133 research outputs found

    ๊ฒฉ์ž ๋ณผ์ธ ๋งŒ ๋ฒ•์„ ์ด์šฉํ•œ ๊ณ ๋ถ„์ž ์ „ํ•ด์งˆ๋ง‰ ์—ฐ๋ฃŒ์ „์ง€์˜ ๊ธฐ์ฒดํ™•์‚ฐ์ธต์˜ ์—ด ๋ฐ ๋ฌผ์งˆ ์ „๋‹ฌ ํŠน์„ฑ์— ๋Œ€ํ•œ ์ˆ˜์น˜ํ•ด์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2023. 2. ๊น€์ฐฌ์ค‘.๊ณ ๋ถ„์ž ์ „ํ•ด์งˆ๋ง‰ ์—ฐ๋ฃŒ์ „์ง€(PEMFC)๋Š” ์นœํ™˜๊ฒฝ์ ์ด๊ณ , ๋†’์€ ํšจ์œจ๊ณผ ๋†’์€ ์ถœ๋ ฅ๋ฐ€๋„๋ฅผ ๋ ๋ฉฐ, ์ž‘๋™ ์˜จ๋„ ๋˜ํ•œ ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ๋‹ค๋Š” ์žฅ์ ์„ ๊ฐ–๋Š”๋‹ค. ์ด๋Ÿฌํ•œ ์žฅ์ ์œผ๋กœ ์ธํ•ดPEMFC๋Š” ์šด์†ก์ˆ˜๋‹จ ๋ฐ ๊ณ ์ •์‹ ๋ฐœ์ „์†Œ ๊ทธ๋ฆฌ๊ณ  ํœด๋Œ€์šฉ ์ „๋ ฅ๊ณผ ๊ฐ™์ด ๋งŽ์€ ์‘์šฉ ๋ถ„์•ผ์—์„œ ๊ฐ€์žฅ ์ด‰๋ง๋ฐ›๋Š” ๋Œ€์ฒด ์—๋„ˆ์ง€์›์œผ๋กœ ๊ฐ๊ด‘๋ฐ›๊ณ  ์žˆ๋‹ค. ์ง€๋‚œ ์ˆ˜์‹ญ ๋…„ ๋™์•ˆ PEMFC ์„ฑ๋Šฅ์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋˜์—ˆ์œผ๋ฉฐ, ์…€ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒํ•˜๊ณ  ํšจ์œจ์ ์ธ ์…€ ์ž‘๋™์„ ์œ„ํ•ด์„  ๊ฐ ์…€ ๊ตฌ์„ฑ์š”์†Œ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์ „๊ธฐํ™”ํ•™์  ํ˜„์ƒ์„ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์ด ํ•„์ˆ˜์ ์ด๋‹ค. ์…€ ์ž‘๋™ ์ค‘ ์ „๊ธฐํ™”ํ•™๋ฐ˜์‘์œผ๋กœ ๋ฐœ์ƒํ•˜๋Š” ์ˆ˜์ฆ๊ธฐ์™€ ์—ด์€ ๊ธฐ์ฒดํ™•์‚ฐ์ธต(GDL)์„ ํ†ตํ•ด ๊ธฐ์ฒด ์ฑ„๋„(GC)๋กœ ๋น ์ ธ๋‚˜๊ฐ€๊ธฐ ๋•Œ๋ฌธ์— ์…€ ๊ตฌ์„ฑ์š”์†Œ ์ค‘์—์„œ GDL์€ PEMFC์˜ ์„ฑ๋Šฅ์„ ์ขŒ์šฐํ•˜๋Š” ๋งค์šฐ ์ค‘์š”ํ•œ ์š”์†Œ๋ผ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ณผ๋„ํ•˜๊ฒŒ ์ƒ์„ฑ๋œ ์ˆ˜๋ถ„์€ GDL๋ฅผ ์นจ์ˆ˜์‹œ์ผœ PEMFC ์„ฑ๋Šฅ์— ์•…์˜ํ–ฅ์„ ๋ฏธ์น˜๋ฉฐ, ๊ณผ์—ด๋œ ์˜จ๋„๋Š” ํƒˆ์ˆ˜๋ฅผ ์œ ๋ฐœํ•˜์—ฌ ์„ฑ๋Šฅ์ €ํ•˜๋ฅผ ์ผ์œผํ‚จ๋‹ค. ๋ฐ˜๋Œ€๋กœ ๊ฑด์กฐํ•œ ์ƒํƒœ๋Š” ์ด์˜จ ์ „๋„๋„์˜ ํšจ์œจ์„ ๋‚ฎ์ถ”๋ฉฐ, ๋‚ฎ์€ ์˜จ๋„๋Š” ๋ฐ˜์‘ ์†๋„๋ฅผ ๋Š๋ฆฌ๊ฒŒ ํ•˜๊ณ  ํฌํ™”์••๋ ฅ์„ ๋‚ฎ์ถ”์–ด ์ˆ˜์ฆ๊ธฐ ์‘๊ฒฐ์„ ์œ ๋ฐœํ•œ๋‹ค. ๋”ฐ๋ผ์„œ, PEMFC์˜ ๋” ๋‚˜์€ ์„ฑ๋Šฅ๊ณผ ํšจ์œจ์„ ์–ป๊ธฐ ์œ„ํ•ด์„  GDL ๋‚ด๋ถ€์˜ ์ ์ ˆํ•œ ์—ด ๋ฐ ์ˆ˜๋ถ„ ๊ด€๋ฆฌ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” GDL์˜ ๋ฌผ์งˆ์ „๋‹ฌ ํŠน์„ฑ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์„ฑ๋ถ„ ๋‹ค์ƒ(MCMP) ๊ฒฉ์ž ๋ณผ์ธ ๋งŒ๋ฒ•(LBM)์„ ์ด์šฉํ•˜์—ฌ GDL๋‚ด๋ถ€๋กœ์˜ ์•ก์ƒ์ˆ˜๋ถ„์˜ ์นจ์ž… ๊ณผ์ •์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ์ด๋ฐฉ์„ฑ ํŠน์ง•์„ ๋ ๋Š”GDL์˜ ํ˜•์ƒํ•™์  ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜๊ธฐ์œ„ํ•ด ํ™•๋ฅ ์  ์žฌ์ƒ์„ฑ ๋ฐฉ๋ฒ•์œผ๋กœ ์žฌ๊ตฌ์„ฑ๋œ 3์ฐจ์› ํ˜•์ƒ์ด ์ ์šฉ๋˜์—ˆ์œผ๋ฉฐ, ํˆฌ๊ณผ์œจ ํ•ด์„์„ ํ†ตํ•ด ์žฌ๊ตฌ์„ฑ๋œ GDLํ˜•์ƒ์— ๋Œ€ํ•œ ์ด๋ฐฉ์„ฑ ํŠน์ง•์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ์ด ๋„ค ๊ฐ€์ง€์˜ ์„ฌ์œ  ๊ทน๊ฐ๋ฒ”์œ„๋ฅผ ์ฑ„ํƒํ•˜์—ฌ ์•ก์ƒ์ˆ˜๋ถ„ ์ „๋‹ฌ์— ๋Œ€ํ•œ ํƒ„์†Œ ์„ฌ์œ  ๋ฐฐํ–ฅ์˜ ์˜ํ–ฅ์„ ๊ทœ๋ช…ํ•˜์˜€๊ณ , ํƒ„์†Œ ์„ฌ์œ ์— ๋Œ€ํ•œ ์ –์Œ์„ฑ์€ ์†Œ์ˆ˜์„ฑ ๋ฌผ์งˆ๋กœ ๊ท ์ผํ•˜๊ฒŒ ๋„ํฌ๋œ ์ƒํƒœ๋กœ ๊ฐ€์ •๋˜์–ด 140ยฐ์˜ ์ ‘์ด‰๊ฐ์ด ์ ์šฉ๋˜์—ˆ๋‹ค. ์•ก์ƒ์ˆ˜๋ถ„์˜ ์นจํˆฌ ํŒจํ„ด์€ ์†Œ์ˆ˜์„ฑ ์ –์Œ์„ฑ์œผ๋กœ ์ธํ•ด ๋ชจ์„ธ๊ด€ ํ•‘๊ฑฐ๋ง(capillary fingering)์˜ ์œ ๋™ ํ˜•ํƒœ๋ฅผ ๋‚˜ํƒ€๋ƒˆ์œผ๋ฉฐ, GDL ๋‚ด๋ถ€์— ํ˜•์„ฑ๋˜๋Š” ์•ก์ƒ์ˆ˜๋ถ„์˜ ๋™์  ๊ฑฐ๋™๊ณผ ํ‰๊ท  ์ˆ˜๋ถ„ ํฌํ™”๋„๋Š” ๋ชจ๋“  ์กฐ๊ฑด์—์„œ ๊ฑฐ์˜ ์œ ์‚ฌํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚ฌ๋‹ค. ํƒ„์†Œ ์„ฌ์œ ์˜ ๊ทน๊ฐ์„ ์ œ์™ธํ•œ ๋‚˜๋จธ์ง€ ํ˜•์ƒํ•™์  ์กฐ๊ฑด๊ณผ ์ –์Œ์„ฑ์€ ๋™์ผํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์•ก์ƒ ์นจํˆฌ๊ณผ์ •์—์„œ ํ˜•์„ฑ๋˜๋Š” ์ฃผ๋ฅ˜๋Š” ํ†ต๊ณผ๋ฉด(through-plane) ๋ฐฉํ–ฅ์˜ ๋ชจ์„ธ๊ด€์•• ์ฐจ์ด์— ๋” ํฐ ์˜ํ–ฅ์„ ๋ฐ›๋Š” ๊ฒƒ์œผ๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ์ด์™€ ํ•จ๊ป˜ ์•ก์ƒ์ˆ˜๋ถ„์ด GDL์„ ํ†ต๊ณผํ•œ ์ดํ›„ GDL ํ‘œ๋ฉด์— ํ˜•์„ฑํ•˜๋Š” ์•ก์ƒ์ˆ˜๋ถ„ ๋ฌผ๋ฐฉ์šธ์˜ ๊ฒ‰๋ณด๊ธฐ ๊ฐ๋„๋ฅผ ์ธก์ •ํ•˜์˜€๋‹ค. ๋ชจ๋“  ๊ฒฝ์šฐ์—์„œ ์„ฌ์œ ์— ์ ์šฉ๋œ ์ ‘์ด‰๊ฐ๋ณด๋‹ค ๋‚ฎ์€ ๊ฐ๋„๋กœ ๊ฒ‰๋ณด๊ธฐ ๊ฐ๋„๊ฐ€ ํ˜•์„ฑ๋˜๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ•˜์˜€๊ณ , ์ด๋Š” ์„ฌ์œ  ๋ฐฐํ–ฅ์— ๋”ฐ๋ผ ํ˜•์„ฑ๋˜๋Š” GDL ํƒ„์†Œ์„ฌ์œ ์˜ ํ‘œ๋ฉด ๋ณ€ํ™”์— ์˜ํ•œ ์˜ํ–ฅ์œผ๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ๋”๋ถˆ์–ด ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” GDL์˜ ์—ด์ „๋‹ฌ ํŠน์„ฑ์„ ํŒŒ์•…ํ•˜๊ธฐ์œ„ํ•ด ์œ ํšจ ์—ด์ „๋„์œจ(ETC)์„ ์กฐ์‚ฌํ•˜์˜€์œผ๋ฉฐ, ์ด์™€ ํ•จ๊ป˜ ETC์— ๋Œ€ํ•œ ์•ก์ƒ์ˆ˜๋ถ„ ํ•จ๋Ÿ‰์˜ ์˜ํ–ฅ์„ ํ•จ๊ป˜ ๋ถ„์„ํ•˜์˜€๋‹ค. ์—ด์ „๋‹ฌ๊ณผ ์œ ๋™ํ˜„์ƒ์„ ๋™์‹œ์— ํ•ด์„ํ•˜๊ธฐ ์œ„ํ•ด ์—ดํ•ด์„๋ชจ๋ธ๊ณผ ์œ ๋™ํ•ด์„๋ชจ๋ธ์ด ์–‘๋ฐฉํ–ฅ์œผ๋กœ ๊ฒฐํ•ฉ๋œ MCMP LBM๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์—ดํ•ด์„์—์„œ๋„ 3์ฐจ์› GDLํ˜•์ƒ์ด ์ ์šฉ๋˜์—ˆ์œผ๋ฉฐ, GDL์˜ ๊ฑด์กฐํ•œ ์ƒํƒœ์™€ ์Šต์œคํ•œ ์ƒํƒœ์— ๋Œ€ํ•ด ๊ฐ๊ฐ ์กฐ์‚ฌ๋˜์—ˆ๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ ์Šต์œคํ•œ ์ƒํƒœ์— ๋Œ€ํ•ด์„  ์นœ์ˆ˜์„ฑ์˜ ์ ‘์ด‰๊ฐ 80ยฐ์™€ ์†Œ์ˆ˜์„ฑ์˜ ์ ‘์ด‰๊ฐ 140ยฐ๊ฐ€ ์ ์šฉ๋˜์—ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์—ด์ „๋„์— ๋”ฐ๋ฅธ ์˜จ๋„ ๋ถ„ํฌ์™€ ๋ฌผ ์„ฑ๋ถ„์˜ ์‘์ง‘ ๋ฐ ๋ถ„๋ฆฌํ˜„์ƒ์˜ ์‹œ๊ฐ„์  ๋ณ€ํ™”๋ฅผ ์ œ์‹œํ•˜๋ฉฐ, GDL์˜ ETC๋Š” GDL๋‚ด๋ถ€์— ํ˜•์„ฑ๋˜๋Š” ์•ก์ƒ์ˆ˜๋ถ„ ํ•จ๋Ÿ‰๊ณผ ๋ถ„ํฌ์— ๋งŽ์€ ์˜ํ–ฅ์„ ๋ฐ›๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ดˆ๊ธฐ ๋ฌผ์„ฑ๋ถ„์˜ ์งˆ๋Ÿ‰๋ถ„์œจ์ด ๋†’์„์ˆ˜๋ก GDL์˜ ์•ก์ƒ์ˆ˜๋ถ„ ํ•จ๋Ÿ‰์ด ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ์•ก์ƒ์ˆ˜๋ถ„ ๋ฐฉ์šธ์€ ํƒ„์†Œ ์„ฌ์œ  ์‚ฌ์ด๋ฅผ ์—ฐ๊ฒฐํ•˜๋Š” ๋ฐ”์ธ๋” ์—ญํ• ์„ ํ•˜๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ•˜์˜€์œผ๋ฉฐ, ์•ก์ƒ์ˆ˜๋ถ„์˜ ์ „๋„๋„๋Š” ๊ณต๊ธฐ์˜ ์ „๋„๋„๋ณด๋‹ค ๋†’๊ธฐ ๋•Œ๋ฌธ์— ์•ก์ƒ ์ˆ˜๋ถ„์ด ๋” ๋งŽ์ด ๋ถ„ํฌ๋ ์ˆ˜๋ก ๋†’์€ ETC๊ฐ’์„ ๋ ๋Š” ๊ฒƒ์œผ๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ํƒ„์†Œ ์„ฌ์œ ์˜ ์ –์Œ์„ฑ์ด ๋™์ผํ•œ ๊ฒฝ์šฐ GDL๋‚ด๋ถ€์˜ ์•ก์ƒ์ˆ˜๋ถ„ ํ•จ๋Ÿ‰์€ ์œ ์‚ฌํ•˜์˜€์œผ๋ฉฐ, ์ ˆ๋Œ€์ ์ธ ์•ก์ƒ์ˆ˜๋ถ„์˜ ํ•จ๋Ÿ‰๋ณด๋‹ค ์•ก์ƒ์ˆ˜๋ถ„์˜ ๋ถ„ํฌ๋„๊ฐ€ GDL์˜ ETC๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๋ฐ ๋” ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ๊ฒƒ์„ ๊ทœ๋ช…ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋ณธ ๋…ผ๋ฌธ์€ ์„ฌ์œ  ๋ฐฐํ–ฅ์„ ๊ณ ๋ คํ•˜์—ฌ ์žฌ๊ตฌ์„ฑ๋œ 3์ฐจ์› GDLํ˜•์ƒ์„ ์ ์šฉํ•˜์—ฌ ์ข…๋ž˜์˜ 2์ฐจ์› ํ˜•์ƒ์—์„œ ํ™•์ธํ•  ์ˆ˜ ์—†์—ˆ๋˜GDL์˜ ๋ฌผ์งˆ ์ „๋‹ฌ์˜ ์ด๋ฐฉ์„ฑ ํŠน์ง•์„ ์ž˜ ๋‚˜ํƒ€๋‚ด๊ณ  ์žˆ์œผ๋ฉฐ, GDL ๋‚ด๋ถ€์˜ ํ˜•์ƒํ•™์  ์กฐ๊ฑด์ด์™ธ์— GC์™€ GDL์˜ ๊ฒฝ๊ณ„๋ฉด์˜ ํƒ„์†Œ์„ฌ์œ  ํ˜•์ƒ์— ๋Œ€ํ•œ ์ค‘์š”์„ฑ ๋˜ํ•œ ์ œ์‹œํ•œ๋‹ค. ์ด์™€ ๋”๋ถˆ์–ด ๋ณธ ๋…ผ๋ฌธ์€ GDL์˜ ์—ด์ „๋‹ฌ ๊ณผ์ • ํ•ด์„์—์„œ ์˜จ๋„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์•ก์ƒ์ˆ˜๋ถ„์˜ ์ƒ๋ณ€ํ™”๋Š” ๊ณ ๋ คํ•˜์ง€ ์•Š์ง€๋งŒ, ์ด์— ์ค€ํ•˜๋Š” ์•ก์ƒ์ˆ˜๋ถ„์˜ ์ƒ๋ถ„๋ฆฌ ํ˜„์ƒ์„ ํฌํ•จํ•˜๊ณ  ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ ๋ณธ ๋…ผ๋ฌธ์—์„œ ๊ฐœ๋ฐœ๋œ ํ•ด์„๋ชจ๋ธ์€ ๊ธฐ์กด์˜ MCMP LBM๋ชจ๋ธ์—์„œ ํ•  ์ˆ˜ ์—†์—ˆ๋˜ ๋‹ค์„ฑ๋ถ„์—์„œ์˜ ์—ดํ•ด์„๊ณผ ์œ ์ฒด์˜ ์ƒ๋ถ„๋ฆฌ ํ•ด์„์„ ๋™์‹œ์— ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” framework์„ ์ œ๊ณตํ•œ๋‹ค.Polymer electrolyte membrane fuel cell (PEMFC) has the advantages of eco-friendliness, high efficiency, high power density, and relatively low operating temperature. These advantages make PEMFC the most promising alternative energy source for many applications, such as transportation, stationary power plants, and portable power. Research has been conducted to improve PEMFC performance over the past few decades, and it is essential to understand the electrochemical phenomena occurring in each cell component to improve cell performance and operate efficiently. Since water vapor and heat generated by electrochemical reactions during cell operation escape to the gas channel (GC) through the gas diffusion layer (GDL), GDL is a crucial component that determines the performance of the PEMFC. Excessive liquid water floods the GDL and adversely affects PEMFC performance, and overheated temperature causes dehydration, resulting in performance degradation. Conversely, a dry condition lowers the efficiency of ion conductivity, and a lower temperature slows the reaction rate and lowers the saturation pressure, causing water vapor condensation. Thus, proper water and thermal management in the GDL are required to achieve better performance and efficiency of PEMFC. In this dissertation, to analyze the mass transfer characteristics of GDL, the invasion process of liquid water into GDL was investigated using the multicomponent multiphase (MCMP) lattice Boltzmann method (LBM). A three-dimensional (3D) structure regenerated by a stochastic reconstruction method was applied to consider the morphological characteristics of anisotropy GDL. The anisotropic characteristics of the reconstructed GDL were verified through permeability analysis. A total of four fiber polar angle ranges were adopted to investigate the effect of carbon fiber orientation on liquid water transportation, and the wettability of carbon fiber was assumed to be uniformly coated with a hydrophobic material, so a contact angle of 140ยฐ was applied. The invasion pattern of liquid water showed capillary fingering flow due to the hydrophobic wettability. The dynamic behavior and average water saturation formed inside the GDL were almost similar in all conditions. Since the wettability and morphological conditions, except for the polar angle, were identical, it was identified that the preferential path formed during the liquid water transportation was more affected by the capillary pressure difference in the through-plane direction. In addition, the apparent angle of the liquid water droplet formed on the surface of the GDL after the liquid water broke through the GDL was measured. In all cases, it was observed that the apparent angle was formed lower than the contact angle applied to the carbon fiber, which was indicated as an effect of the surface variation of the GDL carbon fiber formed according to the fiber orientation. Furthermore, in this dissertation, effective thermal conductivity (ETC) was investigated to understand the heat transfer characteristics of GDL, and the effect of liquid water content on ETC was also considered. The MCMP LBM model, in which the thermal and flow models were combined in two-way, was developed to conduct heat transfer and fluid flow simultaneously. The 3D GDL microstructure was also applied to the thermal model, and the dry and humidified conditions of the GDL were investigated, respectively. Additionally, a hydrophilic contact angle of 80ยฐ and a hydrophobic contact angle of 140ยฐ were applied under the humidified condition. This dissertation presented the temporal snapshot of the temperature distribution and the aggregation and separation of water components during heat conduction. It was confirmed that the ETC of GDL was greatly affected by the content and distribution of liquid water formed inside the GDL. In addition, the higher the initial water component mass fraction, the higher the liquid water content of GDL. It was observed that the liquid droplets act as a binder connecting the carbon fibers. Since the conductivity of liquid water is higher than that of air, it was identified that the more liquid water was distributed, the higher the ETC value. When the wettability of the carbon fibers was identical, the liquid water content inside the GDL was similar, and it was found that the distribution of liquid water played a more critical role in determining the ETC of GDL than the absolute liquid water content. Finally, this dissertation applied the reconstructed 3D GDL structure considering the fiber orientation and well-represented the anisotropic GDL mass transfer, which could not be confirmed in the conventional 2D geometry. It suggests the importance of the morphological condition of the carbon fiber at the interface. In this dissertation, the phase change of the water component was not considered. However, the phase separation close to the almost identical phenomenon was included. Accordingly, the proposed model in this dissertation provides a framework that simultaneously performs thermal and phase segregation of fluids analysis in multicomponent, which could not be done in the existing MCMP LBM model.CHAPTER 1. INTRODUCTION 01 1.1 Polymer Electrolyte Membrane Fuel Cell 01 1.2 Backgrounds and Motivations 03 1.3 Thesis Outline 07 CHAPTER 2. LATTICE BOLTZMANN METHOD 09 2.1 Introduction 09 2.2 Shan-Chen and EDM Forcing Schemes 13 2.2.1 Total interaction forces 15 2.3 Thermal LBM 18 2.4 Boundary Conditions 22 2.5 Unit Conversion in LBM 24 CHAPTER 3. NUMERICAL STUDY OF THE DYNAMIC BEHAVIOR OF LIQUID WATER IN THE GDL 26 3.1 Introduction 26 3.2 Stochastic Reconstruction Method 28 3.3 Model Description 31 3.4 Model Validation 33 3.4.1 Single phase permeability in In- and Through-plane 33 3.4.2 Static droplet test 36 3.4.3 Static contact angle test 38 3.5 Result and Discussion 39 3.5.1 Effect of fiber orientation in the In-plane of the GDL 39 3.6 Summary 52 CHAPTER 4. NUMERICAL ANALYSIS OF EFFECTIVE THERMAL CONDUCTIVITY OF THE GDL 54 4.1 Introduction 54 4.2 Model Description 56 4.3 Model Validation 57 4.3.1 Single component phase segregation 58 4.3.2 Static droplet and wall contact angle 61 4.3.3 Effective thermal conductivity (ETC) 65 4.4 Results and Discussion 69 4.4.1 Effect of the orientation angle toward the heat flux 69 4.4.2 Effect of the water content on the ETC 72 4.4.2.1 ETC with various fiber orientations 74 4.4.2.2 ETC with various initial mass fractions of water 88 4.5 Summary 95 CHAPTER 5. CONCLUSION 97 5.1 Conclusions 97 5.2 Future Works 99 Appendix 101 References 119 Korean Abstract 134๋ฐ•

    ํ˜ผํ•ฉ๊ธฐ์ค€ ์Šคํ•€์ –ํž˜ ์‹œ๊ฐ„์˜์กด ๋ฐ€๋„๋ฒ”ํ•จ์ˆ˜ ์ด๋ก : ๋น› ์—๋„ˆ์ง€ ์ „ํ™˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•œ ์ •ํ™•ํ•˜๊ณ  ํšจ์œจ์ ์ธ ์ „์ž ์ „์ด์ƒํƒœ ๊ณ„์‚ฐ ๋ฐฉ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ™”ํ•™๋ถ€,2019. 8. ์ด์ƒ์—ฝ.ํ˜ผํ•ฉ์ฐธ์กฐ ์Šคํ•€์ –ํž˜ ์‹œ๊ฐ„์˜์กด ๋ฐ€๋„๋ฒ”ํ•จ์ˆ˜ ์ด๋ก (MRSF-TDDFT)์ด ์ œ์•ˆ ๋๋‹ค. ์ด ์ƒˆ๋กœ์šด ์–‘์žํ™”ํ•™ ๊ณ„์‚ฐ ๋ฐฉ๋ฒ•์€ ์ž˜ ์•Œ๋ ค์ง„ ์‹œ๊ฐ„์˜์กด Kohn-Sham ๋ฐฉ์ •์‹์˜ ์„ ํ˜•์‘๋‹ต ์ด๋ก ์— ํ˜ผํ•ฉ์ฐธ์กฐ๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ฐœ๋…์„ ๋„์ž…ํ•ด ์œ ๋„๋œ๋‹ค. ํ˜ผํ•ฉ์ฐธ์กฐ๋Š” ์‚ผ์ค‘ํ•ญ์˜ ๋‘ ๊ตฌ์„ฑ์š”์†Œ(MS=+1, -1)๋ฅผ ๊ฒฐํ•ฉํ•œ ์ฐธ์กฐ์ƒํƒœ๋กœ, ํ˜ผํ•ฉ์ฐธ์กฐ๋กœ๋ถ€ํ„ฐ ๋‚˜์˜ค๋Š” ์„ ํ˜•์‘๋‹ต์€ ๊ธฐ์กด SF-TDDFT ๋ฐฉ๋ฒ•์ด ๋งŒ๋“ค์ง€ ๋ชปํ•ด ๋ฌธ์ œ๊ฐ€ ๋๋˜ ์ „์ž๊ตฌ์„ฑ์„ TDDFT ์ด๋ก  ๋‚ด์—์„œ ์ƒ์„ฑํ•œ๋‹ค. MRSF-TDDFT์˜ ํ•ต ์ขŒํ‘œ์— ๋Œ€ํ•œ ์‘๋‹ต์ƒํƒœ์˜ ์—๋„ˆ์ง€ ๊ธฐ์šธ๊ธฐ ์ˆ˜์‹์ด ์œ ๋„๋๊ณ , ํ”„๋กœ๊ทธ๋žจํ™” ๋๋‹ค. ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์˜ ์—๋„ˆ์ง€ ๊ทธ๋ฆฌ๊ณ  ์—๋„ˆ์ง€ ๊ธฐ์šธ๊ธฐ์— ๋Œ€ํ•œ ๊ณ„์‚ฐ ์š”๊ตฌ๋Ÿ‰์€ ๊ธฐ์กด SF-TDDFT ์˜ ์š”๊ตฌ๋Ÿ‰๊ณผ ๊ฑฐ์˜ ๋™์ผํ•˜๋‹ค. ์ƒˆ๋กญ๊ฒŒ ์ œ์•ˆ ๋œ MRSF-TDDFT ๋ฐฉ๋ฒ•์€ ๊ธฐ์กด SF-TDDFT์— ๋น„ํ•ด ์‹ค์šฉ์„ฑ๊ณผ ์ •ํ™•์„ฑ ์ธก๋ฉด์—์„œ ์žฅ์ ์ด ์žˆ๋‹ค. ์‘๋‹ต์ƒํƒœ๋“ค์„ ๋‹จ์ผํ•ญ ๋˜๋Š” ์‚ผ์ค‘ํ•ญ ์ƒํƒœ๋กœ ์™„์ „ํžˆ ๋ถ„๋ฆฌํ•ด๋ƒ„์œผ๋กœ์จ, ๊ธฐ์กด SF-TDDFT์˜ ์‘๋‹ต์ƒํƒœ๋“ค์˜ ์Šคํ•€์˜ค์—ผ๋ฌธ์ œ๋ฅผ ์ œ๊ฑฐํ•œ๋‹ค. ๋”ฐ๋ผ์„œ, ํŠน์ • ์‘๋‹ต์ƒํƒœ์— ๋Œ€ํ•œ ์ž๋™ ๊ตฌ์กฐ ์ตœ์ ํ™”, ๋ฐ˜์‘ ๊ฒฝ๋กœ ์ถ”์  ๋˜๋Š” ๋ถ„์ž ๋™๋ ฅํ•™ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ๊ฐ™์€ "๋ธ”๋ž™ ๋ฐ•์Šค(black-box)" ์œ ํ˜•์˜ ์‘์šฉ์—์„œ ํ•„์ˆ˜์ ์ธ ์‘๋‹ต ์ƒํƒœ์˜ ์‹๋ณ„์„ ์ƒ๋‹นํžˆ ๋‹จ์ˆœํ™”ํ•œ๋‹ค. ๋˜ํ•œ, MRSF-TDDFT์˜ ์ •ํ™•์„ฑ์€ ์ˆ˜์ง ์—ฌ๊ธฐ ์—๋„ˆ์ง€, ๋‹จ์—ด ์—ฌ๊ธฐ ์—๋„ˆ์ง€, ๊ตฌ์กฐ์ตœ์ ํ™” ๋œ ๊ตฌ์กฐ, ์ตœ์†Œ ์—๋„ˆ์ง€ ์›๋ฟ” ๊ต์ฐจ์ , ๋น„๋‹จ์—ด ์ƒํ˜ธ์ž‘์šฉ ํ•ญ ๋ฐ ๋น„๋‹จ์—ด ๋ถ„์ž ๋™๋ ฅํ•™ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ์‹œํ—˜๋˜๊ณ  ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ, MRSF-TDDFT ๋ฐฉ๋ฒ•์€ ๊ด‘ํ™”ํ•™ ๋ฐ˜์‘ ์—ฐ๊ตฌ์— ์œ ๋งํ•œ ์–‘์žํ™”ํ•™ ๊ณ„์‚ฐ๋ฐฉ๋ฒ•์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.The mixed-reference spin-flip time-dependent density functional theory (MRSF-TDDFT) is proposed, which is derived from linear response formalism for the time-dependent Kohn-Sham equation by the use of mixed reference. Linear response from the mixed reference, which combines MS = +1 and -1 components of triplet state, generates additional configurations in the realm of TDDFT. Resultantly, MRSF-TDDFT eliminates the erroneous spin-contamination of the SF-TDDFT. Analytic energy gradients of the response states with respect to nuclear coordinates are also derived and implemented. The computational overhead of singlet or triplet states for MRSF-TDDFT is nearly identical to that of SF-TDDFT. The resulting MRSF-TDDFT computational scheme has several advantages before the conventional SF-TDDFT. Linear-response equations for the singlet and triplet responses are clearly separated. This considerably simplifies the identification of the excited states, especially in the ``black-box'' type applications, such as the automatic geometry optimization, reaction path following, or molecular dynamics simulations of the targeted states. Accuracy of MRSF-TDDFT has been tested and verified in various ways including vertical-excitation energy, singlet-triplet energy gap, adiabatic-excitation energy, optimized structure, minimum energy conical intersection, nonadiabatic coupling term, and nonadiabatic molecular dynamic simulation. Therefore, it is highly expected that the MRSF-TDDFT has advantages over SF-TDDFT in terms of both practicality and accuracy.ABSTRACT CONTENTS LIST OF FIGURES LIST OF TABLES INTRODUCTION 1 THEORETICAL BACKGROUND 6 1. Idempotency of reduced density matrix 6 2. Time-dependent Kohn-Sham equation 8 3. Linear-response theory 9 3.1 Volterra expansion 9 3.2 Connection between linear response of density and one-electron excitation 11 3.3 Linear response equation 13 3.4 Electronic excitation energy 14 4. Spin-flip TDDFT 15 MIXED-REFERENCE SPIN-FLIP TDDFT 20 1. Mixed-reference reduced density matrix 23 1.1 Definition of mixed-reference reduced density matrix 23 1.2 Molecular orbital of mixed-reference reduced density matrix 23 1.3 Restoring idempotency of the mixed-reference reduced density matrix 25 2. Linear-response equation of mixed-reference spin-flip TDDFT 28 2.1 Definition of separated excitation amplitude 31 2.2 Disentangling different MS response 35 2.3 Recovery of one-to-one relation between configuration and excitation amplitude 40 2.4 Separating matrix equations for singlet and triplet response states 48 2.5 Expectation value of S2 operator 51 2.6 Dimensional transformation matrix 54 3. Spin-pairing coupling 57 ANALYTIC ENERGY GRADIENT OF MIXED-REFERENCE SPIN-FLIP TDDFT 60 1. Lagrangian 61 2. Orbital stationary condition I (Coupled perturbed Hartree-Fock equation): Lagrange multiplizer Z 62 3. Orbital stationary condition II: Lagrange multiplizer W 65 4. Analytic energy gradient with respect to nuclear degree of freedom 67 NUMERICAL RESULTS 70 1. Vertical excitation energy 71 1.1 P excited state of Be atom 71 1.2 Singlet valence excited state of molecule 75 2. Singlet-triplet energy gap 78 3. Geometry-optimization structure 81 4. Adiabatic excitation energy 85 5. Conical intersection 87 5.1 Minimum energy conical intersection of PSB3 87 5.2 Topology of conical intersection for PSB3 89 6. Non-adiabatic coupling term 91 6.1 Numerical non-adiabatic coupling term 91 6.2 Fast overlap evaluations with truncation 92 6.3 Accuracy of truncation 95 7. Non-adiabatic molecular dynamics 98 7.1 Photoisomerization and photocyclization of cis-stilbene 98 7.2 Branching ratio and quantum yield 100 7.3 Dynamics in the branching points 104 CONCLUSION 109 REFERENCES 112 ABSTRACT IN KOREAN 124Docto

    ๋Œ€ํ˜•๊ณต๊ณต๊ฑด์„ค์‚ฌ์—…์˜ ํšจ์œจ์  ์ถ”์ง„๋ฐฉ์•ˆ ์—ฐ๊ตฌ

    Get PDF
    ๋…ธํŠธ : ์ด ์—ฐ๊ตฌ๋ณด๊ณ ์„œ์˜ ๋‚ด์šฉ์€ ๊ตญํ† ์—ฐ๊ตฌ์›์˜ ์ž์ฒด ์—ฐ๊ตฌ๋ฌผ๋กœ์„œ ์ •๋ถ€์˜ ์ •์ฑ…์ด๋‚˜ ๊ฒฌํ•ด์™€๋Š” ์ƒ๊ด€์—†์Šต๋‹ˆ๋‹ค

    Influences of spaces requirements of Creation

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€, 2012. 8. ์•ˆ๊ฑดํ˜.2000๋…„๋Œ€ ์ดํ›„, ์˜ˆ์ˆ ๊ฐ€๋“ค์ด ๋„์‹œ ๋‚ด ํŠน์ •์ง€์—ญ์— ์ž์ƒ์ ์œผ๋กœ ์ง‘์ ํ•œ ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ๋“ค์€ ์ฐฝ์กฐ๊ณ„๊ธ‰ ์ง‘์ ์— ๋”ฐ๋ฅธ ์ง€์—ญ๊ฐ€์น˜ ์ƒ์Šน์ด ์ž์ƒ์ ์œผ๋กœ ์‹คํ˜„๋œ ์‚ฌ๋ก€๋กœ ์ฃผ๋ชฉ ๋ฐ›์•„์™”๋‹ค. ๊ทธ์— ๋”ฐ๋ผ ์ฐฝ์กฐ๋„์‹œ ยท ๋ฌธํ™”๋„์‹œ๋ฅผ ํ‘œ๋ฐฉํ•˜๋Š” ๋„์‹œ์ •๋ถ€๋“ค์€ ์˜๋„์ ์œผ๋กœ ํŠน์ • ์‹œ์„ค์— ์˜ˆ์ˆ ๊ฐ€๋“ค์˜ ์ง‘์ ์„ ์œ ๋„ํ•˜๋Š” ๊ณ„ํš์  ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ ์กฐ์„ฑ์„ ์ถ”์ง„ํ•ด์˜ค๊ณ  ์žˆ๋‹ค. ํ•œํŽธ, Scott(1999)์€ ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ์˜ ํ•ต์‹ฌ์  ์ž์‚ฐ์„ ์ž…์ฃผ์˜ˆ์ˆ ๊ฐ€๋“ค์˜ ๋„คํŠธ์›Œํฌ์™€ ๊ทธ์— ๋”ฐ๋ฅธ ๊ธ์ •์  ํšจ๊ณผ๋ผ๊ณ  ๋ณด๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋‹ค์ˆ˜์˜ ๊ตญ๋‚ด ์—ฐ๊ตฌ์ž ๋ฟ ์•„๋‹ˆ๋ผ ๊ณ„ํš์  ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ์˜ ์กฐ์„ฑ์ฃผ์ฒด๋“ค๋„ ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ ๋‚ด ์ž…์ฃผ์˜ˆ์ˆ ๊ฐ€๋“ค์˜ ๋„คํŠธ์›Œํฌ ํ™œ์„ฑํ™”๋ฅผ ๊ณตํ†ต์ ์œผ๋กœ ๊ฐ•์กฐํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ํ˜„์žฌ ์šด์˜ ์ค‘์ธ ๊ตญ๋‚ด ๊ณ„ํš์  ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ ์‚ฌ๋ก€๋“ค์˜ ๋„คํŠธ์›Œํฌ ์ˆ˜์ค€์— ๋Œ€ํ•œ ๊ฒ€์ฆ์€ ๋ฏธํกํ•œ ์‹ค์ •์ด๋ฉฐ, ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ ๋‚ด ๋„คํŠธ์›Œํฌ ์ˆ˜์ค€ ์ œ๊ณ  ๋ฐฉ์•ˆ์— ๊ด€ํ•œ ๋…ผ์˜ ์„ฑ๊ณผ ๋˜ํ•œ ๋ฏธ๋ฏธํ•˜๋‹ค. ์ด๋Š” ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ ๋‚ด ๋„คํŠธ์›Œํฌ ์ˆ˜์ค€์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์š”์ธ์— ๊ด€ํ•œ ์ ‘๊ทผ์ด ๋ถ€์กฑํ–ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋ผ๊ณ  ์‚ฌ๋ฃŒ๋œ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ ๋‚ด ์ž…์ฃผ์˜ˆ์ˆ ๊ฐ€๋“ค์˜ ๋„คํŠธ์›Œํฌ ์ˆ˜์ค€ ์ œ๊ณ  ๋ฐฉ์•ˆ์˜ ์ˆ˜๋ฆฝ์‹œ ์ฐธ๊ณ ๊ฐ€๋Šฅํ•œ ์‹œ์‚ฌ์ ์„ ๋„์ถœํ•˜๋Š” ๊ฒƒ์„ ์ตœ์ข…์ ์ธ ๋ชฉํ‘œ๋กœ ์‚ผ๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ์œ„ํ•ด ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ ๋‚ด ๋„คํŠธ์›Œํฌ ์ˆ˜์ค€์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์ธ์˜ ๊ทœ๋ช… ๋ฐ ๊ฐ ์˜ํ–ฅ๋ ฅ์˜ ๊ฒ€์ฆ์„ ์‹œ๋„ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ ์ค‘์—์„œ๋„ ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ์˜ ๊ณต๊ฐ„์  ์กฐ๊ฑด ๋ฐ ๊ทธ์— ๋”ฐ๋ฅธ ๊ณต๊ฐ„์ด์šฉํ˜„ํ™ฉ์ด ๋„คํŠธ์›Œํฌ ์ˆ˜์ค€์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์ค‘์ ์ ์œผ๋กœ ๋‹ค๋ฃจ๊ณ  ์žˆ๋Š”๋ฐ, ์ด๋Š” ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ์˜ ํ˜•์„ฑ๊ฒฝ์œ„๊ฐ€ ์ž์ƒ์ ์ด๋ƒ, ๊ณ„ํš์ ์ด๋ƒ์— ๋”ฐ๋ผ ์ƒ์ดํ•œ ๊ณต๊ฐ„์  ์กฐ๊ฑด๋“ค์„ ์ทจํ•˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์—ฐ๊ตฌ๋ชฉ์ ์˜ ๋‹ฌ์„ฑ์„ ์œ„ํ•˜์—ฌ, ์šฐ์„  ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ ๋‚ด ๋„คํŠธ์›Œํฌ ์ˆ˜์ค€์— ์˜ํ–ฅ์„ ๋ฏธ์นœ๋‹ค๊ณ  ๊ธฐ์กด ์–ธ๊ธ‰๋œ ์˜ˆ์ƒ์˜ํ–ฅ์š”์ธ๋“ค์„ ์ •๋ฆฌํ•˜์˜€๊ณ , ์ž์ƒ์  ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ์˜ ๋Œ€ํ‘œ์‚ฌ๋ก€๋กœ ๋ฌธ๋ž˜์ฐฝ์ž‘์ดŒ์„, ๊ณ„ํš์  ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ์˜ ๋Œ€ํ‘œ์‚ฌ๋ก€๋กœ ์‹ ๋‹น์ฐฝ์ž‘์•„์ผ€์ด๋“œ๋ฅผ ๊ฐ๊ฐ ์„ ์ •ํ•ด ๋น„๊ต๋ถ„์„์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์‹ค์ฆ๋ถ„์„์„ ์œ„ํ•ด์„œ๋Š” ์‚ฌ๋ก€๋ณ„ ์ž…์ฃผ์˜ˆ์ˆ ๊ฐ€ ๊ฐ 30์ธ์„ ๋Œ€์ƒ์œผ๋กœ ๊ฐœ์ธ๋ณ„ ๋„คํŠธ์›Œํฌ ์ˆ˜์ค€ ๋ฐ ์˜ˆ์ƒ์˜ํ–ฅ์š”์ธ ๋ณ€์ˆ˜๋“ค์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•œ ์„ค๋ฌธ์กฐ์‚ฌ๋ฅผ ์‹ค์‹œํ–ˆ๋‹ค. ์ดํ›„ ์ธก์ •๊ฒฐ๊ณผ์˜ ๋น„๊ต๋ถ„์„์„ ํ†ตํ•ด, ์‚ฌ๋ก€๋ณ„ ๋„คํŠธ์›Œํฌ ์ˆ˜์ค€ ์ฐจ์ด์˜ ์œ ์˜๋ฏธ์„ฑ์„ ๊ฒ€์ฆํ•˜๊ณ , ๋™์‹œ์— ์œ ์˜ํ•œ ์ฐจ์ด๋ฅผ ๋ณด์ด๊ณ  ์žˆ๋Š” ์˜ˆ์ƒ์˜ํ–ฅ์š”์ธ ๋ณ€์ˆ˜๊ฐ€ ๋ฌด์—‡์ธ์ง€ ํŒŒ์•…ํ–ˆ๋‹ค. ๋˜ํ•œ ๊ฐ ์‚ฌ๋ก€์˜ ๊ณต๊ฐ„์ด์šฉํ˜„ํ™ฉ ๋ณ€์ˆ˜์™€ ๋„คํŠธ์›Œํฌ ์ˆ˜์ค€๊ณผ์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ์ƒ๊ด€๋ถ„์„์„ ์‹ค์‹œํ•˜์˜€์œผ๋ฉฐ, ์ƒ๊ด€์„ฑ์˜ ์ „ํ›„๊ด€๊ณ„๋ฅผ ํŒŒ์•…ํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ ์‚ฌ๋ก€์˜ ์ž…์ฃผ์˜ˆ์ˆ ๊ฐ€ ์ด 18๋ช…์„ ๋Œ€์ƒ์œผ๋กœ ํ•œ ์ธํ„ฐ๋ทฐ ์กฐ์‚ฌ๋ฅผ ์‹ค์‹œํ•˜์˜€๋‹ค. ๋ถ„์„๊ฒฐ๊ณผ๋Š” ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ ๋‚ด ๋„คํŠธ์›Œํฌ์˜ ํ˜•์„ฑ๊ณผ์ •์— ํ•ด๋‹น ์‚ฌ๋ก€๊ฐ€ ์ง€๋‹Œ ๊ณต๊ฐ„์ ์ธ ์กฐ๊ฑด์ด ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฐ€์ •์˜ ์œ ์˜์„ฑ์„ ํ™•์ธํ•˜๊ณ  ์žˆ๋‹ค. ๋„คํŠธ์›Œํฌ ์ˆ˜์ค€์ด ์ƒ๋Œ€์ ์œผ๋กœ ๋†’์€ ๋ฌธ๋ž˜์ฐฝ์ž‘์ดŒ ์ž…์ฃผ์˜ˆ์ˆ ๊ฐ€๋“ค์€ ๊ฐ์ข… ์ผ์ƒํ™œ๋™์„ ๋‹ค์–‘ํ•œ ๊ณต๊ฐ„์—์„œ ์˜์œ„ํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ํ•ด๋‹น ํ™œ๋™์ด ์ค‘์ฒฉ๋˜๋Š” ๊ต๋ฅ˜๊ณต๊ฐ„์—์„œ ์ƒˆ๋กœ์šด ๋„คํŠธ์›Œํฌ๋ฅผ ํ˜•์„ฑํ•˜๊ณ  ์žˆ๊ณ , ํ•ด๋‹น ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ๋ฅผ ๋งˆ์„ ๋˜๋Š” ์ดŒ์˜ ๊ฐœ๋…์œผ๋กœ ์ธ์‹ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฌํ•œ ๊ณต๊ฐ„์  ์กฐ๊ฑด ๋ฐ ๊ทธ์— ๋”ฐ๋ฅธ ๊ณต๊ฐ„์ด์šฉํ˜„ํ™ฉ๊ณผ ์‹ค์ œ ๋„คํŠธ์›Œํฌ ํ˜•์„ฑ๊ณผ์ •๊ณผ์˜ ๋ฐ€์ ‘ํ•œ ๊ด€๋ จ์„ฑ์ด ์ƒ๊ด€๋ถ„์„ ๋ฐ ์ธํ„ฐ๋ทฐ ์กฐ์‚ฌ ๊ฒฐ๊ณผ ๋“œ๋Ÿฌ๋‚˜๊ณ  ์žˆ๋‹ค. ๋ฐ˜๋ฉด ์‹ ๋‹น์ฐฝ์ž‘์•„์ผ€์ด๋“œ ์ž…์ฃผ์˜ˆ์ˆ ๊ฐ€๋“ค์˜ ํ™œ๋™์€ ์ฃผ๋กœ ์‚ฌ์ ๊ณต๊ฐ„์—์„œ์˜ ๊ฐœ์ธ์ž‘์—…์— ๊ตญํ•œ๋˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์ด๋ฉฐ, ๋„คํŠธ์›Œํฌ ํ˜•์„ฑ์„ ๋งค๊ฐœํ•  ์ˆ˜ ์žˆ๋Š” ๊ต๋ฅ˜๊ณต๊ฐ„์ด ๋ถ€์žฌํ•œ ๊ฒƒ์œผ๋กœ ๋“œ๋Ÿฌ๋‚œ๋‹ค. ๋”ฐ๋ผ์„œ ๊ณต๊ณต์ฃผ๋„์˜ ๋„คํŠธ์›Œํฌ ํ”„๋กœ๊ทธ๋žจ์— ์˜ํ•ด ์ „์ฒด์ž…์ฃผ์ž๊ฐ„ ์„œ๋กœ ์•ˆ๋ฉด์„ ์ธ์‹ํ•˜๊ณ  ์žˆ๋Š” ์กฐ๊ฑด์—์„œ๋„ ์ง€์†์ ์ธ ๊ต๋ฅ˜๊ด€๊ณ„๋ฅผ ๊ตฌ์ถ•ํ•˜๊ธฐ๋Š” ์–ด๋ ค์šด ์‹ค์ •์ž„์ด ํ™•์ธ๋˜๊ณ  ์žˆ๋‹ค. ๋ถ„์„๊ฒฐ๊ณผ ๋ฐ ํ•ด์„์„ ํ†ตํ•ด ํ–ฅํ›„ ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ์˜ ์กฐ์„ฑ ๋ฐ ์šด์˜ ์‹œ์—๋Š” ๋„คํŠธ์›Œํฌ ํ™œ์„ฑํ™”๋ฅผ ์œ„ํ•œ ์‚ฌํ•ญ์ด ๊ณต๊ฐ„๊ณ„ํš์˜ ๊ณ ๋ ค๋Œ€์ƒ์— ์ถ”๊ฐ€๋  ํ•„์š”์„ฑ์ด ์ œ๊ธฐ๋œ๋‹ค. ์„ธ๋ถ€์ ์œผ๋กœ๋Š” ํ–ฅํ›„ ๊ฐ์ข… ์ผ์ƒ์  ํ™œ๋™์„ ์›ํ™œํ•˜๊ฒŒ ์ˆ˜์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ณต๊ฐ„์กฐ๊ฑด์˜ ์กฐ์„ฑ ๋ฐ ์ฃผ๋ณ€์ง€์—ญ๊ณผ์˜ ์—ฐ๊ณ„๊ฐ€ ํ•„์š”ํ•˜๋‹ค๋Š” ์ œ์•ˆ๊ณผ, ๊ฐ์ข… ์ผ์ƒ์  ํ™œ๋™๋“ค์ด ์ค‘์ฒฉ๋  ์ˆ˜ ์žˆ๋Š” ๊ฐœ๋ฐฉ์ ์ธ ๊ต๋ฅ˜๊ณต๊ฐ„์˜ ์กฐ์„ฑ์ด ๊ณ„ํš์‚ฌํ•ญ์— ํฌํ•จ๋˜์–ด์•ผ ํ•œ๋‹ค๋Š” ์‹œ์‚ฌ์ ์ด ๋„์ถœ๋œ๋‹ค.ํ˜„์žฌ ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ ์กฐ์„ฑ์‚ฌ์—… ์‹œ ๊ณต๊ฐ„๊ณ„ํš์€ ์ฐฝ์ž‘ํ™œ๋™ ์ˆ˜์šฉ์„ ์œ„ํ•œ ์‹œ์„ค์กฐ์„ฑ ์ฐจ์›์— ๊ตญํ•œ๋˜์–ด ์žˆ๋‹ค. ์—ฐ๊ตฌ์—์„œ ๋„์ถœ๋œ ์‹œ์‚ฌ์ ์ด ํ–ฅํ›„ ์‹ฌํ™”๋œ ์งˆ์ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ๊ตฌ์ฒด์  ๊ณต๊ฐ„๊ณ„ํš ๋ฐฉ๋ฒ•๋ก ์œผ๋กœ ๋ฐœ์ „๋  ์ˆ˜ ์žˆ๋‹ค๋ฉด, ๋‹จ์ˆœ ์‹œ์„ค์ฐจ์›์— ๋จธ๋ฌผ๊ณ  ์žˆ๋Š” ํ˜„ ๊ณ„ํš์  ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ์˜ ๊ฐœ๋…์ด, ๋‚ด๋ถ€ ๊ตฌ์„ฑ์›๊ฐ„์˜ ์ž์ƒ์  ์ƒํ˜ธ์ž‘์šฉ๊ณผ ์ง€์—ญ์‚ฌํšŒ์™€์˜ ์—ฐ๊ณ„๊ฐ€ ์ „์ œ๋œ ์ฐฝ์กฐํ™˜๊ฒฝ(Creative Milieu)์˜ ๊ฐœ๋…์œผ๋กœ ํ™•์žฅ๋  ์ˆ˜ ์žˆ์œผ๋ฆฌ๋ผ ๊ธฐ๋Œ€๋œ๋‹ค.Since 2000s, self-created creation cluster where the artists have been integrated in specific areas in the city has received attentions as a realized case where self-created value creation of areas through creative integration of artists have occurred. As a result, city governments that advocates a Creative City or Culture City has been executing the establishment of planned creation clusters which intentionally induce the integration of artists in specific areas of the city. On the other hand, Scott (1999) thinks that core assets of creation cluster are the networks of artists and related positive effects. Accordingly, not only various domestic researchers but also establishment subjects of planned creation clusters emphasize the vitalization of networks of living-in artists in creation clusters in common. In spite of these situations, verification of network levels of domestic planned cluster cases which are currently operating domestically is not sufficient, and discussion results about the improvement plans of network levels in creation clusters are insufficient as swell. Reasons of these situations are thought be that approaches to the factors which give influences to network levels in creation clusters were not sufficient. Final purpose of this study is to identify the implications which are referable in the procedures of establishing network levels improvement plans of living-in artists in creation clustersand for this objective, clarification of factors which give influences to network levels in creation clusters and related examination of individual influences is being tried. Among these, the influences of spatial requirements and current utilization conditions of spaces in creation clusters to network levels are studied with priority, which is because creation details of creation clusters have individually different space requirements depending on whether it is self-created or planned. In order to achieve study objective, expected influence factors were prepared which were mentioned earlier to give influences to the network levels in the creation clusters, and Mullae Art Village was selected as a representing case of self-created creation cluster and Sindang Art Arcade was selected as a planned creation cluster. For empirical studies, 30 targeting study subjects of living-in artists in each case were selected and surveys were conducted to measure individual network levels and variables of expected influence factors. Through comparison analysis of measured data, significance of differences in network levels of each case was verified and variables of expected influence factors which showed significant differences were identified. Additionally and in order to verify the correlations between variables of current situation of space utilization and network levels, correlation analysis was conducted, and in order to identify the contexts of correlations, total of 18 living-in artists in each case were selected and examined with interviews. Study results confirmed the significance of the assumption that spatial requirements in relevant cases could give influences to network creation procedures in creation cluster. Living-in artists in Mullae Art Village which have relatively higher network levels live with various common actives in various spaces and transform the new networks in various exchange spaces where the relevant activities are overlapped and the relevant creation cluster is recognized as a concept of town or village. Additionally, close relationships between these spatial requirements and related current conditions of space utilization and physical network creation procedures are identified in correlation analysis and interview results. On the other hand, activities of living-in artists in Sindang Art Arcade show the tendency that their activities are limited to personal activities in their personal spaces and their exchange spaces which could mediate the networks are not sufficient. Accordingly, continuous exchange relationships are identified to be difficult in spite of the conditions that entire living-in artists recognize their existences in living-in artists owing to the public leading network program. Through study results, the necessity is raised for future establishment and operation of creation cluster that network vitalization plans should be added in consideration factors for space plans. In details, the suggestion that establishment of space requirements that enable various everyday activities smoothly and connections with neighboring areas and the implication that establishment of open exchange spaces which enable to overlap various everyday activities should be added in the plans. Current space plans in the procedures of establishment of creation cluster are limited to the standards of construction of facilities to accommodate creation activities. If the derived implication could be developed to detailed space plan methodologies through future in-depth qualitative studies, current concept of planned creation cluster which stays just in the level of facilities is expected to be expanded to the concept of Creative Milieu where self-created interactions between internal members and connections with regional community are required.โ…ฐ. ์„œ๋ก  14 1.1 ์—ฐ๊ตฌ์˜ ๋ฐฐ๊ฒฝ ๋ฐ ๋ชฉ์  14 1.2 ์—ฐ๊ตฌ์˜ ๋ฒ”์œ„ 16 1.3 ์—ฐ๊ตฌ์˜ ํ๋ฆ„ ๋ฐ ๋ฐฉ๋ฒ” 18 โ…ฑ. ์ด๋ก ์  ๊ณ ์ฐฐ 19 2.1 ์ฐฝ์กฐ๋„์‹œ๋ก ๊ณผ ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ 19 2.2 ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ ๋‚ด ๋„คํŠธ์›Œํฌ ๊ด€๋ จ ๋…ผ์˜ 26 โ…ฒ. ๋ฌธ๋ž˜์ฐฝ์ž‘์ดŒ๊ณผ ์‹ ๋‹น์ฐฝ์ž‘์•„์ผ€์ด๋“œ์˜ ๋น„๊ต์‚ฌ๋ก€์—ฐ๊ตฌ 32 3.1 ์‚ฌ๋ก€์—ฐ๊ตฌ์˜ ํ‹€ 32 3.2 ์‚ฌ๋ก€ ๋Œ€์ƒ์ง€์˜ ์ผ๋ฐ˜ํ˜„ํ™ฉ 35 3.3 ์‚ฌ๋ก€ ๋Œ€์ƒ์ง€์˜ ๋„คํŠธ์›Œํฌ ํ™œ๋™ํ˜„ํ™ฉ 41 3.4 ์†Œ๊ฒฐ 47 โ…ณ. ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ์˜ ๊ณต๊ฐ„์  ์กฐ๊ฑด์ด ๋„คํŠธ์›Œํฌ ์ˆ˜์ค€์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ ์‹ค์ฆ๋ถ„์„ 49 4.1 ๋ถ„์„์˜ ํ‹€ 49 4.2 ์‚ฌ๋ก€์ง‘๋‹จ๋ณ„ ์„ค๋ฌธ์‘๋‹ต๊ฒฐ๊ณผ ๋น„๊ต 53 4.3 ๋„คํŠธ์›Œํฌ ์ˆ˜์ค€๊ณผ ์˜ํ–ฅ์š”์ธ ๋ณ€์ˆ˜๋“ค ๊ฐ„ ์ƒ๊ด€๋ถ„์„ 63 4.4 ์ž…์ฃผ์˜ˆ์ˆ ๊ฐ€๋“ค์˜ ๋„คํŠธ์›Œํฌ ํ˜„ํ™ฉ๊ณผ ๊ณต๊ฐ„์  ์กฐ๊ฑด๊ณผ์˜ ๊ด€๋ จ์„ฑ ์ธ์‹ 69 โ…ด. ๊ฒฐ๋ก  70 5.1 ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ 70 5.2 ํ–ฅํ›„ ์ฐฝ์ž‘ํด๋Ÿฌ์Šคํ„ฐ ์กฐ์„ฑ์‹œ์˜ ์‹œ์‚ฌ์  82 5.3 ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„ 83Maste

    ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์˜ ์ ๋ฒ•์„ฑ์— ๊ด€ํ•œ ํ—Œ๋ฒ•ํ•™์  ์—ฐ๊ตฌ - ์žฌํŒ์†Œ์›๊ณผ์˜ ๊ด€๊ณ„๋ฅผ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋ฒ•๊ณผ๋Œ€ํ•™ ๋ฒ•ํ•™๊ณผ, 2018. 2. ์ „์ƒํ˜„.ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ๋Š” ๋ฒ•๋ฅ ์กฐํ•ญ ์ž์ฒด๊ฐ€ ์•„๋‹Œ ๋ฒ•๋ฅ ํ•ด์„์˜ ์œ„ํ—Œ์„ ๊ตฌํ•˜๋Š” ํ—Œ๋ฒ•์†Œ์›์˜ ํ˜•ํƒœ์ด๋‹ค. ํ—Œ๋ฒ•์žฌํŒ์†Œ์˜ 2012๋…„ ๊ฒฐ์ •(2012. 12. 27. 2011ํ—Œ๋ฐ”117)์„ ํ†ตํ•˜์—ฌ ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ๋Š” ์›์น™์  ์ ๋ฒ•์„ฑ์„ ์ธ์ •๋ฐ›์•˜์œผ๋‚˜, ์žฌํŒ์†Œ์›์„ ๊ธˆ์ง€ํ•˜๋Š” ํ—Œ๋ฒ•์žฌํŒ์†Œ๋ฒ• ์ œ68์กฐ ์ œ1ํ•ญ์˜ ์ทจ์ง€์— ์–ด๊ธ‹๋‚˜๋Š” ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ๋Š” ์—ฌ์ „ํžˆ ๋ถ€์ ๋ฒ•ํ•˜๋‹ค. ๊ทธ๋ ‡๋‹ค๋ฉด ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์™€ ์žฌํŒ์†Œ์›์€ ์–ด๋–ค ๊ด€๊ณ„์— ์žˆ๋Š”์ง€์— ๊ด€ํ•˜์—ฌ, ์žฌํŒ์†Œ์› ๊ธˆ์ง€์˜ ์˜๋ฏธ์™€ ๊ทผ๊ฑฐ, ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์˜ ์›์น™์  ์ ๋ฒ•์„ฑ์˜ ์˜๋ฏธ, ๋ฒ•๋ฅ ํ•ด์„์— ๋Œ€ํ•œ ๊ทœ๋ฒ”ํ†ต์ œ์˜ ํ˜„ํ™ฉ์„ ํ™•์ธํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์˜ ์ ๋ฒ•์„ฑ์€ ํ—Œ๋ฒ•์žฌํŒ์†Œ๊ฐ€ ํ—Œ๋ฒ•์ƒ ๋ณด์œ ํ•˜๋Š” ๊ทœ๋ฒ”ํ†ต์ œ๊ถŒํ•œ๊ณผ ๋”๋ถˆ์–ด ๊ทœ๋ฒ”ํ†ต์ œ ๋Œ€์ƒ์œผ๋กœ์„œ์˜ ๋ฒ•๋ฅ ๋ฌธ์–ธ๊ณผ ๋ฒ•๋ฅ ํ•ด์„์˜ ์งˆ์  ๋™์ผ์„ฑ์— ๊ทผ๊ฑฐํ•˜๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ๊ฐ€ ์ œ๊ธฐ๋œ๋‹ค๋Š” ๊ฒƒ์€ ์ฒญ๊ตฌ์ธ์ด ํ—Œ๋ฒ•์žฌํŒ์†Œ์˜ ๊ทœ๋ฒ”ํ†ต์ œ๊ถŒํ•œ์— ๊ธฐํ•œ ํ•œ์ •์œ„ํ—Œ๊ฒฐ์ •์„ ์š”์ฒญํ•˜๋Š” ๊ฒƒ์œผ๋กœ์„œ ๊ตฌ์ฒด์  ๊ทœ๋ฒ”ํ†ต์ œ์˜ ํ˜•์‹์— ๋ถ€ํ•ฉํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์žฌํŒ์†Œ์›์€ ๋ฒ•์›์˜ ์žฌํŒ์„ ํ—Œ๋ฒ•์†Œ์›์˜ ๋Œ€์ƒ์œผ๋กœ ์‚ผ๋Š” ๊ฒƒ์œผ๋กœ์„œ, ๊ทธ ๊ธˆ์ง€๋Š” ํ—Œ๋ฒ•์žฌํŒ์†Œ๋ฒ• ์ œ68์กฐ ์ œ1ํ•ญ์— ๊ทผ๊ฑฐ๋ฅผ ๋‘๊ณ  ์žˆ๋‹ค. ์žฌํŒ์†Œ์›์˜ ๊ธˆ์ง€๋Š” ๋ณธ์งˆ์ ์œผ๋กœ ํ—Œ๋ฒ•ํ•ด์„์„ ํ†ตํ•ด ๋„์ถœํ•  ์ˆ˜ ์—†๋Š” ์ž…๋ฒ•์ •์ฑ…์  ๋ฌธ์ œ๋กœ์„œ, ํ—Œ๋ฒ•์žฌํŒ์†Œ๋ฒ•์ƒ์˜ ๋ฒ•๋ฅ ๊ทœ์ •์„ ํ†ตํ•ด ๋น„๋กœ์†Œ ํ—Œ๋ฒ•์†Œ์›์˜ ๋Œ€์ƒ์—์„œ ์ œ์™ธ๋œ๋‹ค. ์ด์ฒ˜๋Ÿผ ๋ฒ•๋ฅ ์ƒ ์ œํ•œ์— ๋ถˆ๊ณผํ•œ ์žฌํŒ์†Œ์› ๊ธˆ์ง€์˜ ํšจ๋ ฅ์€ ๋˜ ๋‹ค๋ฅธ ์ƒ์œ„์˜ ํ—Œ๋ฒ•์  ์š”์ฒญ์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์œ ๋ณด๋  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ถŒ๋ฆฌ๊ตฌ์ œํ˜• ํ—Œ๋ฒ•์†Œ์›๊ณผ๋Š” ๋‹ฌ๋ฆฌ ์œ„ํ—Œ์‹ฌ์‚ฌํ˜• ํ—Œ๋ฒ•์†Œ์›์˜ ๊ฒฝ์šฐ์—๋Š” ๊ทธ ๋ณธ์งˆ์ด ๊ทœ๋ฒ”ํ†ต์ œ์ด๋ฏ€๋กœ, ๊ทธ ์œ„ํ—Œ์„ฑ ํŒ๋‹จ์˜ ๋Œ€์ƒ์ด ๊ทœ๋ฒ”์ธ์ง€ ๊ทœ๋ฒ”์ด ์•„๋‹Œ ๊ฒƒ์ธ์ง€๊ฐ€ ํ•ต์‹ฌ์ ์ธ ๋ฌธ์ œ๊ฐ€ ๋œ๋‹ค. ์žฌํŒ์†Œ์› ๊ธˆ์ง€์™€ ๊ทœ๋ฒ”ํ†ต์ œ๋กœ์„œ์˜ ์œ„ํ—Œ์†Œ์›์€ ์›์น™์ ์œผ๋กœ ๋‹ค๋ฅธ ์ฐจ์›์—์„œ ์ž‘๋™ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์–‘์ž๋Š” ์„œ๋กœ ๋ฌด๊ด€ํ•˜๋‹ค. ํ—Œ๋ฒ•์žฌํŒ์†Œ๊ฐ€ ๋ณด์œ ํ•˜๋Š” ๊ทœ๋ฒ”ํ†ต์ œ๊ถŒํ•œ๊ณผ ๋ฒ•์›์ด ๋ณด์œ ํ•˜๋Š” ๋‹นํ•ด ์žฌํŒ์—์„œ ๊ทœ๋ฒ”์„ ํ•ด์„ํ•˜์—ฌ ๋ฒ•์  ๋ถ„์Ÿ์„ ํ•ด๊ฒฐํ•˜๋Š” ๊ถŒํ•œ์€ ์™ธ๊ฒฌ์ƒ ์ถฉ๋Œํ•  ์ˆ˜ ์žˆ์œผ๋‚˜, ์„œ๋กœ์˜ ํ—Œ๋ฒ•์  ๊ถŒํ•œ์— ๊ทผ๊ฑฐํ•˜์—ฌ ์ด๋ฃจ์–ด์ง€๋Š” ์ž‘์šฉ์œผ๋กœ์„œ ๊ทธ ๊ตญ๋ฉด์„ ๋‹ฌ๋ฆฌํ•œ๋‹ค. ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์˜ ์ ๋ฒ•์„ฑ์˜ ๋ฌธ์ œ๋Š” ์žฌํŒ์†Œ์› ๊ธˆ์ง€์˜ ์ทจ์ง€๋ฅผ ํ†ตํ•˜์—ฌ ํ†ต์ œ๋  ์ˆ˜ ์žˆ๋Š” ์„ฑ์งˆ์˜ ๊ฒƒ์ด ์•„๋‹ˆ๋‹ค. ์žฌํŒ์†Œ์› ๊ธˆ์ง€์˜ ์ทจ์ง€์— ๋น„์ถ”์–ด์„œ ๋ถ€์ ๋ฒ•ํ•œ ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ๋ฅผ ๊ตฌ๋ณ„ํ•˜๊ณ ์ž ํ•˜๋Š” ๊ฒƒ์€ ๊ทœ๋ฒ”ํ†ต์ œ์˜ ๋Œ€์ƒ ๋ฌธ์ œ์™€ ์žฌํŒ์†Œ์›์˜ ๋ฌธ์ œ๋ฅผ ํ˜ผ๋™ํ•œ ๊ฒƒ์ด๊ณ , ํ—Œ๋ฒ•์žฌํŒ์†Œ์˜ ๊ทœ๋ฒ”ํ†ต์ œ๊ถŒํ•œ์„ ์œ ๋ณด์‹œํ‚ด์œผ๋กœ์จ ํ—Œ๋ฒ•์žฌํŒ์†Œ๋ฒ•์ƒ ์žฌํŒ์†Œ์› ๊ธˆ์ง€๊ทœ์ •์˜ ์˜๋ฏธ๋ฅผ ํ•˜๋‚˜์˜ ํ—Œ๋ฒ•์›์น™์ฒ˜๋Ÿผ ์ธ์‹ํ•˜๋Š” ๊ฒƒ์ด๋ฉฐ, ๋ฒ•๋ฅ ํ•ด์„์— ๋Œ€ํ•œ ๊ทœ๋ฒ”ํ†ต์ œ๋ฅผ ์‹œ๋„ํ•˜๋ฉด์„œ๋„ ๋™์‹œ์— ์žฌํŒ์†Œ์›์˜ ๊ธˆ์ง€๋ผ๋Š” ๋ชจ์ˆœ์ ์ผ ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ค€์„ ์„ธ์šด ๊ฒƒ์ด๋‹ค. ์œ„ ๊ธฐ์ค€ ํ•˜์—์„œ ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์˜ ์ ๋ฒ•์„ฑ์˜ ์ธ์ •๋ฒ”์œ„๋Š” ๋งค์šฐ ํ˜‘์†Œํ•ด์งˆ ์ˆ˜ ๋ฐ–์— ์—†๋‹ค. ์‹ค์ œ๋กœ ํ—Œ๋ฒ•์žฌํŒ์†Œ์˜ 2012๋…„ ๊ฒฐ์ • ์ดํ›„์˜ ๊ฒฐ์ •๋ก€๋ฅผ ์‚ดํŽด๋ณด๋ฉด, ์ƒ๋‹น์ˆ˜์˜ ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ๋ฅผ ๊ฐœ๋ณ„ ์‚ฌ๊ฑด์—์„œ์˜ ํฌ์„ญยท์ ์šฉ์˜ ๋ฌธ์ œ๋กœ ๋ณด๊ฑฐ๋‚˜ ์žฌํŒ๊ฒฐ๊ณผ๋ฅผ ๋‹คํˆฌ๋Š” ๊ฒƒ์œผ๋กœ ๋ณด์•„ ๋ถ€์ ๋ฒ•ํ•˜๋‹ค๊ณ  ๋ณด๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ์ ๋ฒ•ํ•˜๋‹ค๊ณ  ๋ณด์•„ ๋ณธ์•ˆํŒ๋‹จ์— ๋‚˜์•„๊ฐ€๋Š” ๊ฒฝ์šฐ์—๋„ ํ—Œ๋ฒ•์žฌํŒ์†Œ๋Š” ์‹ฌํŒ๋Œ€์ƒ์„ ๋ฒ•๋ฅ ํ•ด์„์ด ์•„๋‹Œ ๋ฒ•๋ฅ ์กฐํ•ญ ์ž์ฒด๋กœ ํŒŒ์•…ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์‚ฌ์‹ค์ƒ 2012๋…„ ๊ฒฐ์ •๋ก€๊ฐ€ ์œ ์ผํ•˜๊ฒŒ ๋ฒ•๋ฅ ํ•ด์„์„ ์‹ฌํŒ๋Œ€์ƒ์œผ๋กœ ์‚ผ์•„ ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ๋ฅผ ์ ๋ฒ•ํ•˜๋‹ค๊ณ  ์ธ์ •ํ•œ ์‚ฌ๋ก€๋กœ ํ™•์ธ๋˜๋ฉฐ, ๊ทธ ์™ธ์—๋Š” ๊ฐํ•˜๋˜๋Š” ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์™€ ๋ฒ•๋ฅ ์กฐํ•ญ์— ๋Œ€ํ•œ ์œ„ํ—Œ์ฒญ๊ตฌ๋กœ ์„ ํ•ด๋œ ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ๋งŒ์ด ์กด์žฌํ•œ๋‹ค. ์ด๋Š” ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์˜ ์ ๋ฒ•์„ฑ์„ ์ธ์ •ํ•œ ์ทจ์ง€๋ฅผ ๋ชฐ๊ฐํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์˜ ์ ๋ฒ•์„ฑ์˜ ๋ฌธ์ œ์™€ ์ด์— ๊ธฐ์ดˆํ•œ ์‹ฌํŒ๋Œ€์ƒ์˜ ํŒ๋‹จ์€ ์žฌํŒ์†Œ์›๊ธˆ์ง€์˜ ์ทจ์ง€๋ผ๋Š” ํ‹€์—์„œ ๋ฒ—์–ด๋‚  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋น„๊ต๋ฒ•์ ์œผ๋กœ ์‚ดํŽด๋ณผ ๋•Œ์—๋„ ๋ฒ•๋ฅ ํ•ด์„์— ๋Œ€ํ•œ ๊ทœ๋ฒ”ํ†ต์ œ ๋‚ด์ง€ ์žฌํŒ์†Œ์›, ์ผ๋ฐ˜ยท์ถ”์ƒ์  ๊ทœ๋ฒ”๊ณผ ์‚ฌ๊ฑด๊ทœ๋ฒ” ๋ถ„๋ฆฌ์˜ ๋‚œํ•ดํ•จ, ํ—Œ๋ฒ•์žฌํŒ์†Œ์™€ ๋ฒ•์›์ด ๋ถ„๋ฆฌ๋œ ๊ฒฝ์šฐ ๋ฒ•๋ฅ ํ•ด์„์„ ๋‘˜๋Ÿฌ์‹ผ ๊ฐˆ๋“ฑ์ด ํ•„์—ฐ์ ์ด๋ผ๋Š” ์‚ฌ์‹ค์ด ํ™•์ธ๋œ๋‹ค. ๊ตฌ์ฒดํ™”ยท๊ฐ๊ด€ํ™”๋œ ๊ทœ๋ฒ”์— ๋Œ€ํ•œ ํ†ต์ œ๋ฅผ ์žฌํŒ์†Œ์›์ž„์„ ์ด์œ ๋กœ ์ง€์–‘ํ•  ํ•„์š”๋Š” ์—†์œผ๋ฉฐ, ๋˜ํ•œ ์‚ฌ์‹ค์˜ ํฌ์„ญ๊ณผ ๊ทœ๋ฒ”์˜ ํ•ด์„์˜ ๊ตฌ๋ณ„์˜ ์–ด๋ ค์›€ ๋ฐ ๊ตํ˜ธ์  ์„ฑ๊ฒฉ์„ ๊ณ ๋ คํ•  ๋•Œ ์ด๋ฅผ ์†Œ๊ทน์ ์ธ ์˜๋ฏธ๋กœ ์ƒˆ๊ธฐ๋Š” ๊ฒƒ์ด ๊ทœ๋ฒ”ํ†ต์ œ์ œ๋„์˜ ๋‚ด์‹ค๊ณผ ๊ธฐ๋ณธ๊ถŒ๋ณด์žฅ์— ๋ถ€ํ•ฉํ•œ๋‹ค. ์ด์— ๋Œ€ํ•œ ํ—Œ๋ฒ•์žฌํŒ์†Œ์˜ ์ „ํ–ฅ๋œ ํƒœ๋„๊ฐ€ ์š”๊ตฌ๋˜๋ฉฐ, ์ด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ฒ•๋ฅ ํ•ด์„์— ๊ด€ํ•œ ์‹ฌ์‚ฌ์˜ ๋ฒ”์œ„ยท๊ฐ•๋„์˜ ๋ฌธ์ œ์— ๋Œ€ํ•˜์—ฌ๋„ ์ง„์ „๋œ ๋…ผ์˜๋ฅผ ๋ณด์ผ ํ•„์š”๊ฐ€ ์žˆ๋‹ค.์ œ1์žฅ ์„œ๋ก  1 ์ œ1์ ˆ ์—ฐ๊ตฌ์˜ ๋ชฉ์  1 ์ œ2์ ˆ ์—ฐ๊ตฌ์˜ ๋ฐฉ๋ฒ•๊ณผ ๋ฒ”์œ„ 3 ์ œ2์žฅ ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์˜ ํ—Œ๋ฒ•์  ์˜๋ฏธ 5 ์ œ1์ ˆ ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์˜ ๊ฐœ๋…๊ณผ ์ข…๋ž˜์˜ ๋…ผ์˜ ๊ฒฝ๊ณผ 5 1. ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์˜ ๊ฐœ๋… 5 2. ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์— ๊ด€ํ•œ ์ข…๋ž˜์˜ ๋…ผ์˜ ๊ฒฝ๊ณผ 7 ๊ฐ€. ํ•œ์ •์œ„ํ—Œ๊ฒฐ์ •์˜ ๊ธฐ์†๋ ฅ์— ๊ด€ํ•œ ๋…ผ์˜ 7 ๋‚˜. ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์˜ ์ ๋ฒ•์„ฑ 8 ์ œ2์ ˆ ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์˜ ์ ๋ฒ•์„ฑ์˜ ์ด๋ก ์  ๋ฐฐ๊ฒฝ 11 1. ์„œ๋ก  11 2. ๊ทœ๋ฒ”ํ†ต์ œ๊ถŒํ•œ 11 3. ๊ทœ๋ฒ”ํ†ต์ œ์˜ ๋Œ€์ƒ 13 ๊ฐ€. ๊ทœ๋ฒ” ๋ฌธ์–ธ๊ณผ ๊ทœ๋ฒ” ๋ฌธ์–ธ ํ•ด์„์˜ ๊ตฌ๋ณ„ ๋ถˆ๊ฐ€๋Šฅ์„ฑ 14 ๋‚˜. ๊ทœ๋ฒ”ํ†ต์ œ๊ธฐ๊ด€์˜ ํ•˜์œ„๊ทœ๋ฒ”ํ•ด์„๊ถŒํ•œ 15 ์ œ3์ ˆ ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์˜ ์ ๋ฒ•์„ฑ์ด ๊ฐ–๋Š” ์˜๋ฏธ 17 1. ๊ทœ๋ฒ”ํ•ด์„์— ๋Œ€ํ•œ ํ†ต์ œ๊ถŒํ•œ ๋ฐœ๋™์„ ์š”์ฒญํ•˜๋Š” ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ 17 2. ์žฌํŒ์†Œ์›๊ณผ์˜ ์ ‘์  ๋ฌธ์ œ 20 ์ œ3์žฅ ์žฌํŒ์†Œ์›๊ณผ ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ 23 ์ œ1์ ˆ ์žฌํŒ์†Œ์›๊ธˆ์ง€์˜ ์˜์˜ 23 1. ์žฌํŒ์†Œ์›๊ธˆ์ง€์˜ ์˜๋ฏธ 23 2. ์žฌํŒ์†Œ์›๊ธˆ์ง€์˜ ๊ทผ๊ฑฐ 24 ๊ฐ€. ์ข…๋ž˜์˜ ๋…ผ์˜ 24 ๋‚˜. ํ—Œ๋ฒ• ์ œ111์กฐ ์ œ1ํ•ญ ์ œ5ํ˜ธ์˜ ํ•ด์„๋ก  26 ์ œ2์ ˆ ์žฌํŒ์†Œ์›๊ธˆ์ง€์˜ ์ ์šฉ๋ฒ”์œ„ 31 1. ์šฐ๋ฆฌ ๋ฒ•์ œ์—์„œ์˜ ํ—Œ๋ฒ•์†Œ์›์ œ๋„ 31 2. ๊ถŒ๋ฆฌ๊ตฌ์ œํ˜• ํ—Œ๋ฒ•์†Œ์›์˜ ๊ฒฝ์šฐ 33 ๊ฐ€. ์›์น™์  ๊ธˆ์ง€์™€ ์˜ˆ์™ธ์  ํ—ˆ์šฉ 33 ๋‚˜. ์ œ์™ธ๋˜๋Š” ์žฌํŒ์˜ ๋ฒ”์œ„ 35 3. ์œ„ํ—Œ์†Œ์›์˜ ๊ฒฝ์šฐ 39 ๊ฐ€. ์œ„ํ—Œ์†Œ์›์ œ๋„์˜ ์„ฑ๊ฒฉ 39 ๋‚˜. ์žฌํŒ์†Œ์›๊ธˆ์ง€๊ทœ์ •์˜ ์ ์šฉ ์—ฌ๋ถ€ 42 ์ œ3์ ˆ ์žฌํŒ์†Œ์›๊ธˆ์ง€์™€ ๊ทœ๋ฒ”ํ†ต์ œ๋กœ์„œ์˜ ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ 45 1. ์™ธ๊ฒฌ์ƒ์˜ ๊ฐˆ๋“ฑ 45 2. ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์™€ ์žฌํŒ์†Œ์›๊ธˆ์ง€์˜ ๊ด€๊ณ„ 46 ๊ฐ€. ์žฌํŒ์†Œ์›๊ธˆ์ง€๊ทœ์ • ๋ถ€์ ์šฉ์˜ ๊ตฌ์ฒด์  ์˜๋ฏธ 46 ๋‚˜. ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์™€ ์žฌํŒ์†Œ์›๊ธˆ์ง€์˜ ๋‹จ์ ˆ 48 ๋‹ค. ๊ตฌ์ฒด์  ๊ทœ๋ฒ”ํ†ต์ œ์ œ๋„์˜ ๊ด€์ ์—์„œ 49 ์ œ4์žฅ ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์˜ ์ ๋ฒ•์„ฑ์— ๋Œ€ํ•œ ์žฌ๊ณ  52 ์ œ1์ ˆ ์žฌํŒ์†Œ์›๊ธˆ์ง€์˜ ์›์น™ํ™”์™€ ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์˜ ์†Œ๋ฉธ 52 1. ์„œ๋ก  52 2. ์žฌํŒ์†Œ์›๊ธˆ์ง€ ์ทจ์ง€์˜ ์˜๋ฏธ 53 ๊ฐ€. ์œ ๋ž˜ 53 ๋‚˜. ๊ณผ๊ฑฐ ๊ฒฐ์ •๋ก€์˜ ์˜๋ฏธ 55 3. ์ ๋ฒ•ํ•œ ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์˜ ์™ธ์—ฐ 58 ๊ฐ€. ํ—Œ๋ฒ•์žฌํŒ์†Œ ๊ฒฐ์ •์˜ ๋ฌธ์ œ์  58 ๋‚˜. ์„ ํ•ด์˜ ๊ฐ€๋Šฅ์„ฑ๊ณผ ํ•œ๊ณ„ 61 4. ์žฌํŒ์†Œ์›๊ธˆ์ง€ ์ทจ์ง€์˜ ๊ณผ๋„ํ•œ ํ™•๋Œ€ 62 ๊ฐ€. ํฌ์„ญ๊ณผ ์ ์šฉ์œผ๋กœ์˜ ๋ถ„๋ฅ˜ ํŽธ์ค‘ 63 ๋‚˜. ์žฌํŒ๊ฒฐ๊ณผ๋ฅผ ๋‹คํˆฌ๋Š” ๊ฒฝ์šฐ๋กœ์˜ ํŽธ์ค‘ 69 5. ์‹ฌํŒ๋Œ€์ƒ์˜ ๋ฌธ์ œ์™€ ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์˜ ์†Œ๋ฉธ 72 ์ œ2์ ˆ ๋น„๊ต๋ฒ•์  ๊ณ ์ฐฐ 82 1. ์„œ๋ก  82 2. ๋…์ผ 82 ๊ฐ€. ๋…์ผ ํ—Œ๋ฒ•์žฌํŒ์ œ๋„์˜ ํŠน์ง• 82 ๋‚˜. ์žฌํŒ์†Œ์›์˜ ํ—ˆ์šฉ๊ธฐ์ค€ 86 ๋‹ค. ์‹œ์‚ฌ์  90 3. ์˜ค์ŠคํŠธ๋ฆฌ์•„ 90 ๊ฐ€. ์˜ค์ŠคํŠธ๋ฆฌ์•„ ํ—Œ๋ฒ•์žฌํŒ์ œ๋„์˜ ํŠน์ง• 90 ๋‚˜. ๋ฒ•๋ฅ ์†Œ์›์ œ๋„ 92 ๋‹ค. ์‹œ์‚ฌ์  94 4. ํ”„๋ž‘์Šค 95 ๊ฐ€. ํ”„๋ž‘์Šค ํ—Œ๋ฒ•์žฌํŒ์ œ๋„์˜ ํŠน์ง• 95 ๋‚˜. ๊ตฌ์ฒด์  ๊ทœ๋ฒ”ํ†ต์ œ์ œ๋„์˜ ์‹ ์„ค 96 ๋‹ค. ์‹œ์‚ฌ์  98 5. ๋ฏธ๊ตญ 100 ๊ฐ€. ๋ฏธ๊ตญ ํ—Œ๋ฒ•์žฌํŒ์ œ๋„์˜ ํŠน์ง• 100 ๋‚˜. ๋ฌธ๋ฉด ์œ„ํ—Œ๊ณผ ์ ์šฉ ์œ„ํ—Œ 101 ๋‹ค. ์‹œ์‚ฌ์  105 6. ์†Œ๊ฒฐ๋ก  107 ์ œ3์ ˆ ํ•ด๊ฒฐ๋ฐฉ์•ˆ์˜ ๋ชจ์ƒ‰ 107 1. ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์˜ ์‹ฌํŒ๋Œ€์ƒ ํ™•์ •์— ๊ด€ํ•˜์—ฌ 107 ๊ฐ€. ์„œ๋ก  107 ๋‚˜. ์ข…๋ž˜ ๋…ผ์˜์˜ ์‹œ์‚ฌ์  108 ๋‹ค. ์‹ฌํŒ๋Œ€์ƒ ํ™•์ •์˜ ๊ธฐ์ค€ 110 ๋ผ. ๊ฒ€ํ†  112 2. ํฌ์„ญ๊ณผ ํ•ด์„์˜ ๋ฌธ์ œ์— ๊ด€ํ•˜์—ฌ 115 ๊ฐ€. ์˜์˜ 115 ๋‚˜. ๋ฌธ์ œ์  116 ๋‹ค. ๊ฒ€ํ†  119 3. ํ•œ์ •์œ„ํ—Œ์ฒญ๊ตฌ์˜ ์ ๋ฒ•์„ฑ ๋ฐ ์ƒˆ๋กœ์šด ์‹ฌ์‚ฌ๊ธฐ์ค€์— ๊ด€ํ•˜์—ฌ 120 ์ œ5์žฅ ๊ฒฐ๋ก  124 ์ฐธ๊ณ ๋ฌธํ—Œ 128 Abstract 135Maste

    ๊ฐœ์˜ ๋งŒ์„ฑ ์ฒ™์ˆ˜ ์†์ƒ์— ๋Œ€ํ•œ ๋‡Œ์œ ๋ž˜์‹ ๊ฒฝ์ธ์ž๋ฐœํ˜„ ์ค‘๊ฐ„์—ฝ์ค„๊ธฐ์„ธํฌ์™€ ์ฝ˜๋“œ๋กœ์ด์น˜๋„ค์ด์ฆˆABC์˜ ์‹ ๊ฒฝ ์žฌ์ƒ ํšจ๊ณผ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ˆ˜์˜ํ•™๊ณผ, 2017. 2. ๊ถŒ์˜ค๊ฒฝ.Successful repair of spinal cord injury (SCI) is a major issue in veterinary neurosurgery. Multipotent mesenchymal stromal cells (MSCs) have effective potentials of neuronal regeneration. Besides, chondroitinaseABC (chABC) and neuronal factors such as brain-derived neurotrophic factor (BDNF) are widely investigated to repair chronic SCI. Single treatments with those factors, for neurotropic effects or lysis of chondroitin sulfate proteoglycans as barrier to neuronal regeneration have been evaluated. It was hypothesized that combination therapy with factors having different traits could be more effective than single treatment. The studies were composed of two parts. First, combinational therapy of canine adipose tissue derived MSCs (cADMSCs) and chABC was evaluated in relation to functional recovery and neuronal regeneration. Second, local injections of chABC and BDNF-expressed cADMSCs with intravenous injection of cADMSCs were evaluated. In the first chapter, it was clarified that 5 U/mL chABC did not have a harmful effect on the viability of cADMSCs. The dogs treated with cADMSCs + chABC and cADMSCs showed significantly better functional recovery 8 weeks after transplantation compared with the negative control and chABC groups (p < 0.05). In addition, the combination of cADMSCs and chABC increased the expression of digested chondroitin sulfate proteoglycans (CSPGs), ฮฒ3-tubulin, and neurofilament microtuble (NF-M). However, the levels of cyclooxygenase2 (COX2) (p < 0.05) and tissue necrosis factor ฮฑ (TNFฮฑ) were higher in the treatment groups than in the control. Transplantation of cADMSCs + chABC was more effective in improving clinical signs and neural regeneration, but a strategy for anti-inflammation after the treatment for chronic SCI would be needed for further improvement. Higher expressions of inflammation markers could have negative effect on the microenvironment of the injured spinal cord. Neurotrophic factors were not detected even after transplantation of cADMSCs. To improve the clinical outcome after the SCI, the suitable methods that decrease inflammation and increase neurogenic factors are needed. In the second chapter, combinatorial transplantation of chABC and cADMSCs genetically modified to secrete BDNF with intravenous administration of cADMSCs were investigated. BDNF-expressing MSCs (MSC-BDNF) were generated using a lentivirus packaging protocol. The dogs in the chABC/MSC-BDNF included groups had significantly improved functional recovery 8 weeks after transplantation compared to those in the chABC/MSC-GFP group. The animals in the chABC/MSC-BDNF/IV group showed significant improvements in functional recovery at 6, 7, and 8 weeks compared to those in the chABC/MSC-BDNF group (p < 0.05). Fibrotic changes were significantly decreased in the chABC/MSC-BDNF/IV group. Significant decreases in the expression levels of TNFฮฑ, interleukin-6 (IL-6), COX2, gial fibrillary acidic protein (GFAP), and galactosylceramidase (GalC) and increased expression levels of BDNF, ฮฒ3-tubulin, NF-M, and nestin in the chABC/MSC-BDNF/IV group were observed. These findings suggested that degradation of the glial scar by chABC combined with the presence of neurotrophic factors released by of the transplanted MSCs secreting BDNF can enhance functional recovery after chronic SCI. It was demonstrated that lentiviral-mediated BDNF gene modification of cADMSCs allowed for stable BDNF production. In addition, chABC combined with cADMSCs transplantation, along with the IV administration of cADMSCs promoted clinical recovery in the injured spinal cord via microenvironment modification, anti-inflammation, and neuronal regeneration. Thus the combinatorial treatment of direct and intraveonus injections of BDNF expressing cADMSCs and chABC has a good therapeutic potential in the treatment of chronic SCI and this can be used as an alternative treatment modality in neuronal regeneration.BACKGROUNDS 1 CHAPTER I Effect of the combination of mesenchymal stromal cells and chondroitinaseABC on chronic spinal cord injury 13 ABSTRACT 13 INTRODUCTION 15 MATERIALS AND METHODS 17 1. Isolation and culture of cADMSCs 17 2. Viability of cADMSCs in the presence of chABC 18 3. Duration of chABC activity on CSPGs 18 4. Induction of SCI 19 5. Transplantation of cADMSCs and chABC into the injured sites 20 6. Behavioral assessments 21 7. Histopathological and immunofluorescence analyses 21 8. Western blot analysis 26 9. Statistical analysis 27 RESULTS 28 1. Effect of chABC on cell viability 28 2. Degradation effect of chABC over time 28 3. Behavioral observations 30 4. Histopathological and immunohistochemical assessments 34 DISCUSSION 42 CHAPTER II Impact of local injection of BDNF-expressing mesenchymal stromal cells combined with intravenous delivery mesenchymal stromal cells in canine model of chronic spinal cord injury 47 ABSTRACT 47 INTRODUCTION 49 MATERIALS AND METHODS 51 1. Isolation and culture of cADMSCs 51 2. Lentiviral packing and transfection with green fluorescence protein (GFP) labeled BDNF 52 3. Viability of gene-modified cADMSCs and the effect of chABC 54 4. Western blot analysis of cADMSCs 55 5. Flow cytometry analysis 56 6. Induction of SCI 57 7. Direct transplantation of cADMSCs and chABC into the injured sites and intravenous administration of cADMSCs 58 8. Behavioral assessments 59 9. Histopathological and immunofluorescence analyses 60 10. Western blot analysis 61 11. Statistical analysis 63 RESULTS 64 1. GFP expression and viability of BDNF-expressing cADMSCs 64 2. Effect of chABC on cell viability 64 3. Western blot analysis of the cADMSCs 67 4. Characteristics of gene-modified cADMSCs 67 5. Behavioral observations 71 6. Histopathologic assessments 72 7. Immunohistochemical assessments 78 DISCUSSION 84 GENERAL CONCLUSION 89 REFERENCES 91 ๊ตญ๋ฌธ์ดˆ๋ก 97Docto

    Treatment of Urinary Incontinence after Radical Prostatectomy

    Get PDF
    Urinary incontinence is a significant complication following radical prostatectomy. Conservative treatments such as pelvic floor muscle exercise and pharmacologic therapy aim for early restoration of the pelvic floor and bladder function. Surgical treatment is advisable when significant and bothersome stress urinary incontinence persists even after 6 to 12 months of conservative treatment. Implantation of the artificial urinary sphincter is still the gold standard but still has significant complication and revision rates. Recently, new surgical techniques and materials are emerging aiming for those patients with less severe incontinence whom artificial urinary sphincter seem either too costly or invasive. This article summarize the latest issues in the treatment of urinary incontinence following radical prostatectomy.ope

    ์Œ์„ฑ ํšŒ๋ณต์„ ์œ„ํ•œ ์ž๊ธฐ ์น˜์œ  ๋ฐ ์ ‘์ฐฉ์„ฑ ์ธ๊ณต ์กฐ์ง ํ•˜์ด๋“œ๋กœ๊ฒ”

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๋ฐ”์ด์˜ค์—”์ง€๋‹ˆ์–ด๋ง์ „๊ณต, 2019. 2. ํ™ฉ์„์—ฐ.Loss of voice after vocal fold resection due to laryngeal cancer is a significant problem resulting in a low quality of life. Although there were many attempts to achieve functional restoration of voice, challenges to regenerate vocal fold still remains due to its unique tissue mechanical characteristics such as pliability that produces phonation via vibration. In this study, we developed mechanically compliant interpenetrating polymer network (IPN) hydrogel based on polyacrylamide (PAAM) and gelatin that matches physical and functional properties with native vocal fold tissue. The mechanical properties of this PAAM/gelatin (PG) hydrogel were modulated and optimized for vocal fold engineering by adjusting PAAM/gelatin ratio. In addition, PG hydrogel showed minimal foreign body reaction upon implantation, and the hydrogel displayed strong resistance to dehydration condition. Furthermore, PG hydrogel demonstrated self-healing ability that may allow ad-hoc implant augmentation. In addition, tough adhesion of PG hydrogel resulted in stable attachment to vocal fold tissues. Finally, we demonstrated the functional restoration of voice on ex vivo canine model by implanting PG hydrogel as an artificial vocal fold tissue.ํ›„๋‘์•”์œผ๋กœ ์ธํ•œ ์„ฑ๋Œ€ ์ ˆ์ œ์ˆ  ํ›„ ๋ชฉ์†Œ๋ฆฌ์˜ ์ƒ์‹ค์€ ์‚ถ์˜ ์งˆ์ด ๋‚ฎ์•„์ง€๋Š” ๋“ฑ์˜ ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ๋“ค์„ ์•ผ๊ธฐํ•œ๋‹ค. ์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ์—ฌ๋Ÿฌ ๋ฐฉ๋ฒ•๋“ค์„ ํ†ตํ•œ ์Œ์„ฑ์˜ ๊ธฐ๋Šฅ์  ๋ณต์›์ด ์‹œ๋„๋˜์—ˆ์ง€๋งŒ, ์ง„๋™์„ ํ†ตํ•ด ์Œ์„ฑ์„ ์ƒ์„ฑํ•˜๋Š” ์„ฑ๋Œ€์˜ ์œ ์—ฐ์„ฑ๊ณผ ๊ฐ™์€ ๋…ํŠนํ•œ ๊ธฐ๊ณ„์  ํŠน์„ฑ์œผ๋กœ ์ธํ•ด ์Œ์„ฑ ํšŒ๋ณต์—๋Š” ์—ฌ์ „ํžˆ ๋งŽ์€ ๋ฌธ์ œ๋“ค์ด ๋‚จ์•„์žˆ๋‹ค. ์ด์— ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ํด๋ฆฌ์•„ํฌ๋ฆด์•„๋งˆ์ด๋“œ์™€ ์ ค๋ผํ‹ด์˜ ๋น„์œจ์„ ์ตœ์ ํ™”ํ•˜์—ฌ ์„ฑ๋Œ€ ์กฐ์ง์˜ ๊ณ ์œ  ๋ฌผ๋ฆฌ์ ฮ‡๊ธฐ๋Šฅ์  ํŠน์„ฑ์„ ์ง€๋‹Œ ์ธ๊ณต ์กฐ์ง ํ•˜์ด๋“œ๋กœ๊ฒ”์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์˜ ํ•˜์ด๋“œ๋กœ๊ฒ”์€ ์„ฑ๋Œ€์™€ ์œ ์‚ฌํ•œ ๊ธฐ๊ณ„์  ํŠน์„ฑ๊ณผ ๋”๋ถˆ์–ด ๋†’์€ ์ƒ์ฒด์ ํ•ฉ์„ฑ๊ณผ ํƒˆ์ˆ˜ ์กฐ๊ฑด์— ๊ฐ•ํ•œ ์ €ํ•ญ์„ฑ์„ ๋ณด์˜€๋‹ค. ๋˜ํ•œ ์ด ํด๋ฆฌ์•„ํฌ๋ฆด์•„๋งˆ์ด๋“œ/์ ค๋ผํ‹ด ํ•˜์ด๋“œ๋กœ๊ฒ”์˜ ์ž๊ฐ€ ์น˜์œ ๋Šฅ์€ ์„ฑ๋Œ€์— ์ด์‹์‹œ ์ง€์†๋ ฅ์„ ๋ณด๊ฐ•ํ•ด์ฃผ์—ˆ๊ณ , ๊ฒฌ๊ณ ํ•œ ์ ‘์ฐฉ์„ฑ์€ ์„ฑ๋Œ€ ์กฐ์ง์— ์•ˆ์ •ํ•œ ๋ถ€์ฐฉ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ์˜ ํ•˜์ด๋“œ๋กœ๊ฒ”์„ ๊ฐœ๊ณผ ๋™๋ฌผ ๋ชจ๋ธ์˜ ์„ฑ๋Œ€์— ์ง์ ‘ ์ด์‹ํ•จ์œผ๋กœ์จ ์Œ์„ฑ๊ธฐ๋Šฅ์˜ ํšŒ๋ณต์„ ํ™•์ธํ•˜์—ฌ, ๊ฐœ๋ฐœ๋œ ํ•˜์ด๋“œ๋กœ๊ฒ”์ด ์„ฑ๋Œ€ ์œ ์‚ฌ ์ธ๊ณต์กฐ์ง์œผ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ์ž…์ฆํ•˜์˜€๋‹ค.Table of Contents 1. Introduction 1 2. Experimental section 4 2.1 Materials 4 2.2 Synthesis of PG Hydrogel 4 2.3 Mechanical Testing 4 2.4 Rheological testing 5 2.5 Swelling and reswelling test 5 2.6 Dehydration resistance test 6 2.7 Scanning Electron Microscopy 6 2.8 Live & Dead assay 7 2.9 Gelatin release test 8 2.10 Self-healing test of PG hydrogel 8 2.11 Synthesis of PG hydrogel with Fluorescein isothiocyanate(FITC)-gelatin 9 2.12 Self-healing test of PG hydrogel with FITC-gelatin 9 2.13 Adhesion of PG hydrogel with FITC-gelatin to porcine cardiac tissue 10 2.14 Peeling test 10 2.15 Ex vivo adhesion Test of PG Hydrogel for Cardiac Application 11 2.16 Recording of Hydrogel Implanted Vocal Fold Vibration with High-Speed Camera and Analysis 12 3. Results and discussion 12 3.1 Preparation and Characterization of PAAM/Gelatin (PG) Hydrogel 13 3.2 Mechanical and Rheological Properties of PG Hydrogel 16 3.3 Self-Healing Ability of PG Hydrogel 20 3.4 Tissue Adhesion of PG Hydrogel via the Anchoring Effect 22 3.5 Application of PG Hydrogel : Artificial Vocal Fold 26 4. Conclusion 29 ์š”์•ฝ (๊ตญ๋ฌธ์ดˆ๋ก) 45Maste

    ๋ฒผ์ด์‚ญ์˜ ๅ™จๅ…งๅŸน้คŠ์—์„œ ๆค็‰ฉ็”Ÿ้•ท่ชฟ็ฏ€็‰ฉ่ณช๋“ค์ด ็จฎๅฏฆ็™ป็†Ÿ์— ๋ฏธ์น˜๋Š” ๅฝฑ้Ÿฟ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๋†ํ•™๊ณผ,2001.Maste
    • โ€ฆ
    corecore