I inhibited 

DNA methyltransferases (DNMTs) using the inhibitor RG108 and determined the 

expression levels of RNF20 mRNA in ccRCC cells. Treatment with RG108 

elevated RNF20 expression in ccRCC cells without affecting HEK293 non-cancer 
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Figure 25. RNF20 is downregulated in ccRCC. (A) qRT-PCR analyses of RNF20 

in patient-matched ccRCC tumor (n = 9) and normal kidney (n = 9) samples. RNF20 

mRNA expression was normalized to those in matched normal kidney samples.  

(B) Normalized RNA-Seq reads of RNF20 in ccRCC tumors (n = 533) and normal 

kidney (n = 72) samples. RNA-Seq data were obtained from TCGA ccRCC project. 

(C) RNF20 expression in ccRCC tumors was analyzed according to tumor stages. 

RNA-Seq data were obtained from TCGA. ##P < 0.01 versus normal kidney;   

###P < 0.001 versus normal kidney. (D) Immunohistochemistry (IHC) staining of a 

representative ccRCC tissue microarray with an RNF20 antibody. (E) IHC staining 

of matched ccRCC tumor and adjacent normal kidney tissues. Representative tissue 

sections with RNF20 staining. Scale bar, 100 μm. (F) RNF20 protein expression in 

normal kidney cell lines such as human primary renal cortical epithelial (HRCE) 

and HEK293, and ccRCC cell lines including ACHN, A498, and Caki-2 were 

determined using western blot analyses. 
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Figure 25 
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Figure 26. The DNA methyltransferase inhibitor RG108 leads to an increase in 

RNF20 expression in ccRCC cells. (A) ACHN ccRCC cells were treated with or 

without RG108 (+; 250 μM or ++; 1 mM). After incubation for 48 hours, relative 

mRNA levels were determined using qRT-PCR. RNF20 mRNA level was 

normalized to that of cyclophilin gene and is presented relative to that in the 

vehicle group. Data are presented as mean ± SD of three individual samples.    

*P < 0.05. (B) HEK293 cells were incubated with or without RG108 (+; 250 μM or 

++; 1 mM) for 48 hours, and relative mRNA levels were determined using qRT-

PCR. RNF20 mRNA level was normalized to that of cyclophilin gene and is 

presented relative to that in the vehicle group. Data are presented as means ± SD of 

three individual samples. n.s., not significant. 
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Figure 26 
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cells (Figures 26A and 26B). Subsequently, I explored the relationship between 

RNF20 expression and clinical outcomes, and showed that low expression of 

RNF20 is significantly correlated with poor survival (Figure 27A). This close 

correlation between RNF20 and poor prognosis was observed in VHL wild-type 

and in VHL mutant ccRCC patients (Figures 27B and 27C). Thus, to evaluate 

tumorigenic consequences of low RNF20 expression, I determined whether RNF20 

might affect cell proliferation in VHL wild-type ACHN and VHL-depleted A498 

ccRCC cells. In these experiments, overexpression of RNF20 suppressed cell 

proliferation in ACHN and A498 ccRCC cells (Figures 28A and 28B). Conversely, 

siRNA-mediated suppression of RNF20 increased cell growth in ccRCC cell lines, 

including ACHN and A498 cells (Figures 28C and 28D). In contrast, neither 

overexpression nor siRNA-mediated knockdown of RNF20 affected the growth of 

HRCE and HEK293 normal kidney cells, which have high levels of RNF20  

(Figure 29, A-D). These data indicate that RNF20 would act as a tumor suppressor 

in ccRCC cells independently of VHL mutation status. 

 

SREBP1 and lipogenic genes are upregulated in ccRCC and are negatively 

correlated with RNF20 expression. 

Several types of tumors such as glioblastoma, hepatic, prostate, and 

pancreatic cancers express high levels of SREBP1 and lipogenic genes, which are 

also positively correlated with malignant progression and worse outcomes 

(Griffiths et al., 2013; Guo et al., 2014; Guo et al., 2009; Huang et al., 2012). 

However, it remains unclear whether SREBP1 and lipogenic genes might be 
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Figure 27. Low expression of RNF20 is correlated with poor survival in 

ccRCC patients regardless of VHL mutation status. (A) Kaplan–Meier survival 

curves of 532 ccRCC patients enrolled in TCGA database. Patients were divided 

into two groups according to median RNF20 mRNA levels, and differences were 

identified using the Log-rank test. (B and C) Survival analyses were stratified 

according to VHL mutation status. 
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Figure 27 
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Figure 28. RNF20 exhibits tumor-suppressive roles in ccRCC. (A) ACHN and 

A498 ccRCC cells were infected with adenovirus containing GFP alone (Mock) or 

Myc-RNF20. After infection for 24 hours, total cell lysates were subjected to SDS-

PAGE and western blotting analyses with indicated antibodies. (B) ACHN and 

A498 human ccRCC cell lines were infected with adenovirus containing GFP alone 

(Mock) or RNF20, and proliferation rates were monitored using CCK-8 assays. 

Data are presented as mean ± SD of five individual samples. (C) ACHN and A498 

ccRCC cells were transfected with nonspecific control siRNA (siControl) or 

RNF20-specific siRNA (siRNF20), and RNF20 expression was determined in 

western blotting analyses. (D) ACHN and A498 ccRCC cells were transfected with 

siControl or siRNF20, and relative growth rates were measured using CCK-8 

assays. CCK-8, Cell Counting Kit-8; *P < 0.05; **P < 0.01. 
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Figure 28 

 

 

 

 

 

 

A  A                     B 

 

 

 

 

 

 

A C                     D 

 

 

 

 

 

 

 

 

 

 

 



121 

 

 

 

 

 

 

 

Figure 29. RNF20 does not affect proliferation of normal kidney cells with 

high basal RNF20 expression. (A) Human primary renal cortical epithelial 

(HRCE) and HEK293 cells were infected with adenovirus containing Mock or 

Myc-RNF20, and cell lysates were examined using western blotting analyses.   

(B) HRCE and HEK293 cells were infected with adenoviral RNF20, and cell 

proliferation rates were monitored using CCK-8 assays. Data are presented as 

means ± SD of five individual samples. (C) HRCE and HEK293 cells were 

transfected with siControl or siRNF20, and cell lysates were then analyzed using 

western blotting. (D) HRCE and HEK293 cells were transfected with siRNF20, 

and relative cell growth rates were measured using CCK-8 assays. CCK-8, Cell 

Counting Kit-8. n.s., not significant. 
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Figure 29 
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associated with ectopic lipid storage in ccRCC. Thus, I analyzed the expression 

patterns of lipogenic genes in normal kidney and ccRCC tumor tissues. As shown 

in Figure 30A, SREBP1c mRNA was significantly upregulated in ccRCC tumors 

compared with that in patient-matched normal samples. In addition, TCGA RNA-

Seq data revealed that SREBP1 was upregulated in ccRCC tumors (Figure 30B) 

and was positively associated with advanced tumor stages (Figure 30C). In 

accordance with these data, mRNA levels of the SREBP1 target genes for FASN 

and SCD1 were elevated in ccRCC tumors (Figure 30, D-I). Moreover, protein 

expression of SREBP1 and the lipogenic enzymes FASN and SCD1 were 

concurrently increased in ccRCC tumors compared with those in patient-matched 

normal kidney tissues, whereas RNF20 protein was downregulated (Figure 31A). 

Next, I examined the relationship between RNF20 and SREBP1 expression using 

IHC staining in matched normal kidney and tumor tissue sections from the same 

ccRCC patient. RNF20 signal intensity was reduced in ccRCC tumor tissues, 

whereas SREBP1 signals were increased (Figure 31B). Subsequent TCGA analyses 

revealed an inverse correlation between RNF20 and SREBP1 expression in ccRCC 

tumor tissues (Figure 31C). Accordingly, mRNA expression of RNF20 was 

inversely correlated with that of SREBP1c target genes ELOVL6 and FASN 

(Figures 31D and 31E), and FASN mRNA expression was positively correlated 

with poor survival (Figure 31F). In contrast, qRT-PCR and TCGA RNA-Seq 

analyses showed that the mRNA levels of SREBP2 and its target gene HMGCR, 

the rate-limiting enzyme of cholesterol synthesis, were decreased in ccRCC tumors 

(Figure 32, A-D). Together, these results imply that elevated SREBP1 levels might 

enhance lipogenic activation and poor clinical outcomes in ccRCC. 
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Figure 30. SREBP1 and lipogenic genes are upregulated in ccRCC. (A) qRT-

PCR analysis of SREBP1c in patient-matched ccRCC tumor and normal kidney 

samples. SREBP1c mRNA expression was normalized to those of matched normal 

kidney samples. (B) Normalized RNA-Seq reads of SREBP1 in ccRCC tumors and 

normal kidney samples. RNA-Seq data were obtained from TCGA ccRCC project. 

(C) ccRCC tumors were analyzed for SREBP1 expression according to tumor 

stages. (D) qRT-PCR analysis of FASN in patient-matched ccRCC tumor and 

normal kidney samples. FASN mRNA expression was normalized to those in 

matched normal kidney samples. (E) Normalized RNA-seq reads of FASN in 

ccRCC tumors and normal kidney samples. (F) FASN expression was analyzed in 

ccRCC tumors according to tumor stages. (G) qRT-PCR analysis of SCD1 mRNA 

level in matched ccRCC tumor and normal kidney samples. SCD1 mRNA 

expression was normalized to those in matched normal kidney samples.        

(H) Normalized RNA-seq reads of SCD1 in ccRCC tumors and normal kidney 

samples. (I) SCD1 expression was determined in ccRCC tumors of various tumor 

stages. #P < 0.05 versus normal kidney; ###P < 0.001 versus normal kidney;   

***P < 0.001. 

 

 

 

 



125 

Figure 30 
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Figure 31. Lipogenic enzymes are upregulated in ccRCC and are inversely 

correlated with RNF20 expression. (A) Protein levels in matched ccRCC tumor 

and normal kidney samples were determined using western blotting analyses. Total 

cell lysates were subjected to SDS-PAGE followed by western blotting analyses 

with indicated antibodies. (B) IHC staining of matched ccRCC tumors and adjacent 

normal kidney tissues. Representative tissue sections are shown with RNF20 and 

SREBP1 staining. Scale bar, 100 μm. (C) Correlations between RNF20 and 

SREBP1 mRNA levels in ccRCC tumor samples were identified in data from 

TCGA datasets using Pearson correlation tests. Numbers of cases (n), Pearson 

correlation coefficient (r), and P values (P) are indicated. (D) Correlations of 

RNF20 and ELOVL6 mRNA expression in ccRCC samples were identified in 

TCGA ccRCC datasets using Pearson correlation tests. (E) Correlation of RNF20 

and FASN mRNA expression in ccRCC samples were determined in TCGA ccRCC 

datasets and were identified using Pearson correlation tests. (F) Kaplan–Meier 

survival analysis for ccRCC patients from low or high FASN expression groups.  

P values were calculated using the Log-rank test. 
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Figure 32. SREBP2 and its target gene HMGCR are decreased in ccRCC 

tumors. (A) qRT-PCR analysis of SREBP2 in matched ccRCC tumor and normal 

kidney samples. SREBP2 mRNA expression was normalized to that in matched 

normal kidney samples. (B) Normalized RNA-seq reads of SREBP2 in ccRCC 

tumors and normal kidney samples using TCGA ccRCC datasets. (C) qRT-PCR 

analysis of HMGCR in matched ccRCC tumor and normal kidney samples. 

HMGCR mRNA expression values were normalized to those in matched normal 

kidney samples. (D) Normalized RNA-seq reads of HMGCR in ccRCC tumors and 

normal kidney samples from TCGA ccRCC datasets; *P < 0.05; ***P < 0.001. 
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Figure 32 
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RNF20 alleviates lipogenesis and cell proliferation by repressing SREBP1c in 

ccRCC cells. 

I investigated the effects of RNF20 and/or SREBP1c overexpression in 

ccRCC cells. In VHL wild-type ACHN ccRCC cells, ectopic expression of RNF20 

clearly suppressed both endogenous and ectopic nuclear SREBP1 proteins  

(Figure 33A). However, suppression of RNF20 using siRNA led to increased 

SREBP1c protein and mRNA expression (Figures 33B and 33C). In agreement, 

SREBP1c overexpression augmented mRNA levels of lipogenic genes including 

FASN, ACC1, SCD1, and ELOVL6 in ACHN cells (Figure 34A), as shown in 

previous reports (Brown and Goldstein, 1997; Horton et al., 2002). In contrast, 

RNF20 potently inhibited mRNA expression of lipogenic genes in both control and 

SREBP1c-overexpressing ACHN cells (Figure 34A). However, suppression of 

RNF20 increased mRNA expression of lipogenic genes, and knockdown of both 

RNF20 and SREBP1 abolished the effects of RNF20 siRNA on the expression of 

lipogenic genes (Figure 34C). Accordingly, intracellular triglyceride accumulations 

were greater in SREBP1c-overexpressing ACHN cells than in control ACHN cells, 

whereas intracellular triglyceride levels were decreased by RNF20 overexpression 

(Figure 34B). Conversely, suppression of RNF20 increased intracellular 

triglyceride levels (Figure 34D). It has been reported that loss of SREBP1 

markedly decreases glioma cell proliferation (Guo et al., 2009; Williams et al., 

2013). In accordance with these, SREBP1c overexpression promoted mRNA 

expression of cell-cycle regulators including PCNA, cyclin A, D1, and E in ccRCC 

cells (Figure 35A), and concomitant RNF20 overexpression reduced the effects of 

overexpressed SREBP1c (Figure 35A). RNF20 knockdown also promoted cell 
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Figure 33. RNF20 suppresses the expression of SREBP1c in ccRCC cells.    

(A) ACHN ccRCC cells were infected with adenovirus containing Myc-RNF20 

and/or Flag-SREBP1c. After infection, total cell lysates were subjected to SDS-

PAGE followed by western blotting analyses with the indicated antibodies. 

nSREBP1, nuclear SREBP1. (B) ACHN ccRCC cells were transfected with 

siRNF20 and/or siSREBP1. After incubation for 48 hours, total cell lysates were 

subjected to SDS-PAGE and western blotting analyses with indicated antibodies. 

(C) RNF20 and/or SREBP1 were knocked down in ACHN ccRCC cells using 

siRNAs, and relative mRNA levels were determined using qRT-PCR. Subsequently, 

mRNA expression was normalized to that of the GAPDH gene, and is presented 

relative to those in the siControl group. 
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Figure 33 
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Figure 34. In ccRCC cells, RNF20 represses lipogenic activity by inhibiting 

SREBP1c. (A) ACHN ccRCC cells were transduced with lentivirus for stable 

overexpression of RNF20 and/or SREBP1c. Relative mRNA levels were 

determined using qRT-PCR. The level of each mRNA was normalized to the 

mRNA level of the GAPDH gene. Each mRNA level is shown as a ratio relative to 

the Mock control group. (B) Intracellular triglyceride contents were measured in 

lentiviral RNF20 and/or SREBP1c overexpressing ACHN cells. (C) RNF20 and/or 

SREBP1 were knocked down in ACHN ccRCC cells using siRNAs, and relative 

mRNA levels were determined using qRT-PCR. Subsequently, mRNA expression 

was normalized to that of the GAPDH gene, and is presented relative to those in 

the siControl group. (D) ACHN ccRCC cells were transfected with siRNF20 and/or 

siSREBP1. Then, intracellular triglyceride contents were measured. 
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Figure 34 
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cycle gene expression in ccRCC cells (Figure 35D). In contrast, RNF20 

overexpression reduced colony formation whereas ectopic SREBP1c expression 

elevated colony formation in ACHN cells (Figure 35C). In addition, SREBP1c 

overexpression potentiated ccRCC cell proliferation (Figure 35B), and knockdown 

of SREBP1 reduced cell proliferation in both control and RNF20-suppressing cells 

(Figure 35E). These data propose that RNF20 would inhibit ccRCC cell 

proliferation by suppressing SREBP1c-induced lipogenesis and cell cycle 

progression. 

 

PTTG1 is a novel target gene of SREBP1c in ccRCC cells. 

As a transcriptional activator, it has been reported that SREBP1c 

stimulates fatty acid metabolism and cell cycle progression (Bengoechea-Alonso 

and Ericsson, 2006; Jeon et al., 2013; Williams et al., 2013). To identify further 

factor(s) that are involved in SREBP1c-induced cell cycle progression in ccRCC, I 

attempted to identify SREBP1c target genes that are involved in cell cycle 

regulation using RNA-Seq analyses in liver tissues of wild-type and SREBP1c 

deficient mice, and identified PTTG1 as a novel target gene of SREBP1c   

(Figure 36A). As shown in Figure 36B, PTTG1 expression was remarkably 

reduced in kidney, liver, and adipose tissues of SREBP1c deficient mice compared 

with that in wild-type mice. Subsequently, I investigated PTTG1 expression in 

SREBP1c-overexpressing ACHN cells and found that ectopic SREBP1c expression 

increased PTTG1 mRNA expression, whereas RNF20 co-expression attenuated this 

effect (Figure 37A). However, under conditions of SREBP1 knockdown, RNF20 

did not suppress PTTG1 mRNA (Figure 37B) or protein (Figure 37D) expression. 
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Figure 35. RNF20 inhibits ccRCC cell proliferation by cell cycle regulation.  

(A) ACHN ccRCC cells were transduced with lentivirus for stable overexpression 

of RNF20 and/or SREBP1c. Relative mRNA levels were determined using qRT-

PCR. The level of each mRNA was normalized to the mRNA level of the GAPDH 

gene. Each mRNA level is shown as a ratio relative to the Mock control group.  

(B) ACHN ccRCC cells were transduced with RNF20 and/or SREBP1c lentivirus, 

and the cell proliferation rates were monitored by CCK-8 assay. (C) ACHN ccRCC 

cells were transduced with RNF20 and/or SREBP1c lentivirus, and their ability to 

form colonies was determined by crystal violet staining. (D) RNF20 and/or 

SREBP1 were knocked down in ACHN ccRCC cells using siRNAs, and relative 

mRNA levels were determined using qRT-PCR. Subsequently, mRNA expression 

was normalized to that of the GAPDH gene and is presented relative to those in the 

siControl group. (E) ACHN ccRCC cells were transfected with siRNF20 and/or 

siSREBP1, and relative cell growth rates were determined using CCK-8 assay. All 

experiments were repeated independently at least three times and representative 

results are shown. CCK-8, Cell Counting Kit-8; #P < 0.05 versus Control;      

##P < 0.01 versus Control; ###P < 0.001 versus Control; *P < 0.05; **P < 0.01; 

***P < 0.001. 
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Figure 36. PTTG1 is a novel target gene of SREBP1c using RNA-Seq analyses 

in SREBP1c deficient mice. (A) RNA-Seq analysis for transcriptome profiling of 

liver tissues from wild-type and SREBP1c deficient mice are presented as a scatter 

plot. (B) Kidney, liver, and adipose tissues were isolated from wild-type and 

SREBP1c deficient mice. Total RNA was extracted and relative mRNA levels were 

determined using qRT-PCR. Subsequently, mRNA expression values were 

normalized to that of the TATA-binding protein (TBP). EAT, epididymal adipose 

tissue; IAT, inguinal adipose tissue; BAT, brown adipose tissue; **P < 0.01;   

***P < 0.001. 
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Figure 36 
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Accordingly, SREBP1c promoted PTTG1 protein expression in ccRCC cells 

(Figure 37C, lane 3). However, siRNA-mediated suppression of PTTG1 did not 

affect SREBP1c or FASN protein expression (Figure 37C, lane 4). To validate 

whether SREBP1c would regulate the transcription of PTTG1 directly, I analyzed 

putative sterol regulatory elements (SREs) and E-Box motifs, which are binding 

sites for SREBP1c (Kim et al., 1995; Shimano, 2001) in proximal promoter regions 

of PTTG1 genes in human, monkey, dog, mouse, and rat (Figure 38A). In 

luciferase reporter assays with the human PTTG1 promoter, SREBP1c expression 

induced luciferase activity and co-expression of RNF20 suppressed SREBP1c-

mediated PTTG1 promoter activation (Figure 38B). In ccRCC tumors, PTTG1 

mRNA levels were significantly upregulated compared to those in patient-matched 

normal kidney tissues (Figure 39A). TCGA analyses also showed that PTTG1 

mRNA levels were greatly enhanced in ccRCC tumor tissues (Figure 39B), and the 

expression of PTTG1 mRNA was positively associated with advanced tumor stages 

(Figure 39C). In addition, PTTG1 expression was inversely correlated with RNF20 

expression in ccRCC tumor tissues (Figure 39D). Moreover, high expression of 

PTTG1 was associated with a poor survival of ccRCC patients (Figure 39E). Taken 

together, these data suggest that activated SREBP1c would induce high expression 

of the novel target gene PTTG1 in ccRCC. 

 

The SREBP inhibitor betulin inhibits cell proliferation of ccRCC cells. 

Betulin is a pharmacological inhibitor that prevents proteolytic processing 

of SREBP proteins to achieve lipid-lowering effects (Soyal et al., 2015; Tang et al., 

2011). In addition, betulin attenuates the growth of various cancers by inhibiting 
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Figure 37. PTTG1 is induced by SREBP1c in ccRCC cells. (A) ACHN ccRCC 

cells were transduced with RNF20 and/or SREBP1c lentivirus, and relative mRNA 

levels were determined using qRT-PCR. PTTG1 mRNA level was normalized to 

GAPDH and are shown relative to the negative control group. (B) ACHN ccRCC 

cells were transfected with siRNF20 and/or siSREBP1, and relative mRNA levels 

were determined using qRT-PCR. PTTG1 mRNA expression data were normalized 

to that of GAPDH, and all mRNA levels are presented relative to the negative 

control group. #P < 0.05 versus negative control; ##P < 0.01 versus negative control; 

*P < 0.05. (C) ACHN ccRCC cells were infected with SREBP1c adenovirus and 

were transfected with PTTG1 siRNA. After incubation for 48 hours, western 

blotting analyses were performed with indicated antibodies. (D) ACHN ccRCC 

cells were transfected with siControl or siRNF20. After incubation for 48 hours, 

western blotting analyses were performed with indicated antibodies. nSREBP1, 

nuclear SREBP1. 
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Figure 38. RNF20 suppresses SREBP1c-mediated PTTG1 promoter activation. 

(A) SRE motifs and E-Box sequences in PTTG promoters from several species.  

(B) HEK293 cells were co-transfected with luciferase reporter plasmids containing 

PTTG1 promoter and expression vectors for β-gal, RNF20, and/or SREBP1c. Total 

cell lysates were subjected to luciferase and β-galactosidase assays. Data are 

presented from three independent experiments performed in triplicate. RLU, 

relative luminescence units. 
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Figure 38 
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Figure 39. PTTG1 is upregulated in ccRCC, accompanied with poor prognosis. 

(A) qRT-PCR analysis of PTTG1 mRNA levels in patient-matched ccRCC tumors 

and normal kidney samples. PTTG1 mRNA expression was normalized to that in 

matched normal kidney samples. (B) Normalized RNA-Seq reads of PTTG1 in 

ccRCC tumors, and normal kidney samples were obtained from TCGA ccRCC 

project. (C) PTTG1 expression was analyzed in ccRCC according to tumor stages. 

RNA-Seq data were obtained from TCGA. ###P < 0.001 versus normal kidney; 

***P < 0.001. (D) Correlations between RNF20 and PTTG1 mRNA levels in 

ccRCC tumor samples were identified in data from TCGA using Pearson 

correlation tests. Numbers of cases (n), Pearson correlation coefficients (r), and the 

P values (P) are indicated. (E) Kaplan–Meier survival analyses of ccRCC patients 

were performed in low and high PTTG1 expression groups, and differences were 

identified using the Log-rank test. 
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Figure 39 
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multiple oncogenic factors, including cell-cycle regulators (Chintharlapalli et al., 

2007; Li et al., 2014). Thus, I determined the effects of betulin on SREBP 

inhibition and assessed its anti-tumorigenic properties in ccRCC cells. Following 

treatment of VHL wild-type ACHN and VHL-depleted A498 ccRCC cells with 

betulin, nuclear SREBP1 protein was decreased in a dose-dependent manner, 

whereas the precursor form of SREBP1 was unaffected (Figure 40A), indicating 

that betulin represses SREBP1 processing. Simultaneously, protein levels of 

PTTG1 and cell-cycle regulators including cyclin B1 and E were decreased in 

betulin-treated ccRCC cells (Figure 40A). Moreover, betulin treatments led to 

decreased protein expression of the lipogenic enzymes FASN and SCD1    

(Figure 40A). To explore whether betulin suppresses ccRCC cell growth, I 

measured its effects on cell proliferation in ACHN and A498 cells (Figures 40B 

and 40C) and showed dose dependent anti-proliferative effects. Subsequently, to 

determine whether enhanced ccRCC cell proliferation following RNF20 

suppression might be required for activated SREBP, ccRCC cells were treated with 

betulin and RNF20 siRNA. Consistent with above data (Figure 28D), ccRCC cell 

proliferation was elevated in the presence of RNF20 siRNA, and betulin attenuated 

cell growth under these conditions (Figures 41A and 41B). Moreover, RNF20 

suppression in ccRCC cells augmented the expression of several betulin-sensitive 

genes that are involved in lipogenesis and cell cycle regulation (Figures 41C and 

41D). These data propose that the effects of RNF20 on cell growth and lipogenic 

and cell-cycle regulatory gene expression would be mediated by SREBP1c in 

ccRCC cells. These gene expression changes also corresponded with decreased 

intracellular lipid accumulation in betulin-treated ccRCC cells (Figure 42A). 
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Figure 40. The SREBP inhibitor betulin inhibits ccRCC cell proliferation.   

(A) ACHN and A498 ccRCC cells were treated with increasing concentrations of 

betulin for 12 hours, and total cell lysates were then subjected to SDS-PAGE and 

western blotting analyses with indicated antibodies. pSREBP1, precursor SREBP1; 

nSREBP1, nuclear SREBP1. (B and C) ACHN and A498 ccRCC cells were treated 

with or without betulin, and cell proliferation rates were determined using CCK-8 

assays. Data are presented as means ± SD of five individual samples. CCK-8, Cell 

Counting Kit-8; *P < 0.05; **P < 0.01; ***P < 0.001. 
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Figure 40 
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Figure 41. Betulin efficiently inhibits cell proliferation in ccRCC cells with or 

without RNF20 suppression. (A and B) ACHN and A498 ccRCC cells were 

transfected with siControl or siRNF20. Then, cell proliferation rates were 

determined using CCK-8 assays. Data are presented as means ± SD of five 

individual samples. CCK-8, Cell Counting Kit-8; *P < 0.05; ***P < 0.001; n.s., 

not significant. (C and D) ACHN and A498 ccRCC cells were transfected with 

siControl or siRNF20. After transfection for 24 hours, cells were treated with 

betulin (10 μM) for 24 hours, and relative mRNA levels were determined using 

qRT-PCR. Subsequently, mRNA expression was normalized to that of the GAPDH 

gene. Data are presented as means ± SD of three individual samples. #P < 0.05 

versus negative control; ##P < 0.01 versus negative control; ###P < 0.001 versus 

negative control; **P < 0.01; ***P < 0.001. 
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Figure 41 

 

 

A        A                       B 

 

 

 

 

 

 

 

 

A        C 

 

 

 

 

 

 

A        D 

 

 

 

 

 

 

 



152 

In accordance with the reduced expression of cell-cycle regulatory genes, including 

PTTG1 and certain cyclins (Figure 40A), betulin slightly but substantially 

increased numbers of ccRCC cells in the G1 phase (Figure 42B). These data 

suggest that betulin would repress ccRCC cell proliferation by regulating SREBP1-

dependent lipogenesis and cell cycle progression. 

 

SREBP1c controls ccRCC cell growth through dual mode actions that affect 

cell cycle and lipid metabolism. 

The present data suggest a relationship between PTTG1 and lipid 

metabolism during SREBP1c-dependent ccRCC cell proliferation. Thus, I 

investigated the effects of PTTG1 on lipid metabolism and/or cell proliferation in 

SREBP1c-overexpresing ccRCC cells (Figure 43A). PTTG1 suppression did not 

alter mRNA expression of SREBP1c or FASN (Figure 43B), whereas ectopic 

SREBP1c expression promoted mRNA expression of PTTG1 and cell-cycle 

regulators including PCNA, cyclin A, D1, and E in ccRCC cells (Figures 43B and 

43C). In contrast, suppression of PTTG1 expression in ccRCC cells downregulated 

these cell-cycle proteins (Figure 43C). In addition, PTTG1 suppression inhibited 

cell proliferation in both control and SREBP1c-overexpressing ACHN cells  

(Figure 43D). Next, I determined PTTG1 expression and cell proliferation in the 

presence or absence of the ACC inhibitor TOFA or the FASN inhibitor C75 (Figure 

43A). As shown in Figure 44A, TOFA and C75 treatments reduced intracellular 

triglyceride accumulation in ACHN cells. However, reductions in lipogenic activity 

by TOFA or C75 did not greatly effect mRNA expression of PTTG1 or cell-cycle 

regulators PCNA, Cyclin A, D1, and E (Figures 44B, 44D, and 44E). Similarly, 
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Figure 42. The SREBP inhibitor betulin represses lipogenesis and cell cycle 

progression in ccRCC cells. (A) ACHN ccRCC cells were treated with betulin  

(10 μM). After incubation for 24 hours, cells were fixed and stained with BODIPY 

(green) and DAPI (blue). Images were acquired using a confocal microscope. 

DAPI, 4‟,6-diamidino-2-phenylindole; Scale bar, 10 μm. (B) ACHN ccRCC cells 

were treated with betulin (10 μM) for 24 hours, were fixed and stained with 

propidium iodine, and DNA contents were analyzed using flow cytometry. 

Percentages of cells in each phase of the cell cycle are indicated. 
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Figure 42 
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Figure 43. SREBP1c controls ccRCC cell growth through coordinated 

regulation of cell cycle and fatty acid metabolism. (A) Experimental scheme to 

test the effects of siRNA-mediated suppression of PTTG1 or FASN, and 

pharmacological inhibition of lipogenic genes including FASN and ACC.       

(B and C) Lentivirus-mediated Mock (as a negative control) or SREBP1c 

overexpressing ACHN cells were transfected with PTTG1 siRNA for 48 hours. 

Relative mRNA levels were then determined using qRT-PCR and were normalized 

to that of GAPDH. Expression data are presented relative to the negative control as 

means ± SD of three individual samples. #P < 0.05 versus negative control;     

##P < 0.01 versus negative control. (D) Relative growth rates of cells described in 

Figures 43B and 43C were measured using CCK-8 assays. CCK-8, Cell Counting 

Kit-8; *P < 0.05; **P < 0.01; n.s., not significant. 
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Figure 43 
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Figure 44. Suppression of lipogenic activity does not change expression of 

PTTG1 and cell cycle genes. (A) ACHN ccRCC cells were treated with TOFA  

(10 μg/ml) or C75 (10 μg/ml) for 24 hours, and intracellular triglyceride contents 

were measured. (B) ACHN ccRCC cells were treated with TOFA (10 μg/ml) or 

C75 (10 μg/ml) for 24 hours, and relative mRNA expression levels were 

determined using qRT-PCR. PTTG1 mRNA levels are presented relative to those in 

the vehicle control group. n.s., not significant. (C) Relative growth rates of cells 

described in Figures 44A and 44B were measured using CCK-8 assays. CCK-8, 

Cell Counting Kit-8; **P < 0.01; n.s., not significant. (D and E) ACHN ccRCC 

cells were treated with TOFA (10 μg/mL) or C75 (10 μg/mL) for 24 hours. Relative 

mRNA levels were normalized to that of the GAPDH gene, and are presented 

relative to those in the vehicle group. *P < 0.05; **P < 0.01. 

 

 

 

 

 

 



158 

Figure 44 
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siRNA-mediated suppression of FASN did not greatly alter mRNA levels of 

PTTG1 and cell-cycle regulatory genes (Figures 45A and 45B). However, both 

C75-mediated pharmacological inhibition of FASN and siRNA-driven FASN 

knockdown led to significant decreases in ccRCC cell proliferation (Figures 44C 

and 45C). Furthermore, pharmacologic and genetic inhibition of FASN reduced the 

effects of SREBP1c overexpression on cell growth in ACHN cells, implying that 

inhibition of lipogenesis might attenuate ccRCC cell proliferation via SREBP1c-

dependent pathways (Figures 45C and 45D). Taken together, these data show that 

PTTG1 and de novo lipogenic pathways in ccRCC cells are independently 

regulated by SREBP1c, which would influence cell proliferation via lipid 

metabolism and cell cycle regulation. 

 

RNF20 overexpression attenuates tumor growth in ccRCC xenografts. 

To validate the present roles of RNF20 in ccRCC tumor growth in vivo, I 

performed xenograft experiments in nude mice. In ACHN xenograft tumors, 

ectopic RNF20 expression significantly inhibited tumor growth rates (Figures 46A 

and 46B) and led to decreased tumor masses (Figure 46C), indicating that RNF20 

could suppress ccRCC tumor growth. In addition, subsequent western blot analyses 

showed that ectopic expression of RNF20 inhibited protein expression of SREBP1, 

PTTG1, and FASN in xenograft tumors (Figure 46D). Moreover, RNF20 

significantly attenuated mRNA expression of SREBP1c, cell-cycle regulators, and 

lipogenic genes in xenograft tumors (Figure 46E). In H&E staining experiments, 

ACHN tumors with elevated RNF20 expression exhibited reduced numbers of cells 

with clear cell morphology (Figure 47). Consistently, Oil Red O staining indicated 
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Figure 45. SREBP1c controls ccRCC cell growth through dual modes of action 

that affect cell cycle and lipid metabolism. (A and B) Lentivirus-mediated Mock 

(negative control) or SREBP1c overexpressing ACHN cells were transfected with 

FASN siRNA for 48 hours, and mRNA levels were determined using qRT-PCR. 

Relative mRNA expression was normalized to that of the GAPDH gene, and is 

shown relative to those in the negative control group. #P < 0.05 versus negative 

control; ##P < 0.01 versus negative control; n.s., not significant. (C) Relative 

proliferation rates of cells described in Figures 45A and 45B were monitored using 

CCK-8 assays. CCK-8, Cell Counting Kit-8; *P < 0.05; **P < 0.01. (D) ACHN 

ccRCC cells stably overexpressing Mock or SREBP1c following lentiviral 

transduction. After treatment with C75, cell proliferation rates were monitored 

using CCK-8 assay. Data are representative of at least three independent 

experiments. 
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Figure 45 
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Figure 46. RNF20 overexpression attenuates tumor growth in xenograft mice. 

(A) Subcutaneous tumors of ACHN cells expressing either Mock or ectopic RNF20 

were generated in female BALB/c nude mice (each group includes ten tumors from 

five mice). Representative images of tumors dissected at the end of the study 

showing the effect of RNF20 overexpression on the growth of in vivo xenograft 

tumors. Scale bar, 10 mm. (B) Xenograft tumor volumes (mm3) of ACHN cells 

with or without ectopic RNF20 expression were determined over 35 days. The 

graph shows tumor volumes as mean ± SEM. (C) End-point xenograft tumor 

weights (mg) were measured and plotted. (D) Expression levels of RNF20, 

nSREBP1, PTTG1, and FASN protein in ACHN xenograft tumors were monitored 

using western blotting analyses. nSREBP1, nuclear SREBP1. (E) The effects of 

ectopic RNF20 expression on cell cycle, and lipogenic gene expression were 

determined using qRT-PCR analyses in ACHN xenograft tumors. Relative mRNA 

levels were normalized to GAPDH mRNA level and are shown relative to the 

Mock control group. **P < 0.01; ***P < 0.001. 
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Figure 46 
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that ectopic RNF20 expression reduced lipid accumulation (Figure 47). 

Furthermore, Ki67 staining analyses revealed that exogenous RNF20 reconstitution 

decreased cell proliferative properties in xenograft tumors (Figure 47). Moreover, 

terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analyses 

showed that RNF20 overexpression induced apoptosis in xenograft tumors  

(Figure 47). I also observed increased mRNA expression of the pro-apoptotic genes 

including Bax, Bid, and Caspase-3 following ectopic expression of RNF20, 

whereas mRNA expression of the anti-apoptotic genes Bcl-2, cIAP-2, and XIAP 

were reduced (Figure 48). These in vivo data suggest that RNF20 would act as a 

tumor suppressor by inhibiting SREBP1c-mediated lipogenesis and cell cycle 

regulation in ccRCC. In summary, the present data suggest that RNF20 

downregulation in ccRCC allows for SREBP1c induction, which enhances the 

expression of PTTG1 and lipogenic genes that drive tumor growth and progression 

in ccRCC. 
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Figure 47. RNF20 overexpression reduces lipid storage and cell viability in 

ccRCC xenografts. Histologic analyses of xenograft tumors. Representative 

hematoxylin and eosin (H&E) and Oil Red O staining of Mock or RNF20-

transduced ACHN xenograft tumors. IHC of xenograft tumors stained with Ki67 

and TUNEL. TUNEL, terminal deoxynucleotidyl transferase dUTP nick end 

labeling; Scale bar, 100 μm. 
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Figure 47 
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Figure 48. RNF20 regulates the expression of pro-apoptotic and anti-apoptotic 

genes in xenograft tumors. The effects of ectopic RNF20 expression on apoptotic 

gene expression in ACHN xenograft tumors were determined using qRT-PCR 

analyses. Relative mRNA expression was normalized to that of the GAPDH gene, 

and is presented relative to those in the Mock control group. **P < 0.01;     

***P < 0.001. 
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Figure 48 
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Discussion 

It is well established that constitutive activation of HIF due to the loss of 

VHL in ccRCC causes pathogenic metabolic alterations (Kaelin, 2008; Shen and 

Kaelin, 2013). However, kidney-specific VHL deficient mice did not exhibit 

ccRCC-like metabolic phenotypes (Rankin et al., 2006), suggesting additional 

mechanisms of ccRCC tumor formation. The present data demonstrate that RNF20 

downregulation promotes ccRCC tumorigenesis by activating SREBP1c. In 

agreement, several lines of evidence support the idea that RNF20 would suppress 

ccRCC tumor growth. Among these, RNF20 expression was decreased in ccRCC 

tumors compared with normal kidney tissues (Figure 25, A-E) and was inversely 

correlated with SREBP1 and lipogenic gene expression (Figure 30, A-I; Figure 31, 

A-E). Accordingly, low RNF20 expression was strongly associated with poor 

survival in ccRCC patients regardless of VHL mutation status (Figure 27, A-C), 

indicating that RNF20 expression is inversely correlated with ccRCC progression. 

In agreement, ectopic expression of RNF20 repressed SREBP1c and cell 

proliferation in both VHL wild-type and depleted ccRCC cell lines (Figures 28B, 

33A, and 35B), but did not affect proliferation of in HRCE and HEK293 normal 

kidney cells with high basal RNF20 expression (Figures 25F and 29B). Finally, 

RNF20 overexpression decreased tumor growth in ccRCC xenografts and was 

accompanied by reduced expression of SREBP1c and its target genes (Figure 46). 

Previous epigenetic studies have shown that several tumor suppressor genes play 

roles in ccRCC (Arai et al., 2009; Ricketts et al., 2012). For example, it has been 

reported that the RNF20 promoter contains prominent CpG islands and is 

hypermethylated in breast cancer tumors (Shema et al., 2008). Correspondingly, 
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treatment of ACHN ccRCC cells with the DNA methyltransferase inhibitor RG108 

led to a substantial increase in RNF20 mRNA expression, but this was not observed 

in HEK293 cells (Figure 26B), implying that RNF20 promoter hypermethylation, 

at least partly, may serve to dampen RNF20 expression in ccRCC. 

In agreement with previous observations of abundant lipid storage and 

increased lipogenesis in ccRCC (Drabkin and Gemmill, 2010; Li and Kaelin, 2011), 

the present data show upregulated SREBP1 and lipogenic activities (Figure 30, A-I; 

Figures 31A and 31B). However, mRNA levels of SREBP2 and its target gene, 

such as HMGCR, were decreased in ccRCC tumors (Figure 32, A-D), indicating 

that SREBP1 and de novo lipogenesis might play primary oncogenic roles. These 

observations warrant consideration of pharmacological inhibitors of lipogenesis as 

anti-cancer drugs for ccRCC. In accordance, the FASN inhibitor C75 and the SCD1 

inhibitor A939572 potently inhibited tumor growth and invasiveness of ccRCC 

(Horiguchi et al., 2008; von Roemeling et al., 2013), and the SREBP inhibitor 

betulin repressed ccRCC cell proliferation by inhibiting SREBP1 and lipogenesis 

regardless of VHL gene mutations (Figure 40). In addition, betulin potently 

abolished the increases cell proliferation and lipogenic activity that followed 

suppression of RNF20 (Figure 41). Given the hyperactivation of SREBP1 and 

lipogenesis along with RNF20 downregulation in ccRCC (Figures 25, 30, and 31), 

unfettered SREBP1 may promote ccRCC tumor development via lipogenic 

activation. Therefore, it is plausible that SREBP1 and lipogenic pathways are 

exploitable therapeutic targets against ccRCC. 

SREBP1c has been associated with de novo lipogenesis and cell cycle 

progression (Bengoechea-Alonso and Ericsson, 2006; Jeon et al., 2013; Williams et 
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al., 2013). Moreover, cyclin-dependent kinase 1 (CDK1)/cyclin B phosphorylates 

and activates SREBP1c during mitosis (Bengoechea-Alonso and Ericsson, 2006). 

Similarly, the SREBP-responsive miRNA miR-33 reportedly inhibited CDK6 and 

cyclin D1 expression, thereby reducing cell proliferation and cell cycle progression 

in certain cancer cells (Cirera-Salinas et al., 2012). In glioma and cervical cancers, 

suppression of SREBP1 represses tumor growth by inducing G1 cell cycle arrest 

and apoptosis (Bengoechea-Alonso and Ericsson, 2006; Williams et al., 2013). In 

addition, it has been shown that betulin inhibits lung cancer cell proliferation by 

downregulating cell-cycle regulators such as cyclin B1, D, and E (Li et al., 2014). 

In this study, I showed that PTTG1 is also involved in cell cycle progression and 

tumorigenesis in ccRCC and acts as a novel target gene of SREBP1c. PTTG1 (also 

known as securin, EAP1, and TUTR1) is an anaphase inhibitor that prevents 

premature chromosome separation by inhibiting separase activity (Draviam et al., 

2004; Jallepalli and Lengauer, 2001). Previous studies have suggested that PTTG1 

participates in various pathways that modulate the cell cycle, proliferation, and 

survival. For example, PTTG1 has been shown to interact with p53 and prevent 

p53-dependent transcription and apoptosis (Bernal et al., 2002; Yu et al., 2000). 

Further, PTTG1 promotes the expression of several genes including c-Myc, cyclin 

D3, FGF2, and MMP2, potentially acting as a transcription factor (Dominguez et 

al., 1998; Tong and Eigler, 2009; Tong et al., 2007). In addition, it has been showed 

that PTTG1 is overexpressed in certain tumors including pituitary, thyroid, glioma, 

hepatic, colorectal, and renal cancers, and may drive tumorigenesis (Vlotides et al., 

2007; Wondergem et al., 2012). In the present study, I found that high expression of 

PTTG1 was closely associated with advanced tumor stages and poor survival in 



172 

ccRCC patients (Figures 39D and 39E). Moreover, SREBP1c potently stimulated 

mRNA and protein expression of PTTG1 and several cell-cycle regulators, leading 

to cancer cell proliferation in ccRCC (Figures 35 and 37). In contrast, RNF20 

overexpression repressed PTTG1 in both ccRCC cells and xenograft tumors 

(Figures 37A, 46D, and 46E), and RNF20 suppression led to increased mRNA and 

protein levels of PTTG1 (Figures 37B and 37D). Accordingly, PTTG1 expression 

was negatively associated with RNF20 expression, reflecting modulation of 

SREBP1c in ccRCC tumor tissues (Figure 39D) and suggesting that RNF20 

downregulation would promote ccRCC development and progression, in part by 

upregulating PTTG1. In agreement, siRNA knockdown of PTTG1 led to decreased 

mRNA expression of cell-cycle regulatory genes without changing lipogenic 

activity (Figures 43B and 43C). Furthermore, PTTG1 suppression attenuated the 

effects of activated SREBP1c on ccRCC cell proliferation (Figure 43D). Therefore, 

it is likely that RNF20-SREBP1c-PTTG1 axis is central to ccRCC cell proliferation 

and tumorigenesis. 

It is well established that SREBP1 regulates lipid metabolism, 

predominantly by increasing de novo lipogenesis. Thus, I tested whether 

lipogenesis is associated with PTTG1 expression in the presence of genetic and 

pharmacological inhibitors of de novo lipogenesis. In these experiments, mRNA 

expression of PTTG1 in ACHN ccRCC cells was not affected by pharmacological 

inhibition of lipogenesis using TOFA or C75 (Figure 44B) or by siRNA-mediated 

knockdown of FASN (Figure 45A), suggesting that SREBP1c would stimulate 

PTTG1 in a lipogenesis-independent manner. Thus, SREBP1c may affect lipid 

metabolism and cell cycle progression by regulating different set of genes, which 
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eventually coalesce to drive tumor development in ccRCC. Many studies have 

demonstrated that lipogenic inactivation by TOFA or C75 induces cell cycle arrest 

and apoptosis in several cancers, including lung, colorectal, and renal cancers 

(Horiguchi et al., 2008; Wang et al., 2009). Hence, future studies are required to 

clarify whether lipogenic pathways might affect PTTG1 and cell cycle progression 

in other tissues and/or cancers. 

According to the present data, I propose a model in which RNF20 acts as a 

tumor suppressor by inhibiting SREBP1c-mediated lipogenesis and cell cycle 

regulation (Figure 49). Conversely, these data indicate that RNF20 downregulation 

promotes tumorigenesis by activating SREBP1c in ccRCC tumors. In addition, I 

identified a novel mechanism by which SREBP1c stimulates cell cycle progression 

by inducing PTTG1 in ccRCC, and I suggest that RNF20 could modulate the 

SREBP1c-lipogenesis axis and the SREBP1c-PTTG1 axis. Taken together, these 

findings implicate RNF20 as a novel tumor suppressor in ccRCC and suggest 

clinical benefits of therapeutic approaches that target components of the RNF20-

SREBP1c pathway in cancer. 
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Figure 49. Proposed model illustrating tumor-suppressive functions of RNF20 

against SREBP1-mediated lipogenesis and cell cycle progression in ccRCC. 

RNF20 downregulation and SREBP1 upregulation are associated with poor 

prognosis in ccRCC patients. Downregulation of RNF20 induces SREBP1 

hyperactivation, leading to ccRCC tumorigenesis. SREBP1 controls cell cycle 

regulation by PTTG1 as a novel SREBP1c target gene. In addition, the small-

molecule SREBP inhibitor betulin blocks cell proliferation by inhibiting 

lipogenesis and inducing G1 cell cycle arrest. Taken together, RNF20 

downregulation promotes tumorigenesis via SREBP1-mediated lipogenesis and 

cell cycle progression in ccRCC. 
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Figure 49 
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CONCLUSION & PERSPECTIVES 

 

Lipid metabolism is essential for cell growth and survival. Thus, 

dysregulation of lipid metabolism is closely associated with metabolic disorders 

and tumorigenesis. SREBP1c is a key transcription factor for lipid metabolism. In 

last decades, enormous efforts have been made to elucidate the regulatory 

mechanisms and functions of SREBP1c in physiological and pathophysiological 

conditions. Nonetheless, the regulatory mechanisms that control SREBP1c 

turnover in response to fasting status are not thoroughly elucidated. To investigate 

which factors are involved in stability and activity of SREBP1c, I have tried to 

identify SREBP1c-interacting proteins. Through affinity purification and mass 

spectrometry analyses, RNF20 has been identified as an E3 ubiquitin ligase for 

SREBP1c. Furthermore, to investigate the pathophysiological roles of RNF20-

SREBP1c axis on cell proliferation in cancers, I have attempted to identify 

SREBP1c target genes that might be involved in cell cycle regulation using RNA-

Seq analyses with wild-type and SREBP1c deficient mice. As a novel target gene of 

SREBP1c, PTTG1 regulate cell cycle genes and cell proliferation in ccRCC cells. 

Collectively, these data provide new insights to understand novel mechanism 

between lipid metabolism and cell cycle progression. 

 

1. RNF20 is an E3 ubiquitin ligase for SREBP1c 

SREBP1c governs de novo lipogenesis by stimulating its target genes, 

including FASN, ACC, SCD1, and ELOVL6 (Eberle et al., 2004b; Kim and 

Spiegelman, 1996; Kumadaki et al., 2008). SREBP1c is sensitively regulated by 
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nutritional and hormonal changes to maintain energy homeostasis. SREBP1c is 

activated by insulin, whereas SREBP1c is suppressed by glucagon (Horton et al., 

1998a; Kim et al., 1998). Although SREBP1c-mediated lipogenic program is 

rapidly repressed by nutritional deprivations, the factors that are involved in the 

suppression of SREBP1c activity during fasting have not been clearly identified. In 

the chapter one, I demonstrated that RNF20 is an E3 ubiquitin ligase for SREBP1c 

and acts as a negative regulator of hepatic lipid metabolism through PKA-

dependent SREBP1c degradation. 

RNF20 has been firstly identified as yeast Bre1 and possesses a RING 

finger domain that primarily functions as an E3 ligase for histone H2B 

monoubiquitination, which regulates expression of certain genes (Hwang et al., 

2003; Kim et al., 2005; Wood et al., 2003). Also, RNF20 plays various roles in 

transcription, DNA damage responses, and stem cell differentiation (Cole et al., 

2015; Shema et al., 2008). Moreover, it has been suggested that RNF20 acts as a 

tumor suppressor in breast and colorectal cancers (Shema et al., 2008; Tarcic et al., 

2016). Nevertheless, it has not been thoroughly investigate whether RNF20 might 

be involved in lipid metabolism. 

SREBP1c is very unstable and rapidly degraded by the proteasome 

(Hirano et al., 2003; Hirano et al., 2001). It has been reported that SREBP1c is 

phosphorylated by GSK-3β, which leads to F-box and WD repeat domain-

containing 7 (FBXW7)-dependent ubiquitination of SREBP1c (Punga et al., 2006; 

Sundqvist et al., 2005). However, a recent in vivo study has been reported that 

inhibition FBXW7 does not alter the expression of SREBP1c or lipogenic genes in 

the liver (Kumadaki et al., 2011). It is of interest to note that RNF20 would induce 
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polyubiquitination and degradation of SREBP1c upon PKA activation, whereas 

PKA activation did not change the level of FBXW7. Given that PKA plays a 

crucial role in catabolic responses, PKA activation with forskolin decreased 

lipogenic gene expression with an increase in RNF20, whereas suppression of 

RNF20 reversed the effect of forskolin on lipogenic gene expression, implying that 

RNF20 might mediate PKA signaling cascade to downregulate hepatic lipid 

metabolism via SREBP1c degradation. Here, I found out a novel mechanism of 

SREBP1c regulation by RNF20 during nutritional deprivation. Knowledge 

regarding this process enhances the molecular mechanisms of how SREBP1c is 

able to turn off hepatic lipid metabolism during nutritional deprivation. 

 

2. RNF20 is downregulated in ccRCC 

In cancer cells, elevated lipid metabolism plays an important role by 

providing building blocks for tumor growth (DeBerardinis et al., 2008; Schulze and 

Harris, 2012). Particularly, ccRCC, the most common subtype of kidney cancers, is 

characterized by ectopic intracellular lipid accumulation (Rezende et al., 1999; 

Valera and Merino, 2011). Metabolic alteration and pathogenesis are characterized 

by constitutive activation of HIF due to loss of the VHL in 90% of ccRCC tumors 

(Kaelin, 2008; Shen and Kaelin, 2013). Nonetheless, kidney-specific VHL deficient 

mice fail to exhibit ccRCC-like metabolic phenotypes and tumor formation, 

implying that additional mechanisms might be present in ccRCC (Rankin et al., 

2006). The finding that RNF20 acts as a negative regulator of de novo lipogenesis 

by inhibition of SREBP1c prompted me to test whether RNF20 might be 

dysregulated in ccRCC tumors. 
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In the chapter two, I have shown that RNF20 is downregulated and 

exhibits tumor-suppressive functions in ccRCC. Several lines of evidence from in 

vivo and in vitro data support the above idea. First, RNF20 expression was 

decreased in ccRCC tumors compared with normal kidney tissues. Furthermore, 

low RNF20 expression was associated with poor survival regardless of VHL 

mutation status in ccRCC patients, implying that RNF20 might oppose ccRCC 

progression in a VHL-independent manner. Second, ectopic expression of RNF20 

repressed SREBP1c and cell proliferation in both VHL wild-type ACHN and VHL 

depleted A498 ccRCC cell lines. Third, the levels of SREBP1c and tumor growth 

were reduced by RNF20 overexpression in vivo ccRCC xenograft tumors. 

RNF20 has been reported as a putative tumor suppressor (Shema et al., 

2008), possibly functioning through interaction with p53 and its presence at the 

promoter of p53 target genes (Kim et al., 2005). RNF20-promoted histone H2B 

monoubiquitination is elevated at the coding regions of p53 target genes upon their 

activation (Minsky et al., 2008). Suppression of RNF20 results in a decrease in p53 

expression, which leads to increase in cell migration and tumorigenesis. Also, 

downregulation of RNF20 increases tumor growth (Shema et al., 2008). 

RNF20 promoter contains prominent CpG islands and is hypermethylated 

in breast cancer tumors (Shema et al., 2008). Consistent with these reports, I 

observed that DNA methyltransferase inhibitor RG108 treatment to ACHN ccRCC 

cell lines substantially increased the level of RNF20 mRNA, but not in HRCE and 

HEK293 normal kidney cell lines, implying that RNF20 promoter 

hypermethylation, at least partly, may serve to dampen RNF20 expression in 

ccRCC. Together, I suggest that RNF20 would act as a potential tumor suppressor 
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and is downregulated in ccRCC. 

 

3. SREBP1c promotes lipogenesis and cell proliferation in ccRCC 

Accumulating evidences have demonstrated that activated SREBP1c 

enhances lipogenesis in certain cancers (Griffiths et al., 2013; Guo et al., 2014). In 

addition, SREBP1c promotes lipid metabolism and tumor development, 

potentiating progression and migration, leading to poor prognosis in certain cancers 

(Guo et al., 2009; Huang et al., 2012). Previous studies have shown that lipogenic 

enzymes such as FASN and SCD1 are increased in various cancers (Igal, 2010; 

Menendez and Lupu, 2007). Moreover, drugs targeting against SREBP1c-driven 

lipogenesis have been shown as anti-cancer effects in glioblastoma therapy (Guo et 

al., 2009). However, it remains unclear whether SREBP1 and lipogenic genes 

might be associated with ectopic lipid storage and cell proliferation in ccRCC. 

In this study, I demonstrated that SREBP1c and lipogenic activities are 

upregulated in ccRCC tumors and promote ccRCC cell proliferation. In TCGA 

analyses, the mRNA levels of SREBP1 and lipogenic genes were elevated in 

ccRCC tumors compared with normal kidney tissues, which were correlated with 

poor prognosis in ccRCC patients. In addition, I verified that ectopic SREBP1c 

overexpression stimulated ccRCC cell proliferation. These observations warrant a 

potential consideration of pharmacological inhibitors for lipogenesis as anti-cancer 

drugs against ccRCC. Accordingly, the SREBP inhibitor betulin repressed ccRCC 

cell proliferation by inhibiting SREBP1 and lipogenesis. Given the hyperactivation 

of SREBP1 and lipogenesis along with RNF20 downregulation in ccRCC, 

unfettered SREBP1 may promote ccRCC tumor development via lipogenic 
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activation. Therefore, it is plausible that SREBP1 and lipogenic pathways might be 

potential therapeutic targets against ccRCC. 

 

4. SREBP1c-PTTG1 axis potentiates cell cycle progression and 

tumorigenesis 

Recently, it has been reported that SREBP1c is involved in not only fatty 

acid synthesis but also cell cycle progression (Bengoechea-Alonso and Ericsson, 

2006; Jeon et al., 2013; Williams et al., 2013). For example, CDK1/cyclin B-

mediated phosphorylation stabilizes and activates SREBP1c during mitosis 

(Bengoechea-Alonso and Ericsson, 2006). In addition, miR-33, which is one of the 

SREBP-responsive miRNAs, inhibits the expression of the CDK6 and cyclin D1, 

thereby reducing cell proliferation and cell cycle progression in Huh7 and A549 

cells (Cirera-Salinas et al., 2012). In glioma and cervical cancers, suppression of 

SREBP1 represses tumor growth via inducing G1 cell cycle arrest and apoptosis 

(Bengoechea-Alonso and Ericsson, 2006; Williams et al., 2013). Furthermore, it 

has been shown that betulin inhibits lung cancer cell proliferation by 

downregulating cell-cycle regulators such as cyclin B1, D, and E (Li et al., 2014). 

Here, I have identified that PTTG1 is a novel target gene of SREBP1c and 

involved in cell cycle progression and tumorigenesis in ccRCC. PTTG1 (also 

known as securin, EAP1, and TUTR1) is an anaphase inhibitor that prevents 

premature chromosome separation through inhibition of separase activity and also 

interacts with p53, which leads to inhibit p53-dependent transcription and 

apoptosis (Draviam et al., 2004; Jallepalli and Lengauer, 2001). Besides, PTTG1 

appears to function as a transcription factor, which promotes the transcription of 
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several genes, such as c-Myc, cyclin D3, FGF2, and MMP2 (Dominguez et al., 

1998; Tong and Eigler, 2009). Thus, it seems that PTTG1 participates in several 

key cellular events such as gene transcription, cell transformation, angiogenesis, 

metabolism, apoptosis, DNA repair, genetic instability, and mitotic control 

(Bradshaw and Kakar, 2007; Vlotides et al., 2007). Recently, PTTG1 has been 

categorized as an oncogene because PTTG1 is overexpressed in numerous tumors 

including pituitary, thyroid, glioma, hepatic, colorectal, and renal cancers 

(Bradshaw and Kakar, 2007; Vlotides et al., 2007). In accordance with the previous 

reports (Wondergem et al., 2012), high PTTG1 expression was associated with 

advanced tumor stage and poor survival in ccRCC, whereas PTTG1 expression was 

negatively correlated with RNF20 expression. Notably, SREBP1c potently 

stimulated the levels of PTTG1 mRNA, protein, and several cell-cycle regulators, 

leading to cancer cell proliferation in ccRCC. In contrast, PTTG1 knockdown via 

siRNA decreased the mRNA levels of cell-cycle regulatory genes without change 

of lipogenic activity. In addition, pharmacological inhibition of lipogenesis with 

TOFA or C75 did not change the mRNA level of PTTG1 in ccRCC cell lines. 

These data indicate that SREBP1c could stimulate PTTG1 level, probably, in a 

lipogenesis-independent manner. Together, these data suggest that SREBP1c could 

regulate not only lipid metabolism but also cell cycle progression by regulating 

different set of genes, which would eventually coalesce to drive tumor 

development in ccRCC. Nevertheless, further studies are required to clarify 

whether lipogenic pathway might affect PTTG1 and cell cycle progression in other 

tissues and/or different types of cancers. 
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In conclusion, I have elucidated a novel mechanism of lipid metabolism 

which RNF20 downregulates SREBP1c upon fasting. Furthermore, this work 

provides a clue to understand how SREBP1c is rapidly regulated by fasting signals 

to prevent futile lipogenic activation. Because there is a positive correlation 

between lipogenic activity and metabolic complications such as obesity, NAFLD, 

and certain cancers, it is likely that RNF20 might be a metabolic tumor suppressor 

in certain cancers associated with increased lipid metabolism. In addition, I have 

investigated whether RNF20 might be involved in tumorigenesis in ccRCC, which 

is characterized by ectopic intracellular lipid storage. This study indicates that 

downregulation of RNF20 stimulates tumorigenesis following SREBP1c activation 

in ccRCC, accompanied with poor prognosis. Conversely, RNF20 overexpression 

repressed lipogenesis and cell proliferation by inhibiting SREBP1c in cultured 

ccRCC cells and xenograft studies. Notably, PTTG1 was identified as a novel 

SREBP1c target gene that plays a crucial role in cell cycle control in ccRCC. Taken 

together, RNF20 suppresses tumorigenesis by inhibiting SREBP1c-mediated 

lipogenesis and cell cycle regulation in ccRCC. I believe that this work establishes 

the key role of RNF20-SREBP1c axis for the control of lipogenesis and cell cycle 

progression, which may shed light on the development of therapeutic strategies in 

ccRCC. 

  



184 

References 

 

Amemiya-Kudo, M., Shimano, H., Yoshikawa, T., Yahagi, N., Hasty, A.H., 

Okazaki, H., Tamura, Y., Shionoiri, F., Iizuka, Y., Ohashi, K., et al. (2000). 

Promoter analysis of the mouse sterol regulatory element-binding protein-1c gene. 

J Biol Chem 275, 31078-31085. 
 
 

Arai, E., Ushijima, S., Fujimoto, H., Hosoda, F., Shibata, T., Kondo, T., Yokoi, S., 

Imoto, I., Inazawa, J., Hirohashi, S., et al. (2009). Genome-wide DNA methylation 

profiles in both precancerous conditions and clear cell renal cell carcinomas are 

correlated with malignant potential and patient outcome. Carcinogenesis 30, 214-

221. 
 

Bakan, I., and Laplante, M. (2012). Connecting mTORC1 signaling to SREBP-1 

activation. Curr Opin Lipidol 23, 226-234. 
 

Becker, T.C., Noel, R.J., Coats, W.S., Gomez-Foix, A.M., Alam, T., Gerard, R.D., 

and Newgard, C.B. (1994). Use of recombinant adenovirus for metabolic 

engineering of mammalian cells. Methods Cell Biol 43 Pt A, 161-189. 
 

Bengoechea-Alonso, M.T., and Ericsson, J. (2006). Cdk1/cyclin B-mediated 

phosphorylation stabilizes SREBP1 during mitosis. Cell Cycle 5, 1708-1718. 
 

Bernal, J.A., Luna, R., Espina, A., Lazaro, I., Ramos-Morales, F., Romero, F., Arias, 

C., Silva, A., Tortolero, M., and Pintor-Toro, J.A. (2002). Human securin interacts 

with p53 and modulates p53-mediated transcriptional activity and apoptosis. Nat 

Genet 32, 306-311. 
 

Berry, M.N., and Friend, D.S. (1969). High-yield preparation of isolated rat liver 

parenchymal cells: a biochemical and fine structural study. The Journal of cell 

biology 43, 506-520. 
 

Bizeau, M.E., MacLean, P.S., Johnson, G.C., and Wei, Y. (2003). Skeletal muscle 

sterol regulatory element binding protein-1c decreases with food deprivation and 

increases with feeding in rats. The Journal of nutrition 133, 1787-1792. 
 

Bradshaw, C., and Kakar, S.S. (2007). Pituitary tumor transforming gene: an 

important gene in normal cellular functions and tumorigenesis. Histology and 

histopathology 22, 219-226. 
 

Bretscher, M.S., and Raff, M.C. (1975). Mammalian plasma membranes. Nature 

258, 43-49. 
 



185 

Briggs, M.R., Yokoyama, C., Wang, X., Brown, M.S., and Goldstein, J.L. (1993). 

Nuclear protein that binds sterol regulatory element of low density lipoprotein 

receptor promoter. I. Identification of the protein and delineation of its target 

nucleotide sequence. The Journal of biological chemistry 268, 14490-14496. 
 

Brown, M.S., and Goldstein, J.L. (1997). The SREBP pathway: regulation of 

cholesterol metabolism by proteolysis of a membrane-bound transcription factor. 

Cell 89, 331-340. 
 

Chen, W., Hill, H., Christie, A., Kim, M.S., Holloman, E., Pavia-Jimenez, A., 

Homayoun, F., Ma, Y., Patel, N., Yell, P., et al. (2016). Targeting Renal Cell 

Carcinoma with a HIF-2 antagonist. Nature. 
 

Chintharlapalli, S., Papineni, S., Ramaiah, S.K., and Safe, S. (2007). Betulinic acid 

inhibits prostate cancer growth through inhibition of specificity protein 

transcription factors. Cancer Res 67, 2816-2823. 
 

Cho, H., Du, X., Rizzi, J.P., Liberzon, E., Chakraborty, A.A., Gao, W., Carvo, I., 

Signoretti, S., Bruick, R., Josey, J.A., et al. (2016). On-Target Efficacy of a 

HIF2alpha Antagonist in Preclinical Kidney Cancer Models. Nature. 
 

Cirera-Salinas, D., Pauta, M., Allen, R.M., Salerno, A.G., Ramirez, C.M., 

Chamorro-Jorganes, A., Wanschel, A.C., Lasuncion, M.A., Morales-Ruiz, M., 

Suarez, Y., et al. (2012). Mir-33 regulates cell proliferation and cell cycle 

progression. Cell Cycle 11, 922-933. 
 

Cohen, J.C., Horton, J.D., and Hobbs, H.H. (2011). Human fatty liver disease: old 

questions and new insights. Science 332, 1519-1523. 
 

Cole, A.J., Clifton-Bligh, R., and Marsh, D.J. (2015). Histone H2B 

monoubiquitination: roles to play in human malignancy. Endocrine-related cancer 

22, T19-33. 
 

Currie, E., Schulze, A., Zechner, R., Walther, T.C., and Farese, R.V., Jr. (2013). 

Cellular fatty acid metabolism and cancer. Cell Metab 18, 153-161. 
 

DeBerardinis, R.J., Lum, J.J., Hatzivassiliou, G., and Thompson, C.B. (2008). The 

biology of cancer: metabolic reprogramming fuels cell growth and proliferation. 

Cell Metab 7, 11-20. 
 

Dentin, R., Liu, Y., Koo, S.H., Hedrick, S., Vargas, T., Heredia, J., Yates, J., 3rd, 

and Montminy, M. (2007). Insulin modulates gluconeogenesis by inhibition of the 

coactivator TORC2. Nature 449, 366-369. 
 



186 

Dif, N., Euthine, V., Gonnet, E., Laville, M., Vidal, H., and Lefai, E. (2006). Insulin 

activates human sterol-regulatory-element-binding protein-1c (SREBP-1c) 

promoter through SRE motifs. The Biochemical journal 400, 179-188. 
 

Divecha, N., and Irvine, R.F. (1995). Phospholipid signaling. Cell 80, 269-278. 
 

Dominguez, A., Ramos-Morales, F., Romero, F., Rios, R.M., Dreyfus, F., Tortolero, 

M., and Pintor-Toro, J.A. (1998). hpttg, a human homologue of rat pttg, is 

overexpressed in hematopoietic neoplasms. Evidence for a transcriptional 

activation function of hPTTG. Oncogene 17, 2187-2193. 
 

Drabkin, H.A., and Gemmill, R.M. (2010). Obesity, cholesterol, and clear-cell 

renal cell carcinoma (RCC). Adv Cancer Res 107, 39-56. 
 

Draviam, V.M., Xie, S., and Sorger, P.K. (2004). Chromosome segregation and 

genomic stability. Curr Opin Genet Dev 14, 120-125. 
 

Du, X., Kristiana, I., Wong, J., and Brown, A.J. (2006). Involvement of Akt in ER-

to-Golgi transport of SCAP/SREBP: a link between a key cell proliferative 

pathway and membrane synthesis. Molecular biology of the cell 17, 2735-2745. 
 

Eberle, D., Clement, K., Meyre, D., Sahbatou, M., Vaxillaire, M., Le Gall, A., Ferre, 

P., Basdevant, A., Froguel, P., and Foufelle, F. (2004a). SREBF-1 gene 

polymorphisms are associated with obesity and type 2 diabetes in French obese and 

diabetic cohorts. Diabetes 53, 2153-2157. 
 

Eberle, D., Hegarty, B., Bossard, P., Ferre, P., and Foufelle, F. (2004b). SREBP 

transcription factors: master regulators of lipid homeostasis. Biochimie 86, 839-

848. 
 

Farmer, S.R. (2006). Transcriptional control of adipocyte formation. Cell Metab 4, 

263-273. 
 

Ferre, P., and Foufelle, F. (2010). Hepatic steatosis: a role for de novo lipogenesis 

and the transcription factor SREBP-1c. Diabetes Obes Metab 12 Suppl 2, 83-92. 
 

Flier, J.S., and Hollenberg, A.N. (1999). ADD-1 provides major new insight into 

the mechanism of insulin action. Proceedings of the National Academy of Sciences 

of the United States of America 96, 14191-14192. 
 

Foretz, M., Carling, D., Guichard, C., Ferre, P., and Foufelle, F. (1998). AMP-

activated protein kinase inhibits the glucose-activated expression of fatty acid 

synthase gene in rat hepatocytes. J Biol Chem 273, 14767-14771. 

 



187 

Foretz, M., Pacot, C., Dugail, I., Lemarchand, P., Guichard, C., Le Liepvre, X., 

Berthelier-Lubrano, C., Spiegelman, B., Kim, J.B., Ferre, P., et al. (1999). 

ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression 

by glucose. Mol Cell Biol 19, 3760-3768. 
 

Foufelle, F., Gouhot, B., Perdereau, D., Girard, J., and Ferre, P. (1994). Regulation 

of lipogenic enzyme and phosphoenolpyruvate carboxykinase gene expression in 

cultured white adipose tissue. Glucose and insulin effects are antagonized by cAMP. 

European journal of biochemistry / FEBS 223, 893-900. 
 

Giandomenico, V., Simonsson, M., Gronroos, E., and Ericsson, J. (2003). 

Coactivator-dependent acetylation stabilizes members of the SREBP family of 

transcription factors. Molecular and cellular biology 23, 2587-2599. 
 

Girard, J., Perdereau, D., Foufelle, F., Prip-Buus, C., and Ferre, P. (1994). 

Regulation of lipogenic enzyme gene expression by nutrients and hormones. 

FASEB J 8, 36-42. 
 

Griffiths, B., Lewis, C.A., Bensaad, K., Ros, S., Zhang, Q., Ferber, E.C., Konisti, 

S., Peck, B., Miess, H., East, P., et al. (2013). Sterol regulatory element binding 

protein-dependent regulation of lipid synthesis supports cell survival and tumor 

growth. Cancer Metab 1, 3. 
 

Guo, D., Bell, E.H., Mischel, P., and Chakravarti, A. (2014). Targeting SREBP-1-

driven lipid metabolism to treat cancer. Curr Pharm Des 20, 2619-2626. 
 

Guo, D., Prins, R.M., Dang, J., Kuga, D., Iwanami, A., Soto, H., Lin, K.Y., Huang, 

T.T., Akhavan, D., Hock, M.B., et al. (2009). EGFR signaling through an Akt-

SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to 

antilipogenic therapy. Sci Signal 2, ra82. 
 

Ham, M., Choe, S.S., Shin, K.C., Choi, G., Kim, J.W., Noh, J.R., Kim, Y.H., Ryu, 

J.W., Yoon, K.H., Lee, C.H., et al. (2016). Glucose-6-phosphate dehydrogenase 

deficiency improves insulin resistance with reduced adipose tissue inflammation in 

obesity. Diabetes. 
 

Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70. 

Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. 

Cell 144, 646-674. 
 

He, T.C., Zhou, S., da Costa, L.T., Yu, J., Kinzler, K.W., and Vogelstein, B. (1998). 

A simplified system for generating recombinant adenoviruses. Proceedings of the 

National Academy of Sciences of the United States of America 95, 2509-2514. 
 



188 

Hebbard, L., and George, J. (2011). Animal models of nonalcoholic fatty liver 

disease. Nature reviews Gastroenterology & hepatology 8, 35-44. 
 

Hensley, C.T., Wasti, A.T., and DeBerardinis, R.J. (2013). Glutamine and cancer: 

cell biology, physiology, and clinical opportunities. J Clin Invest 123, 3678-3684. 
 

Hirano, Y., Murata, S., Tanaka, K., Shimizu, M., and Sato, R. (2003). Sterol 

regulatory element-binding proteins are negatively regulated through SUMO-1 

modification independent of the ubiquitin/26 S proteasome pathway. The Journal of 

biological chemistry 278, 16809-16819. 
 

Hirano, Y., Yoshida, M., Shimizu, M., and Sato, R. (2001). Direct demonstration of 

rapid degradation of nuclear sterol regulatory element-binding proteins by the 

ubiquitin-proteasome pathway. J Biol Chem 276, 36431-36437. 
 

Horiguchi, A., Asano, T., Asano, T., Ito, K., Sumitomo, M., and Hayakawa, M. 

(2008). Pharmacological inhibitor of fatty acid synthase suppresses growth and 

invasiveness of renal cancer cells. J Urol 180, 729-736. 
 

Horton, J.D., Bashmakov, Y., Shimomura, I., and Shimano, H. (1998a). Regulation 

of sterol regulatory element binding proteins in livers of fasted and refed mice. 

Proc Natl Acad Sci U S A 95, 5987-5992. 
 

Horton, J.D., Goldstein, J.L., and Brown, M.S. (2002). SREBPs: activators of the 

complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 

109, 1125-1131. 
 

Horton, J.D., Shimomura, I., Brown, M.S., Hammer, R.E., Goldstein, J.L., and 

Shimano, H. (1998b). Activation of cholesterol synthesis in preference to fatty acid 

synthesis in liver and adipose tissue of transgenic mice overproducing sterol 

regulatory element-binding protein-2. J Clin Invest 101, 2331-2339. 
 

Hsu, P.P., and Sabatini, D.M. (2008). Cancer cell metabolism: Warburg and beyond. 

Cell 134, 703-707. 
 

Huang, W.C., Li, X., Liu, J., Lin, J., and Chung, L.W. (2012). Activation of 

androgen receptor, lipogenesis, and oxidative stress converged by SREBP-1 is 

responsible for regulating growth and progression of prostate cancer cells. Mol 

Cancer Res 10, 133-142. 
 

Hwang, W.W., Venkatasubrahmanyam, S., Ianculescu, A.G., Tong, A., Boone, C., 

and Madhani, H.D. (2003). A conserved RING finger protein required for histone 

H2B monoubiquitination and cell size control. Mol Cell 11, 261-266. 
 



189 

Igal, R.A. (2010). Stearoyl-CoA desaturase-1: a novel key player in the 

mechanisms of cell proliferation, programmed cell death and transformation to 

cancer. Carcinogenesis 31, 1509-1515. 
 

Ishii, S., Iizuka, K., Miller, B.C., and Uyeda, K. (2004). Carbohydrate response 

element binding protein directly promotes lipogenic enzyme gene transcription. 

Proc Natl Acad Sci U S A 101, 15597-15602. 
 

Jackson, R.L., Morrisett, J.D., and Gotto, A.M., Jr. (1976). Lipoprotein structure 

and metabolism. Physiol Rev 56, 259-316. 
 

Jallepalli, P.V., and Lengauer, C. (2001). Chromosome segregation and cancer: 

cutting through the mystery. Nat Rev Cancer 1, 109-117. 
 

Jang, H., Lee, G.Y., Selby, C.P., Lee, G., Jeon, Y.G., Lee, J.H., Cheng, K.K., 

Titchenell, P., Birnbaum, M.J., Xu, A., et al. (2016). SREBP1c-CRY1 signalling 

represses hepatic glucose production by promoting FOXO1 degradation during 

refeeding. Nat Commun 7, 12180. 
 

Janowski, B.A., Willy, P.J., Devi, T.R., Falck, J.R., and Mangelsdorf, D.J. (1996). 

An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. 

Nature 383, 728-731. 
 

Jensen, M.D. (1997). Lipolysis: contribution from regional fat. Annu Rev Nutr 17, 

127-139. 
 

Jeon, T.I., Esquejo, R.M., Roqueta-Rivera, M., Phelan, P.E., Moon, Y.A., 

Govindarajan, S.S., Esau, C.C., and Osborne, T.F. (2013). An SREBP-responsive 

microRNA operon contributes to a regulatory loop for intracellular lipid 

homeostasis. Cell Metab 18, 51-61. 
 

Jeong, H.W., Lee, J.W., Kim, W.S., Choe, S.S., Shin, H.J., Lee, G.Y., Shin, D., Lee, 

J.H., Choi, E.B., Lee, H.K., et al. (2010). A nonthiazolidinedione peroxisome 

proliferator-activated receptor alpha/gamma dual agonist CG301360 alleviates 

insulin resistance and lipid dysregulation in db/db mice. Molecular pharmacology 

78, 877-885. 
 

Jiang, G., and Zhang, B.B. (2003). Glucagon and regulation of glucose metabolism. 

American journal of physiology Endocrinology and metabolism 284, E671-678. 
 

Jitrapakdee, S. (2012). Transcription factors and coactivators controlling nutrient 

and hormonal regulation of hepatic gluconeogenesis. The international journal of 

biochemistry & cell biology 44, 33-45. 
 



190 

Jo, H., Choe, S.S., Shin, K.C., Jang, H., Lee, J.H., Seong, J.K., Back, S.H., and 

Kim, J.B. (2013). Endoplasmic reticulum stress induces hepatic steatosis via 

increased expression of the hepatic very low-density lipoprotein receptor. 

Hepatology 57, 1366-1377. 
 

Kaelin, W.G., Jr. (2008). The von Hippel-Lindau tumour suppressor protein: O2 

sensing and cancer. Nat Rev Cancer 8, 865-873. 
 

Kalaany, N.Y., Gauthier, K.C., Zavacki, A.M., Mammen, P.P., Kitazume, T., 

Peterson, J.A., Horton, J.D., Garry, D.J., Bianco, A.C., and Mangelsdorf, D.J. 

(2005). LXRs regulate the balance between fat storage and oxidation. Cell Metab 1, 

231-244. 
 

Karmen, A., Whyte, M., and Goodman, D.S. (1963). Fatty Acid Esterification and 

Chylomicron Formation during Fat Absorption. 1. Triglycerides and Cholesterol 

Esters. J Lipid Res 4, 312-321. 
 

Kersten, S. (2001). Mechanisms of nutritional and hormonal regulation of 

lipogenesis. EMBO Rep 2, 282-286. 
 

Kim, J., Hake, S.B., and Roeder, R.G. (2005). The human homolog of yeast BRE1 

functions as a transcriptional coactivator through direct activator interactions. Mol 

Cell 20, 759-770. 
 

Kim, J.B., Sarraf, P., Wright, M., Yao, K.M., Mueller, E., Solanes, G., Lowell, B.B., 

and Spiegelman, B.M. (1998). Nutritional and insulin regulation of fatty acid 

synthetase and leptin gene expression through ADD1/SREBP1. J Clin Invest 101, 

1-9. 
 

Kim, J.B., and Spiegelman, B.M. (1996). ADD1/SREBP1 promotes adipocyte 

differentiation and gene expression linked to fatty acid metabolism. Genes Dev 10, 

1096-1107. 
 

Kim, J.B., Spotts, G.D., Halvorsen, Y.D., Shih, H.M., Ellenberger, T., Towle, H.C., 

and Spiegelman, B.M. (1995). Dual DNA binding specificity of ADD1/SREBP1 

controlled by a single amino acid in the basic helix-loop-helix domain. Mol Cell 

Biol 15, 2582-2588. 
 

Kim, K.H., Lee, G.Y., Kim, J.I., Ham, M., Won Lee, J., and Kim, J.B. (2010). 

Inhibitory effect of LXR activation on cell proliferation and cell cycle progression 

through lipogenic activity. J Lipid Res 51, 3425-3433. 
 

Kim, K.H., Song, M.J., Yoo, E.J., Choe, S.S., Park, S.D., and Kim, J.B. (2004). 

Regulatory role of glycogen synthase kinase 3 for transcriptional activity of 

ADD1/SREBP1c. J Biol Chem 279, 51999-52006. 



191 

Kim, K.H., Yoon, J.M., Choi, A.H., Kim, W.S., Lee, G.Y., and Kim, J.B. (2009). 

Liver X receptor ligands suppress ubiquitination and degradation of LXRalpha by 

displacing BARD1/BRCA1. Mol Endocrinol 23, 466-474. 
 

Krebs, H.A. (1948). The tricarboxylic acid cycle. Harvey Lect Series 44, 165-199. 

Kuhajda, F.P. (2000). Fatty-acid synthase and human cancer: new perspectives on 

its role in tumor biology. Nutrition 16, 202-208. 
 

Kumadaki, S., Karasawa, T., Matsuzaka, T., Ema, M., Nakagawa, Y., Nakakuki, M., 

Saito, R., Yahagi, N., Iwasaki, H., Sone, H., et al. (2011). Inhibition of ubiquitin 

ligase F-box and WD repeat domain-containing 7alpha (Fbw7alpha) causes 

hepatosteatosis through Kruppel-like factor 5 (KLF5)/peroxisome proliferator-

activated receptor gamma2 (PPARgamma2) pathway but not SREBP-1c protein in 

mice. J Biol Chem 286, 40835-40846. 
 

Kumadaki, S., Matsuzaka, T., Kato, T., Yahagi, N., Yamamoto, T., Okada, S., 

Kobayashi, K., Takahashi, A., Yatoh, S., Suzuki, H., et al. (2008). Mouse Elovl-6 

promoter is an SREBP target. Biochem Biophys Res Commun 368, 261-266. 
 

Lands, W.E. (1965). Lipid Metabolism. Annu Rev Biochem 34, 313-346. 
 

Lee, G.Y., Jang, H., Lee, J.H., Huh, J.Y., Choi, S., Chung, J., and Kim, J.B. (2014a). 

PIASy-mediated sumoylation of SREBP1c regulates hepatic lipid metabolism upon 

fasting signaling. Mol Cell Biol 34, 926-938. 
 

Lee, J.H., Lee, G.Y., Jang, H., Choe, S.S., Koo, S.H., and Kim, J.B. (2014b). Ring 

finger protein20 regulates hepatic lipid metabolism through protein kinase A-

dependent sterol regulatory element binding protein1c degradation. Hepatology 60, 

844-857. 
 

Lee, Y.S., Lee, H.H., Park, J., Yoo, E.J., Glackin, C.A., Choi, Y.I., Jeon, S.H., 

Seong, R.H., Park, S.D., and Kim, J.B. (2003). Twist2, a novel ADD1/SREBP1c 

interacting protein, represses the transcriptional activity of ADD1/SREBP1c. 

Nucleic acids research 31, 7165-7174. 
 

Leung, K., and Munck, A. (1975). Peripheral actions of glucocorticoids. Annual 

review of physiology 37, 245-272. 
 

Li, L., and Kaelin, W.G., Jr. (2011). New insights into the biology of renal cell 

carcinoma. Hematol Oncol Clin North Am 25, 667-686. 
 

Li, X.D., Zhang, Y.J., and Han, J.C. (2014). Betulin inhibits lung carcinoma 

proliferation through activation of AMPK signaling. Tumour Biol 35, 11153-11158. 
 



192 

Li, Y., Xu, S., Mihaylova, M.M., Zheng, B., Hou, X., Jiang, B., Park, O., Luo, Z., 

Lefai, E., Shyy, J.Y., et al. (2011). AMPK phosphorylates and inhibits SREBP 

activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-

resistant mice. Cell metabolism 13, 376-388. 
 

Li, Z., Bowerman, S., and Heber, D. (2005). Health ramifications of the obesity 

epidemic. The Surgical clinics of North America 85, 681-701, v. 
 

Liang, G., Yang, J., Horton, J.D., Hammer, R.E., Goldstein, J.L., and Brown, M.S. 

(2002). Diminished hepatic response to fasting/refeeding and liver X receptor 

agonists in mice with selective deficiency of sterol regulatory element-binding 

protein-1c. J Biol Chem 277, 9520-9528. 
 

Linehan, W.M., and Ricketts, C.J. (2013). The metabolic basis of kidney cancer. 

Semin Cancer Biol 23, 46-55. 
 

Liscovitch, M., and Cantley, L.C. (1994). Lipid second messengers. Cell 77, 329-

334. 
 

Lu, M., and Shyy, J.Y. (2006). Sterol regulatory element-binding protein 1 is 

negatively modulated by PKA phosphorylation. American journal of physiology 

Cell physiology 290, C1477-1486. 
 

Magana, M.M., Koo, S.H., Towle, H.C., and Osborne, T.F. (2000). Different sterol 

regulatory element-binding protein-1 isoforms utilize distinct co-regulatory factors 

to activate the promoter for fatty acid synthase. The Journal of biological chemistry 

275, 4726-4733. 
 

Marchesini, G., Brizi, M., Bianchi, G., Tomassetti, S., Bugianesi, E., Lenzi, M., 

McCullough, A.J., Natale, S., Forlani, G., and Melchionda, N. (2001). 

Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes 50, 

1844-1850. 
 

Medes, G., Thomas, A., and Weinhouse, S. (1953). Metabolism of neoplastic tissue. 

IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res 13, 27-

29. 
 

Menendez, J.A., and Lupu, R. (2007). Fatty acid synthase and the lipogenic 

phenotype in cancer pathogenesis. Nat Rev Cancer 7, 763-777. 
 

Minsky, N., Shema, E., Field, Y., Schuster, M., Segal, E., and Oren, M. (2008). 

Monoubiquitinated H2B is associated with the transcribed region of highly 

expressed genes in human cells. Nat Cell Biol 10, 483-488. 
 



193 

Muoio, D.M., and Newgard, C.B. (2006). Obesity-related derangements in 

metabolic regulation. Annu Rev Biochem 75, 367-401. 
 

Naar, A.M., Beaurang, P.A., Zhou, S., Abraham, S., Solomon, W., and Tjian, R. 

(1999). Composite co-activator ARC mediates chromatin-directed transcriptional 

activation. Nature 398, 828-832. 
 

Nakamura, K., Kato, A., Kobayashi, J., Yanagihara, H., Sakamoto, S., Oliveira, 

D.V., Shimada, M., Tauchi, H., Suzuki, H., Tashiro, S., et al. (2011). Regulation of 

homologous recombination by RNF20-dependent H2B ubiquitination. Mol Cell 41, 

515-528. 
 

Nguyen, P., Leray, V., Diez, M., Serisier, S., Le Bloc'h, J., Siliart, B., and Dumon, 

H. (2008). Liver lipid metabolism. J Anim Physiol Anim Nutr (Berl) 92, 272-283. 
 

Ookhtens, M., Kannan, R., Lyon, I., and Baker, N. (1984). Liver and adipose tissue 

contributions to newly formed fatty acids in an ascites tumor. Am J Physiol 247, 

R146-153. 
 

Osborne, T.F. (2000). Sterol regulatory element-binding proteins (SREBPs): key 

regulators of nutritional homeostasis and insulin action. J Biol Chem 275, 32379-

32382. 
 

Owen, J.L., Zhang, Y., Bae, S.H., Farooqi, M.S., Liang, G., Hammer, R.E., 

Goldstein, J.L., and Brown, M.S. (2012). Insulin stimulation of SREBP-1c 

processing in transgenic rat hepatocytes requires p70 S6-kinase. Proc Natl Acad Sci 

U S A 109, 16184-16189. 
 

Pearce, J. (1983). Fatty acid synthesis in liver and adipose tissue. Proc Nutr Soc 42, 

263-271. 
 

Ponugoti, B., Kim, D.H., Xiao, Z., Smith, Z., Miao, J., Zang, M., Wu, S.Y., Chiang, 

C.M., Veenstra, T.D., and Kemper, J.K. (2010). SIRT1 deacetylates and inhibits 

SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem 285, 

33959-33970. 
 

Porstmann, T., Santos, C.R., Griffiths, B., Cully, M., Wu, M., Leevers, S., Griffiths, 

J.R., Chung, Y.L., and Schulze, A. (2008). SREBP activity is regulated by 

mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 8, 224-236. 
 

Postic, C., Dentin, R., Denechaud, P.D., and Girard, J. (2007). ChREBP, a 

transcriptional regulator of glucose and lipid metabolism. Annu Rev Nutr 27, 179-

192. 
 



194 

Punga, T., Bengoechea-Alonso, M.T., and Ericsson, J. (2006). Phosphorylation and 

ubiquitination of the transcription factor sterol regulatory element-binding protein-

1 in response to DNA binding. J Biol Chem 281, 25278-25286. 
 

Qiu, B., Ackerman, D., Sanchez, D.J., Li, B., Ochocki, J.D., Grazioli, A., 

Bobrovnikova-Marjon, E., Diehl, J.A., Keith, B., and Simon, M.C. (2015). 

HIF2alpha-Dependent Lipid Storage Promotes Endoplasmic Reticulum 

Homeostasis in Clear-Cell Renal Cell Carcinoma. Cancer discovery 5, 652-667. 
 

Rankin, E.B., Tomaszewski, J.E., and Haase, V.H. (2006). Renal cyst development 

in mice with conditional inactivation of the von Hippel-Lindau tumor suppressor. 

Cancer Res 66, 2576-2583. 
 

Rezende, R.B., Drachenberg, C.B., Kumar, D., Blanchaert, R., Ord, R.A., Ioffe, 

O.B., and Papadimitriou, J.C. (1999). Differential diagnosis between monomorphic 

clear cell adenocarcinoma of salivary glands and renal (clear) cell carcinoma. Am J 

Surg Pathol 23, 1532-1538. 
 

Ricketts, C.J., Morris, M.R., Gentle, D., Brown, M., Wake, N., Woodward, E.R., 

Clarke, N., Latif, F., and Maher, E.R. (2012). Genome-wide CpG island 

methylation analysis implicates novel genes in the pathogenesis of renal cell 

carcinoma. Epigenetics 7, 278-290. 
 

Sakai, J., Rawson, R.B., Espenshade, P.J., Cheng, D., Seegmiller, A.C., Goldstein, 

J.L., and Brown, M.S. (1998). Molecular identification of the sterol-regulated 

luminal protease that cleaves SREBPs and controls lipid composition of animal 

cells. Mol Cell 2, 505-514. 
 

Saltiel, A.R., and Kahn, C.R. (2001). Insulin signalling and the regulation of 

glucose and lipid metabolism. Nature 414, 799-806. 
 

Santos, C.R., and Schulze, A. (2012). Lipid metabolism in cancer. The FEBS 

journal 279, 2610-2623. 
 

Schaefer, E.J., Eisenberg, S., and Levy, R.I. (1978). Lipoprotein apoprotein 

metabolism. J Lipid Res 19, 667-687. 
 

Schroepfer, G.J., Jr. (1981). Sterol biosynthesis. Annu Rev Biochem 50, 585-621. 
 

Schulze, A., and Harris, A.L. (2012). How cancer metabolism is tuned for 

proliferation and vulnerable to disruption. Nature 491, 364-373. 
 

Seo, J.B., Moon, H.M., Kim, W.S., Lee, Y.S., Jeong, H.W., Yoo, E.J., Ham, J., 

Kang, H., Park, M.G., Steffensen, K.R., et al. (2004a). Activated liver X receptors 



195 

stimulate adipocyte differentiation through induction of peroxisome proliferator-

activated receptor gamma expression. Molecular and cellular biology 24, 3430-

3444. 
 

Seo, J.B., Moon, H.M., Noh, M.J., Lee, Y.S., Jeong, H.W., Yoo, E.J., Kim, W.S., 

Park, J., Youn, B.S., Kim, J.W., et al. (2004b). Adipocyte determination- and 

differentiation-dependent factor 1/sterol regulatory element-binding protein 1c 

regulates mouse adiponectin expression. The Journal of biological chemistry 279, 

22108-22117. 
 

Shabb, J.B. (2001). Physiological substrates of cAMP-dependent protein kinase. 

Chemical reviews 101, 2381-2411. 
 

Shao, W., and Espenshade, P.J. (2012). Expanding roles for SREBP in metabolism. 

Cell Metab 16, 414-419. 
 

Sharman, D.F. (1973). The catabolism of catecholamines. Recent studies. British 

medical bulletin 29, 110-115. 
 

Shema, E., Kim, J., Roeder, R.G., and Oren, M. (2011). RNF20 inhibits TFIIS-

facilitated transcriptional elongation to suppress pro-oncogenic gene expression. 

Mol Cell 42, 477-488. 
 

Shema, E., Tirosh, I., Aylon, Y., Huang, J., Ye, C., Moskovits, N., Raver-Shapira, 

N., Minsky, N., Pirngruber, J., Tarcic, G., et al. (2008). The histone H2B-specific 

ubiquitin ligase RNF20/hBRE1 acts as a putative tumor suppressor through 

selective regulation of gene expression. Genes Dev 22, 2664-2676. 
 

Shen, C., and Kaelin, W.G., Jr. (2013). The VHL/HIF axis in clear cell renal 

carcinoma. Semin Cancer Biol 23, 18-25. 
 

Shimano, H. (2001). Sterol regulatory element-binding proteins (SREBPs): 

transcriptional regulators of lipid synthetic genes. Prog Lipid Res 40, 439-452. 
 

Shimano, H., Horton, J.D., Shimomura, I., Hammer, R.E., Brown, M.S., and 

Goldstein, J.L. (1997). Isoform 1c of sterol regulatory element binding protein is 

less active than isoform 1a in livers of transgenic mice and in cultured cells. J Clin 

Invest 99, 846-854. 
 

Shimomura, I., Shimano, H., Horton, J.D., Goldstein, J.L., and Brown, M.S. (1997). 

Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element 

binding protein-1 in human and mouse organs and cultured cells. J Clin Invest 99, 

838-845. 
 



196 

Soyal, S.M., Nofziger, C., Dossena, S., Paulmichl, M., and Patsch, W. (2015). 

Targeting SREBPs for treatment of the metabolic syndrome. Trends Pharmacol Sci 

36, 406-416. 
 

Spiegel, S., Foster, D., and Kolesnick, R. (1996). Signal transduction through lipid 

second messengers. Current opinion in cell biology 8, 159-167. 
 

Sundqvist, A., Bengoechea-Alonso, M.T., Ye, X., Lukiyanchuk, V., Jin, J., Harper, 

J.W., and Ericsson, J. (2005). Control of lipid metabolism by phosphorylation-

dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). 

Cell Metab 1, 379-391. 
 

Tang, J.J., Li, J.G., Qi, W., Qiu, W.W., Li, P.S., Li, B.L., and Song, B.L. (2011). 

Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and 

insulin resistance and reduces atherosclerotic plaques. Cell Metab 13, 44-56. 
 

Taniguchi, C.M., Emanuelli, B., and Kahn, C.R. (2006). Critical nodes in signalling 

pathways: insights into insulin action. Nat Rev Mol Cell Biol 7, 85-96. 
 

Tarcic, O., Pateras, I.S., Cooks, T., Shema, E., Kanterman, J., Ashkenazi, H., 

Boocholez, H., Hubert, A., Rotkopf, R., Baniyash, M., et al. (2016). RNF20 Links 

Histone H2B Ubiquitylation with Inflammation and Inflammation-Associated 

Cancer. Cell Rep 14, 1462-1476. 
 

Tong, Y., and Eigler, T. (2009). Transcriptional targets for pituitary tumor-

transforming gene-1. J Mol Endocrinol 43, 179-185. 
 

Tong, Y., Tan, Y., Zhou, C., and Melmed, S. (2007). Pituitary tumor transforming 

gene interacts with Sp1 to modulate G1/S cell phase transition. Oncogene 26, 

5596-5605. 
 

Tontonoz, P., Kim, J.B., Graves, R.A., and Spiegelman, B.M. (1993). ADD1: a 

novel helix-loop-helix transcription factor associated with adipocyte determination 

and differentiation. Mol Cell Biol 13, 4753-4759. 
 

Valera, V.A., and Merino, M.J. (2011). Misdiagnosis of clear cell renal cell 

carcinoma. Nat Rev Urol 8, 321-333. 
 

Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding 

the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 

1029-1033. 
 

Vlotides, G., Eigler, T., and Melmed, S. (2007). Pituitary tumor-transforming gene: 

physiology and implications for tumorigenesis. Endocr Rev 28, 165-186. 
 



197 

von Roemeling, C.A., Marlow, L.A., Wei, J.J., Cooper, S.J., Caulfield, T.R., Wu, K., 

Tan, W.W., Tun, H.W., and Copland, J.A. (2013). Stearoyl-CoA desaturase 1 is a 

novel molecular therapeutic target for clear cell renal cell carcinoma. Clin Cancer 

Res 19, 2368-2380. 
 

Walker, A.K., Jacobs, R.L., Watts, J.L., Rottiers, V., Jiang, K., Finnegan, D.M., 

Shioda, T., Hansen, M., Yang, F., Niebergall, L.J., et al. (2011). A conserved 

SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. 

Cell 147, 840-852. 
 

Walker, A.K., Yang, F., Jiang, K., Ji, J.Y., Watts, J.L., Purushotham, A., Boss, O., 

Hirsch, M.L., Ribich, S., Smith, J.J., et al. (2010). Conserved role of SIRT1 

orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. 

Genes Dev 24, 1403-1417. 
 

Wang, C., Xu, C., Sun, M., Luo, D., Liao, D.F., and Cao, D. (2009). Acetyl-CoA 

carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis. Biochem 

Biophys Res Commun 385, 302-306. 
 

Wang, X., Briggs, M.R., Hua, X., Yokoyama, C., Goldstein, J.L., and Brown, M.S. 

(1993). Nuclear protein that binds sterol regulatory element of low density 

lipoprotein receptor promoter. II. Purification and characterization. J Biol Chem 

268, 14497-14504. 
 

Wang, X., Sato, R., Brown, M.S., Hua, X., and Goldstein, J.L. (1994). SREBP-1, a 

membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 

77, 53-62. 
 

Wang, Y., Viscarra, J., Kim, S.J., and Sul, H.S. (2015). Transcriptional regulation of 

hepatic lipogenesis. Nat Rev Mol Cell Biol 16, 678-689. 
 

Williams, K.J., Argus, J.P., Zhu, Y., Wilks, M.Q., Marbois, B.N., York, A.G., 

Kidani, Y., Pourzia, A.L., Akhavan, D., Lisiero, D.N., et al. (2013). An essential 

requirement for the SCAP/SREBP signaling axis to protect cancer cells from 

lipotoxicity. Cancer Res 73, 2850-2862. 
 

Wondergem, B., Zhang, Z., Huang, D., Ong, C.K., Koeman, J., Hof, D.V., Petillo, 

D., Ooi, A., Anema, J., Lane, B., et al. (2012). Expression of the PTTG1 oncogene 

is associated with aggressive clear cell renal cell carcinoma. Cancer Res 72, 4361-

4371. 
 

Wood, A., Krogan, N.J., Dover, J., Schneider, J., Heidt, J., Boateng, M.A., Dean, K., 

Golshani, A., Zhang, Y., Greenblatt, J.F., et al. (2003). Bre1, an E3 ubiquitin ligase 



198 

required for recruitment and substrate selection of Rad6 at a promoter. Mol Cell 11, 

267-274. 
 

Yamamoto, T., Shimano, H., Inoue, N., Nakagawa, Y., Matsuzaka, T., Takahashi, A., 

Yahagi, N., Sone, H., Suzuki, H., Toyoshima, H., et al. (2007). Protein kinase A 

suppresses sterol regulatory element-binding protein-1C expression via 

phosphorylation of liver X receptor in the liver. The Journal of biological chemistry 

282, 11687-11695. 
 

Yang, T., Espenshade, P.J., Wright, M.E., Yabe, D., Gong, Y., Aebersold, R., 

Goldstein, J.L., and Brown, M.S. (2002). Crucial step in cholesterol homeostasis: 

sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates 

retention of SREBPs in ER. Cell 110, 489-500. 
 

Yellaturu, C.R., Deng, X., Cagen, L.M., Wilcox, H.G., Mansbach, C.M., 2nd, 

Siddiqi, S.A., Park, E.A., Raghow, R., and Elam, M.B. (2009). Insulin enhances 

post-translational processing of nascent SREBP-1c by promoting its 

phosphorylation and association with COPII vesicles. J Biol Chem 284, 7518-7532. 
 

Yellaturu, C.R., Deng, X., Cagen, L.M., Wilcox, H.G., Park, E.A., Raghow, R., and 

Elam, M.B. (2005). Posttranslational processing of SREBP-1 in rat hepatocytes is 

regulated by insulin and cAMP. Biochemical and biophysical research 

communications 332, 174-180. 
 

Yu, R., Heaney, A.P., Lu, W., Chen, J., and Melmed, S. (2000). Pituitary tumor 

transforming gene causes aneuploidy and p53-dependent and p53-independent 

apoptosis. J Biol Chem 275, 36502-36505. 
 

Zechner, R., Strauss, J.G., Haemmerle, G., Lass, A., and Zimmermann, R. (2005). 

Lipolysis: pathway under construction. Curr Opin Lipidol 16, 333-340. 
 

Zhang, Y., Yin, L., and Hillgartner, F.B. (2003). SREBP-1 integrates the actions of 

thyroid hormone, insulin, cAMP, and medium-chain fatty acids on ACCalpha 

transcription in hepatocytes. Journal of lipid research 44, 356-368. 
 

Zhao, X., Feng, D., Wang, Q., Abdulla, A., Xie, X.J., Zhou, J., Sun, Y., Yang, E.S., 

Liu, L.P., Vaitheesvaran, B., et al. (2012). Regulation of lipogenesis by cyclin-

dependent kinase 8-mediated control of SREBP-1. The Journal of clinical 

investigation 122, 2417-2427. 
 

Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, 

J., Doebber, T., Fujii, N., et al. (2001). Role of AMP-activated protein kinase in 

mechanism of metformin action. J Clin Invest 108, 1167-1174. 



199 

국문 초록 

 

지방대사는 에너지 항상성, 싞호젂달 경로, 세포막 구조를 

조젃함으로써 세포의 성장과 생졲에 중요핚 역핛을 수행핚다. 그러므로 

지방대사의 이상 조젃은 대사성 질환 및 종양 형성과 밀접하게 연관되어 

있다. 간에서 다량으로 발현하는 젂사인자인 sterol regulatory element-

binding protein 1c (SREPB1c)는 인슐린에 의해 활성화되어 지방대사물 

생합성을 촉짂하는 역핛을 관장핚다. 반면 공복시 SREBP1c는 

억제됨으로써 불필요핚 지방대사물의 생합성을 제어하는데 그에 대핚 

기젂 연구가 불분명핚 상황이다. 이와 함께 암세포에서 SREBP1c의 

활성화는 종양의 발생, 짂행 및 젂이를 촉짂함으로써 궁극적으로 환자의 

낮은 생졲 예후와 연관되어 있다. 그러나 암세포에서 SREBP1c가 어떻게 

지방대사물의 축적과 종양 발생을 촉짂하는지에 대해서는 분자수준의 

연구가 부족핚 상황이다. 

본 연구를 통해 SREBP1c 젂사인자의 유비퀴틴화를 통핚 분해를 

매개하는 E3 ubiquitin ligase로 ring finger protein 20 (RNF20)을 동정하였다. 

간세포에서 RNF20는 단식 조건에서 활성화되는 protein kinase A (PKA) 

싞호젂달을 거쳐 그 발현이 증가하며, 이로 인해 SREBP1c 활성 및 

지방대사물 생합성 프로그램이 통제되는 새로운 기젂을 규명하였다. 

나아가 SREBP1c와 지방대사물 생합성이 증가되어 있는 db/db 생쥐 

모델의 간 조직 특이적 RNF20 과발현은 SREBP1c와 지방대사물 생합성 
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관련인자들의 발현 감소를 통하여 궁극적으로 지방간을 개선시켰다. 

이상의 결과들을 통하여 공복 시 RNF20가 SREBP1c를 제거함으로써 

불필요핚 지방대사물 생합성이 억제되는 지방대사 항상성 조젃 기젂을 

새롭게 제시하였다. 

과도핚 지방대사물 축적이 동반되는 싞장암에서 RNF20는 

억제되며 동시에 SREBP1c는 활성화됨을 관찰하였다. 싞장암 종양 

조직에서 RNF20 발현이 감소되어 있지만 지방대사물 생합성 관련 

유젂자의 발현은 증가되어 있으며, RNF20 발현이 낮게 관찰되는 싞장암 

환자의 낮은 생졲 예후를 발견하였다. 싞장암 세포주와 이종 이식 실험 

결과, RNF20 과발현에 의해 SREBP1c가 억제됨으로써 지방대사물 

생합성과 세포증식이 감소함을 관찰하였다. 본 연구를 통해 pituitary 

tumor-transforming gene 1 (PTTG1)을 SREBP1c의 새로운 표적 유젂자로 

동정하였으며, 싞장암 세포에서 SREBP1c에 의핚 PTTG1 유도가 

세포주기 조젃에 있어 중요핚 역핛을 수행함을 밝혔다. 또핚, 싞장암 

세포에서 유젂자 넉다운과 SREBP1c 억제 약물인 베툴린은 SREBP1c의 

저해뿐 아니라 PTTG1과 세포주기 조젃 유젂자들의 발현을 

감소시킴으로써 세포증식을 억제함을 관찰하였다. 

본 연구를 통하여 RNF20-SREBP1c 싞호젂달 경로는 지방대사물 

생합성 및 세포주기를 조젃함으로써 지방대사 항상성 유지와 싞장암 

종양 형성 과정에도 깊이 연관되어 있음을 규명하였다. 그러므로 

RNF20는 SREBP1c 제어를 통하여 지방대사 및 세포주기 조젃에 중요핚 
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기능을 담당함으로써 대사성 질환 및 특정 종양 치료제 발굴을 위핚 

표적으로 제안핛 수 있다. 
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