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ABSTRACT

The mixed-reference spin—flip time-dependent density functional
theory (MRSF-TDDFT) is proposed, which is derived from linear
response formalism for the time-dependent Kohn—-Sham equation by
the use of mixed reference. Linear response from the mixed reference,
which combines Ms =+ 1 and -1 components of triplet state, generates
additional configurations in the realm of TDDFT. Resultantly, MRSF-
TDDFT eliminates the erroneous spin—contamination of the SF-
TDDFT. Analytic energy gradients of the response states with respect
to nuclear coordinates are also derived and implemented. The
computational overhead of singlet or triplet states for MRSF-TDDFT
is nearly identical to that of SF=TDDFT. The resulting MRSF-TDDFT
computational scheme has several advantages before the conventional
SF-TDDFT. Linear-response equations for the singlet and triplet
responses are clearly separated. This considerably simplifies the
identification of the excited states, especially in the ~ " black—box" type
applications, such as the automatic geometry optimization, reaction
path following, or molecular dynamics simulations of the targeted
states. Accuracy of MRSF-TDDFT has been tested and verified in
various ways including vertical-excitation energy, singlet—triplet
energy gap, adiabatic—excitation energy, optimized structure,

minimum energy conical intersection, nonadiabatic coupling term, and _
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nonadiabatic molecular dynamic simulation. Therefore, it is highly
expected that the MRSF-TDDFT has advantages over SF-TDDFT in

terms of both practicality and accuracy.

Keyword: Photochemistry, Spin-flip time-dependent density

functional theory, Spin contamination problem, Conical intersection,

Nonadiabatic coupling matrix term, Nonadiabatic molecular dynamics.

Student Number: 2014-21231
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INTRODUCTION

Proper and efficient descriptions of electronic excited states have
become more important than ever, as the theoretical studies of
emerging sciences, such as photovoltaics,[1, 2] molecular rotor[3]
are heavily dependent on them. A widely used methodology for
studying molecular excited states is the linear-response time-
dependent density functional theory (LR-TDDFT).[4-10] It is based
on the time—-dependent Kohn-Sham (TD-KS) equation with the linear—
response formalism using a singlet ground state as a reference state.
In this approach, a fictitious noninteracting system is introduced whose
density is equal to that of the real interacting system.[11, 12] A wave
function of the noninteracting system is assumed to be described by a
single Slater determinant, which is referred to as an idempotency of

reduced density matrix in terms of the density matrix.[13, 14]

Contrasting to its popularity, well-known failures of this
methodology exist, in describing the energy of long-range charge
transfer excitations,[15-19] excited states with substantial double
excitation character,[20-23] excited states of molecules undergoing
bond breaking,[23-25] and real and avoided crossings between the

ground and excited states of molecules.[26-29] Some of these



drawbacks, in particular, the incorrect description of the S1/So conical
intersections and the poor description of multi—-reference electronic
states, can be corrected to some extent by the spin—flip (SF)-

TDDFT,[30-32] which employs an Ms = +1 component of triplet

ground state e.g., |aa>, as a reference state instead of the closed-

shell reference of the LR-TDDFT. However, the use of only one
component of the degenerate triplet state leads to considerable spin
contamination of the resulting excited electronic states, except in a
few low-lying excited states.[33] The spin contamination of SF-
TDDFT is different from that of the unrestricted Hatree-Fock (UHF)
wavefunction come from orbital asymmetries. On the other hand, in
SF-TDDFT, the main source of spin contamination is due to spin
incompleteness of an excited set of configurations. Therefore, a key
solution for this problem is to expand the response space of SF-

TDDFT such that it can include the missing configurations.

Within the same contexts, several approaches have been
developed to tackle the spin—contamination problem of the SF
configuration interaction with single excitations (CIS),[33-37] which
1s a wave function version of SF-TDDFT. However, unlike SF-CIS, a
considerable challenge remains with respect to TDDFT when going

beyond the adiabatic approximation to account for more than single
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excitations.[38, 39] Because of this difficulty, only a few methods
have been developed to address the spin—-contamination problem of
the SF-TDDFT. One means of adding more responses 1S to use a
higher excitation operator.[38] Without the TD-KS equation being
utilized, on the other hand, tensor equation—-of-motion (TEOM)
approaches achieved considerable progress, yielding a series of SA-
SF-DFT methodologies.[36, 40, 41] These approaches can produce
correct spin eigenstates by applying tensor operators to a tensor
reference. However, the matrix elements of TEOM are evaluated using
the Wigner—Eckart theorem, which is not satisfied by the approximate
density functionals. Thus, the SA-SF-DFT formalism[36] requires an
a posteriori DFT correction to the SA-SF-CIS equations. Due to the
complexity of TEOM, the analytic energy gradient for the SA-SF-DFT

has yet to be derived.

Rather than using a high excitation operator[38] or using a
tensor operator with a tensor reference,[36] a means of expanding
the response space by linear response from more than one
referencel[42] is shown in this thesis. In 7HEORETICAL
BACKGROUND section, a brief review of derivation for linear
response equation from time—-dependent Kohn-Sham equation is

described. In addition, SF-TDDFT is introduced and its advantages

3 ] 2- 1_l|



and disadvantages are summarized. In MIXED-REFERENCE SPIN—-
FLIP TDDFT section, mixed-reference spin—flip (MRSF)-TDDFT is
proposed which eliminate spin—contamination problem of SF-TDDFT
while maintaining its advantages. Linear response equation of MRSF-
TDDFT is derived and a posteriori coupling, which is referred as spin-—
pairing coupling, is introduced. In ANALYTIC ENERGY GRADIENT OF
MIXED-REFERENCE SPIN-FLIP TDDFT section, analytic energy
gradient is derived by the Lagrangian of MRSF-TDDFT. In
NUMERICAL RESULTS section, accuracy of MRSF-TDDFT has been
tested and verified in various ways including vertical-excitation
energy, adiabatic—excitation energy, optimized structure, minimum
energy conical intersection, nonadiabatic coupling term, and

nonadiabatic molecular dynamic simulation.

It is noted that this thesis reorganizes the contents of three papers
published in international journals and those of papers in preparation.

MIXED-REFERENCE SPIN-FLIP TDDFT
S. Lee, M. Filatov, S. Lee, C.H. Choi, J. Chem. Phys. 149, 104101 (2018)
ANALYTIC ENERGY GRADIENT OF MIXED-REFERENCE SPIN-FLIP TDDFT
S. Lee, E.E. Kim, H. Nakata, S. Lee, C.H. Choi, J. Chem. Phys. 150, 184111 (2019)
NUMERICAL RESULTS
1. Vertical excitation energy
S. Lee, M. Filatov, S. Lee, C.H. Choi, J. Chem. Phys. 149, 104101 (2018)
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Y. Horbatenko and S. Lee, M. Filatov, C.H. Choi submitted for publication
2. Singlet—triplet energy gap
Y. Horbatenko and S. Lee, M. Filatov, C.H. Choi submitted for publication
3. Geometry—-optimization structure
S. Lee, E.E. Kim, H. Nakata, S. Lee, C.H. Choi, J. Chem. Phys. 150, 184111 (2019)
3. Adiabatic excitation energy
S. Lee, E.E. Kim, H. Nakata, S. Lee, C.H. Choi, J. Chem. Phys. 150, 184111 (2019)
4. Conical intersection
S. Lee, E.E. Kim, H. Nakata, S. Lee, C.H. Choi, J. Chem. Phys. 150, 184111 (2019)
S. Lee and S. Shostak, M. Filatov, C.H. Choi, submitted for publication
5. Non-adrabatic coupling matrix elements
S. Lee, E.E. Kim, S. Lee, C.H. Choi, J. Chem. Theory Comput. 15, 882 (2019)
6. Non-adiabatic molecular dynamics

S. Lee, E.E. Kim, M. Filatov, S. Lee, C.H. Choi, in prepararation



THEORETICAL BACKGROUND

1. Idempotency of reduced density matrix

The essence of time—dependent density functional theory (TDDFT) is
the determination of the exact density in a time domain or in a
frequency domain from which any many-particle observable can be
obtained.[4-10] In this paper we shall only consider the density of
electrons. Based on the Runge-Gross theorem, the fictitious non-
interacting Kohn-Sham (KS) system is defined.[11, 12] In this system,
there 1s no interaction between electrons but all potentials are

described as one-particle operators. An one—electron wave function
of non—interacting KS system, ‘y/i"i (t,X)>, is referred as KS molecular

orbital (MO). The 1 and o; stand for index of the spatial part and
that of spin part for the ith occupied KS MO, respectively, and x
denotes both position and spin of the electron, Xx=(r,o). A many-
electron wave function of the non-interacting system, |‘P[p](t)>, is
usually restricted to be a normalized single Slater determinant. Then,
the reduced density matrix (RDM) of the |W[p](t)) can be represented

as

0CC

Pt % X’) :Z

io;

vt X)><‘//iai (t, X')‘ ) (1)



where the summation index of io; denotes a summation over occupied

MOs. It can be rewritten with the time—independent KS MO,

47 (9).
(which is the solution of the usual time—independent KS equation) as

ptXX)= D Py o (1)

Poyqoy

¢ 00) (5 ()| 2

where summation indices of po, and qo, represent summations

over whole MOs, and P (t) is the discrete representation of the

po,4o,
RDM; denoted as the density matrix, in the following. The diagonal
part of the RDM is the density of the non-interacting system,

p(t,x) = p(t, X, X), (3)
which 1s assumed to be equal to the density of the corresponding real
system. In this paper, we shall only consider a case of systems
consisting of even—number (21) electrons,

Tro(t, X, X) = 2n. (4)
Due to the restriction of single Slater determinant of |\P[p](t)>, the
RDM is idempotent,

ot x,x") =Jp(t, X, X")p(t, X", x")dx", (5)
which can be rewritten for the density matrix as

Porsao, ©= 2 Poc i P, . VPo.q0. 6)

toy

7 ] 2- 1_l|



2. Time-dependent Kohn-Sham equation

The TD density can be determined by the TD-KS equation which will

be discussed in this subsection. First, let us consider the Dirac action:
t .0
Alpl= [ (YIRS~ HOO| ¥Lpl0) ot (7)

The stationary action principle with respect to the KS MO,

A p]/5<1//i"‘ (t,X)‘zO, leads to the TD-KS equations, [43]

i§|wioi (t.%) = FLo®]|y" (. %), io, € occupied MO.  (8)

In terms of the RDM, the TD-KS equation can be rewritten as

.0
i—p=Fp-pF, (9
5P=Fr-r
which become
.0
= P =Z(Fpm Pror ~ Poo ton Fian ) p,,qo, € whole MO. (10)
where

_ (47" pX) 4o, SATLA]
Foosir, = [ #; (x)( Z|r_R| j|r _r| o )}» (x)dx.(11)

Within the adiabatic approximation, the exchange-correlation (XC)
part A*® of the action functional is replaced by the XC functional of
time-independent DFT evaluated with the density p, at time ¢

SAC[p]/Sp(t,x) = SE*[p,]/dp. (x) . In the case of approximate hybrid XC



functionals, the Fock matrix, F becomes

poyog

ap* _1 2 ZA o
Fooio, =] %; (x)( ;v z|r_RA|J¢q (x)dx

+@-c)[ 47 (%) EXC([’?] 7 (x)dx (12)

+ Y Poo O] [ 477 (067 ()

10,50 |

“C—P(X'X”w (X) (x)clxdx’,

where Is(x,x’) is the permutation (exchange) operator and c, is the
mixing coefficient for the exact (Hartree-Fock, HF) exchange; ¢, =

O or 1 recovers the pure DFT or pure HF limits, respectively.

3. Linear-response theory

A way to solve the density—matrix formulation of TD-KS equation in
Eq. (10) within linear-response formalism is suggested by using the
idempotency of RDM in Eq. (6).[13] In this subsection, a review of the
derivation of linear-response equation is presented starting from the

Volterra expansion.

3.1 Volterra expansion

Suppose a time-dependent one—electron external perturbation, e.g., a

time—dependent electric field, with a frequency Q and a strength 4
§

9 -":lx_! _'\.:_'I' |



v (t)=Ah e t+c.c. (13)

pa 90y po,dog

is applied to a reference system at time O, whose density can be
determined by the usual time-independent DFT. Here, c.c. denotes
complex conjugate of the preceding term. Then, the density matrix,

(t), and the Fock matrix, Fp(y ¥, (t), can be expanded in powers

PU G0y
of 4 as
Pooyao, (1) = Pao oo + APa) o (1) + O(4%), (14)
Froyo, (1) = Fp(g) @, +/1Fpi_) @, (t) + O(A%). (15)

If the reference system is described by a single Slater determinant,

the zeroth—order density and Fock matrices are given in

o _ 5pq5%%, for pa,,qo, € occupied MO, (16)
P79% | otherwise, 0
Fiow, =] 85" (x)[ V- Z| - J “(x)dx
] 7 00 25 L) e (17)
3p, (X)
e 1-c,P(x, x
S I14 ar (x)%qﬁ (X ()X,
The first-order density and Fock matrices can be represented by
P, (0 =0, o, &7 +c.C., (18)
F,, e
Fp(i- qo, (t):v;):pqaq (t)+ Z #Prg-zsas (t) (19)
The matrix, dp(_quacI in Eq. (18), represent amplitudes of linear

10 ] 2-1
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response of density. The first and the second terms of Eq. (19) are the
external perturbation potential and the response of the Fock matrix to

the density variation, respectively.

3.2 Connection between linear response of density and one-
electron excitation

Substituting expansion of density matrix of Eg. (14) into the

idempotency relation of Eq. (6) yields the idempotency relations for

the zeroth— and first—-order density matrices, respectively,

@ p® (0
Z Ppa toy to—lqaq - Ppapqo-q ' (20)
toy
() (0) (0) (6] —_p®
Z:(Ppgpto‘l Ptcr‘qaq + Ppc)'ptat Ptqqcrq ) - Ppapqaq ' vap 1 qo—q ' (2 1)

toy

The former relation of Eq. (20) satisfied with the condition in Eq. (16)

enable to define projection matrices onto the subspace of the occupied

and onto the unoccupied MOs, 0. — P9 The orbital

ac,ao, ac,ac,

MOs, P9

Iojlo; ’
index convention used in this section is 7, j for occupied MOs, a, b for

virtual MOs, p, g, r, s, ¢t for MOs in general.

Meanwhile, substituting the first-order density matrix of Eq. (18) into

the first-order idempotency relation of Eq. (21) yields

(0) (0) —
Z (d poytoy P(O'tqaq + Ppcrptcrt dtc‘qoq ) - d po,doy ! (22)

toy

11 A=



from which the amplitude matrix d can be represented as

Poyloq
poaoy = K poyacy T Voo (23)
where
(0)

po’DqO' Z ( poyroy - po’ ro, )Ivlro'rso's Psasqaq’ (24)

ro,Soy

(0) (0)

papqo z Ppo’ ro, ro',sa'S (550'5qo'cl - Psasqcrq ) (25)

ro,So
Here M, 1is an arbitrary matrix. X . has non-zero elements

between the unoccupied po, and occupied o, MOs and

corresponds to one—electron excitations, whereas the matrix Ypo,pqgq

has non-zero elements for the occupied po, and unoccupied o,

MOs and corresponds to one—electron de—excitations. It is emphasized
that the first—order density matrix can be represented in terms of MOs
of reference system, and these can be interpreted as one-electron

excitation and de—excitation from the Egs. (24) and (25).

In this paper we shall use Tamm-Dancoff approximation (TDA)[44, 45]

in which the excitation amplitude, X 1s only considered and the

po.pqo-q ’

de-excitation amplitude Y 1s ignored.

: ek



3.3 Linear response equation

Substituting expansion of density and Fock matrices of Egs. (14) and
(15) into the TD-KS equation of Eq. (10) yields equation of motions
for the nth—order density matrix. These for the zeroth— and the first-

order density matrix are given by

0= z(F(O) pO  _pO EO ) (26)

poytoy  toyqoy poytoy ~ toydoy
toy

pO'pqO' po ta, ta,qa po ta'l t(ﬁqo‘ po, toy to’,qa

(l) - Z( potoy tcr.qa P(l) F(O) +F @ P © P(O) 1 ) (27)

The former relation of Eq. (26) is already satisfied with a condition in
Eq. (16), while the latter relation of Eq. (27) will determine linear—
response of density. Substituting the first-order density and Fock

matrice of Egs. (18) and (19) into the the latter relation yields

— 0 _ p@©
Qd popboy Z(hpa toy PtO'[qo'q Ppcrptcr[ hta‘qaq )
to,

(0) (0)
Z( ch toy to’lqa d poytoy Ftquaq (28)

toy

oF,
pO' IO‘I (0) (0) to-lqaq
+ z I’O'rSO'S Ptotqaq - Ppapto, z a dra,sa's )

ro.Sog ro,soy ro,sog ro,Soy

Within TDA, the right-multiplication of all terms in Eq. (28) by

projection matrices on occupied MO space, P© and the left-

Goy io; ?

multiplication by projection matrices on virtual MO space,

(0)

ao, pap ao, P

oy gives



_haaaiai = Z (Aao‘aiai,bo‘bjaj - Q5Ij 5o'i0'j 5ab50'ao‘b ) Xbobjdj ' (29)

boy, jo;

where orbital Hessian matrix is

=
+ (30)

jojboy bay, joj

AaO'aiO'i ,bo‘bjo'j = F(O) 5 5 — F(O) 5 é‘

ac,boy, ~ij Yoo iojjo; “ab~ 0,0

3.4 Electronic excitation energy

Electronic excitation energies can be obtained from the linear-
response amplitude of density by analysis of the poles of the
polarizability suggested by M. E. Casida.[5] Within the sum-over-

states (SOS) approach, the dynamic polarizability is represented as

refl 1 ref refl | ref

— Il’lx lLly /’lx /’ly (31)
o Z.: Q, -Q +Z.: Q+Q

where ' =(¥, |r|¥,) and Q, are transition dipole moments in the

et
rdirection and the excitation energy, respectively, from the reference

state to the Ah excited state, and Q 1is frequency of the external

perturbation.

Meanwhile, a linear-response amplitude of the dipole moment in X

direction, du,, can be represented as

Sty =2 D" Y4000, Uporgo. (32)

Popdog

Thus, an element of polarizability is given by
14 MET



5/”x dpapq(’q
axy :?:—2 Z an'qpo'p 5 . (33)

y po,bog y
where = i1s the TD perturbed electric field in y direction. As

mentioned in a previous section, amplitude of linear-response density,

d is equal to the excitation amplitude, X within TDA.

With Eq. (29), it can be rewritten as

aXy = 2 Z z qu_q po, ('A\paptqu,ro-,so—S - Qé‘lj 5010']- 5ab50'aab )_1 yrcr,Sc;s' (34)

Po,00y 10,50,
The first term on the right—hand side of Eq. (31) has poles at excitation
energies, Q,, and the second term has poles at de—excitation energies,
—-Q,. Therefore, the excitation energy can be obtained by comparing
the first term of Eq. (31) and Eq. (34) within TDA.[44, 45] It follows
that the excitation energies are the solutions of the eigenvalue
problem,

sosaon oo, Koo, = 2 X oo (35)
The final resulting equation is called as the linear-response equation

or the Casida equation.
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4. Spin-flip TDDFT

If the zeroth-order (reference) density matrix for the Volterra
expansion in Eq. (16) satisfy that of the closed-shell ground singlet
state, the linear-response equation of Eq. (35) is the conventional
linear-response TDDFT with TDA. Meanwhile, for the spin—flip (SF)-
TDDFT utilize the density matrix of the triplet open-shell

reference[30, 31] shown in upper panel of Fig. 1.

For consistency's sake of describing SF-TDDFT and mixed-reference
(MR) SF-TDDFT, notations used in this rest of thesis are redefined.
Indices for doubly and singly occupied KS spin molecular orbitals (MOs)
of reference states are labeled as 7, ;j and Xx, y, respectively, whereas
those of the virtual KS spin MOs are labeled as a, b. Those for arbitrary
(occupied or virtual) KS spin MOs are written as p, ¢, r, s, ¢, u, and
four Greek indices (x4, v, x, ) denote atomic orbitals. The ¢ and 7 denote
the index for the spin function of the MO. In addition, the closed, open,
and virtual orbital spaces are denoted as C, O and V, respectively. The
number of electrons is 2n, thus the nth and the (#+ 1)th MOs
representing the two orbitals in O space. Indices of O1 and O2 are used

instead of n and nt+1 for these two specific orbitals. To prevent



repeated equations, the O1 and O2 are usually represented as Om (=1,
2) or On (=1, 2), respectively. The singlet and triplet states are
denoted as S and 7, respectively, and the index for these is labeled as

k (k=S, 7). All two—electron integrals are written in chemist notation.

Then, the density matrix of the Ms = +1 triplet reference can be
represented as

P )

ot =L Pothows =1 Poguoz, =1, otherwise 0. (36)
The SF-TDDFT usually utilize TDA and collinear approximation for

exchange—correlation kernel. Thus, the linear-response equation of

SF-TDDFT is given by

zApﬂqa,rﬁSaXrlﬂSa = ZQ|5pr5QSXrlﬂsav (37)
with
Ap/fqa,rﬁSa = Fp(,%)rﬁé‘sq - stz)mfspr —Cy (pr | SQ)' (38)

Schematic diagram describing electronic configurations by one-
electron spin—flip excitation (linear response) from the triplet
reference is shown with black full arrows in Fig. 1. The configurations
are categorized by different initial and final MOs of a spin—flip
excitation for four types: TYPE I (O—0), TYPE II (C—0), TYPE III
(O-V), TYPE IV (C—V). The configurations shown by the gray dashed

arrows are missing in SE-TDDFT. Hence, the excitation space defined



by SF-TDDFT is incomplete and spin—contaminated, as the individual

configurations shown in Fig. 1 are not eigenfunctions of the total spin

S

SF-TDDFT is known to have great advantages in describing single-
bond breaking or single-bond twisting systems.[30, 33] Two features
of SF-TDDFT can be supported this statement. One is that triplet
reference can well-describe two degenerate open-shell MOs, which
frequently occur when a bond is breaking or twisted. In other word,
SF-TDDFT can take into account static correlation. In addition, since
all singlet states are described as response states, there exists
coupling between ground and excited states.[46] It has been found
that there is a great advantage in describing avoided crossing or
conical intersection topology correctly.[27, 46] Despite of such many
advantages, severe spin—contamination of response states except for
few of low-lying excited states makes it difficult to use SF-TDDFT

practically.
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Figure. 1. A schematic diagram of SF-TDDFT. The upper panel depicts the
high-spin triplet reference and the corresponding zeroth—order RDM. In the
lower pannel, a complete set of electronic configurations considered in SF-
TDDFT 1s given. Electronic configurations which can be generated by SF
linear responses (SF one-electron transitions) from the zeroth-order RDM
are given by black arrows in four types. Configurations unable to be obtained

in the linear responses of SF-TD-DFT are given by gray dashed arrows.

19 .__:Ix_c _'\.;:_'I'E..:



MIXED-REFERENCE SPIN-FLIP TDDFT

The main sources of spin—contamination in SEF=TDDFT is the missing
electronic configurations (and the respective amplitudes) shown by the
gray arrows as type I, IIl and IV in Fig. 1. In this thesis, the new mixed
zeroth—-order RDM is introduced[42] as an equiensemble of the Ms =
+1 and -1 components of the triplet state in the first subsection of
Mixed-reference reduced density matrix. As shown in Fig. 2, the use
of the mixed-reference reduced density matrix (MR-RDM) includes
many of the electronic configurations missing in SF-TDDFT. Linear-
response equation with the MR-RDM 1is derived in the second
subsection of in the second subsection of Linear-response equation of
mixed-reference spin-flip TDDFT. A posteriori coupling between
configurations originating from Ms = + 1 and -1 are introduced in the
next subsection of Spin—-pairing coupling. Furthermore, expectation
value of S? operator is evaluated for the response states of MRSF-
TDDFT in the last subsection of Expectation value of S° operator.
From this, it is proved that the spin—contamination of SF-TDDFT is

nearly eliminated in MRSF-TDDFT.[42]

It is noteworthy that not all of the electronic configurations shown in

Fig. 2 can be recovered by the use of the MR-RDM. Thus, four out of

20 A=



six type IV configurations (four configurations shown with the gray
arrows in Fig. 2) are still unencountered. Typically, these
configurations represent high lying excited states and make
insignificant contributions to the low lying states of molecules. Hence,
the effect of the missing configurations for the spin—contamination of

the SF-TDDFT response states is expected to be relatively small.
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Figure. 2. A schematic diagram of MRSF-TDDFT. 7The upper panel shows the
zeroth—order MR-RDM which 1s a combination of Ms = + 1 and -1 RDMs. In
the lower pannel, electronic configurations which can be generated by spin-—
flip linear responses from the MR-RDM are given by black arrows in four
types. Configurations unable to be obtained in the linear responses of MR-
SF-TD-DFT are given by gray dashed arrows.
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1. Mixed-reference reduced density matrix

1.1 Definition of mixed-reference reduced density matrix

The proposed mixed-reference reduced density matrix (MR-RDM) is

Ms=+1

MR ’ 1 r Ms=-1 ’
Py (6 x) =P ) + P (X)) (39)

In terms of the zeroth-order Kohn-Sham (KS) molecular orbital (MO),

it is represented by

P (00X = X 0007 (04) 2 46,00 () +2 4 00 ()
#2052 (0055 00) +2 4 (004 (), 40)

where the first term on the right hand side of the equation represents
the RDM of the C space, the remaining terms — the RDM of the O space.

The zeroth—-order MR-RDM is a diagonal matrix with the elements

(O)MR _1 POMR

POMR =1, pOMR = AR % Paposs = %,otherwiseo, (41)

iai iai OlaOla

1
E’ Pomom - 2

and its trace satisfy the number of electrons:

Poorpe, =20, (42)

poy,poy
poy

1.2 Molecular orbital of mixed-reference reduced density
matrix

According to the ensemble DFT,[47, 48] the energy of MR-RDM of
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Eq. (39) is given by

MS—+1

Loy 1= (ELYS ™1+ ELRY ) (43)

g=+1

where E[,oO ] and E[,o0 “*1 are energies of M=+l and -1

references, respectively. Since the energies of Mg =41 and -1

references are same, the energy of MR-RDM and those of references
are same as

MS =+1

E[p)"™1=Elpy 1= E[ps 1. (44)
By the ensemble DFT, the spatial part of MOs consisting MR-RDM,

{4}, can be obtained with two conditions as

5 {E[p ]+2qu( ~(,|¢, ))} = (45a)

F =F (45h)

pa ap’

where F, is the Lagrange multiplier. Substituting Eg. (44) into Eq.

(45a) yield

5‘;{ [oy's ™™+ Zqu( ~(¢,|, ))}z (46a)

F =F . (46h)

Pq qp
The conditions of Egs. (46a) and (46b) are those of restricted open-

shell Kohn-Sham method for Mg =+1 reference which is the way to

obtain the spatial part of MOs in SF-TDDFT. Therefore, one can use

same spatial part of MOs of SF-TDDFT in MRSF-TDDFT.
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1.3 Restoring idempotency of the mixed-reference reduced
density matrix
The proposed MR-RDM does not satisfy the idempotency conditions

as in Eq. (20); e.g., an open-shell RDM of the new MR-RDM, P{¥F

(as well as PO, Popuosa» and PR ), violates the condition

Z POMRPOMR _ pO)MR p(O)MR :lP(O)MR ~ POMR (47)

Olato, * to,Ola OlaOla ' OlaOla 2 OlaOla OlaOla?
toy

thus precluding straightforward derivation of the linear-response
equation. As follows from Egs. (40) and (41), the non-idempotency of
the RDM of Eq. (47) originates from half-integer populations of the
zeroth—order open-shell KS orbitals ¢35, and 43, , o=a,f . To
resolve this difficulty and to restore idempotency of the respective
RDM, we replace the original spin—orbitals (with the « or g spin) by
the orbitals of mixed spin, labeled in the following by s; and sy
obtained by the application of a unitary transformation U

UT:£<a|sl> <a|sz>J:£[1+i 1—i], (48)

(Bls,) (Bls,)) 2\1-i 1+i

which leads to the new mixed spin functions of the O space

51=(1+i)0”2r(1_i)'8, sz:(1—i)a-|2—(1+i)ﬂ_ (49)

The new mixed spin O orbitals ¢, k,m=12 are orthonormal among

themselves and with respect to the C and V orbitals.
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Figure. 3. Occupation of open—shell orbitals in a single KS determinant and its
relationship with the respective zeroth-order RDM. A single KS determinant
shown in subfigure (a) represents the RDM of the SF-TDDFT method.
Subfigure (b) shows equivalence between four possible occupation patterns
of the mixed spin-orbitals s; and ss, which all yield the same zeroth order
RDM. Populations of the conventional o spin—orbitals are shown with upward
pointing arrows and of the mixed spin—orbitals are shown with dots.
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There exist four possible choices for populating the new mixed spin-—
orbitals, as shown in Fig. 3b. As all the four population patterns result
in the same RDM, for convenience, the configuration in Fig. 3b with
both s1 mixed spin—orbitals occupied is selected. With this choice of

occupations, the RDM becomes

P66 X)) = D47 (067 (X) + gy (o (X') + 65, (X)gg; (x') - (50)

i

POMR _ 5.5  POMR _1 pOMR _1 otherwise 0. (51)

iaijo-j ij oic; ' ' 01501 - 025,025,
With spatial part of MOs described by real function, the redefined RDM
of Eq. (50) is identical to Eq. (40), as can be easily seen by expanding
the open—shell contributions as, e.g.,
¢é(j.+i)a+(1—i)ﬂ)/2 (X) ¢é(11+i)a+(1—i)ﬂ)/z* (X')
1 a a* ’ * r s a * r H a* r
= E{¢01(X)¢Ol (x")+ ¢§1(x)¢§1 (x") + |¢01(X)¢gl (x") - I¢gl(x)¢01 (x )} (52)
1 a a* ' i p* ’
= E{¢01(X)¢01 (X ) + ¢01(X)¢01 (X )}

and a similar expression for the other open—shell contribution to Eq.
(50). Replacing the old spin parts of the O spin—orbitals (represented
by the a and f spin functions) by the mixed spin functions s; and sg,
while keeping the a and g spin functions for the C and V orbitals and

using Eq. (51), lets one to show that the overall idempotency relation

ZP(O)MR POMR _ p(O)MR (53)

popto; " tooy T ' poydog
toy

holds for the redefined density matrix.
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2. Linear-response equation of mixed-reference spin-flip

TDDFT

As described by previous section, the idempotency of the zeroth-
order density matrix can be recovered by the introduced spin rotation.
Following same steps described in subsection 3 of the first
THEORETICAL BACKGROUND section one can straightforwardly
obtain a linear-response equation of MR-RDM. However, linear
responses from each of Ms = +1 and -1 references should appear
mixed in the linear responses from the MR-RDM. Therefore, one need
to disentangle the mixed responses which is described in subsection
2.1 of Definition of separated excitation amplitude and subsection 2.2
of Disentangling different Ms response. In addition, type I (O—0)
configurations shown in Fig. 2 can be generated by both Ms = +1 and
-1 reference. Due to the unmatching of configuration from different
reference, additional rearrangement is required and it is presented in
subsection 2.3 of KRecovery of one-to-one relation between
configuration and excitation amplitude. With these procedure, one can
obtain clearly separated linear-response equation for singlet and
triplet states, which is described in the next subsection 2.4 of
Separating matrix equations for singlet and triplet response states.

With dimensional transformation matrix introduced in the last
28 et
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subsection 2.5 of Dimensional transformation matrix, the linear—
response equation for the singlet and triplet states can be described
succinctly with a single form. Furthermore, this concept is useful for
the implementation of MRSF-TDDFT with a little modification of code

of SF-TDDFT.
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SF-TDDFT MRSF-TDDFT

M, =+1 M =-1 Mixed Separated
reference reference amplitude amplitude
MR, I M =0,1 Me =1,
X, ' X MR, X Ms =0 x Ms =L
Oﬂca + x Oaca - Os2 Ca - os2 Ca + Os2 Ca
MR,I M =0,1 Me =411
X/ + X, Xo Xose '+ X5S.
04Cs 0,Cy — %,Cp - 0,,Cp 05,Cp
MR,1 M =0,1 Me=-1,1
X! + X! Xvo X5 o+ X, 5
V40, V40, — V4O — 78 V404
| 1 XMR,I Mg =01 Mg =+1,1
Xvaoa + Xvao y - V40 N Xva o + V.0,
XI XI XMR,I MS:0’| Ms=—2,|
VCq + V4Cy - VCq - XvﬂcLZ + Xvﬂca
X! X! X MR Mg =0,1 Mg =+2,1
VoCy + V,Cy - V,Cy - V,Cy + VoCp
MR, 1 M =0,1 Redun, 1
X | + X | f X s=4% + X ,
0 ﬂo(Z 0,0 5 —> 052 051 —> o52 oSl 052 O51
X | + X | X MR, |
v,C, v,C, - v,C,
| + | MR, 1
vﬁcﬂ vﬁcﬂ d VyCp

Table 1. Connection between the excitation amplitudes of the SF-TDDFT from
each Ms = +1 or -1 reference, and the new excitation amplitudes of the MRSF-

TDDFT from the mixed reference.
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2.1 Definition of separated excitation amplitude

As shown in Tab. 1, it is natural to think that total eighteen types of

independent excitation amplitudes X! from Ms = +1 or Mg = -1

poyqo,
reference, are entangled in the nine types of new excitation amplitudes

X oo, » for each row, two X, . - are entangled in X7 . It is noted

that Xé"s':‘(')sl on the 7th row has a redundant part since the

configurations are same generated by O—0 excitations from two

different references.

The starting point for separating these entangled excitation amplitudes

can be found in the general expression of the summation

zm . (ana - /6Pr6rSGS)XMR' in the matrix equation. For any index

ro,so.

po, and qo,, the summation index ro, and so, can be expanded

into the 7 types of Tab. 1 as

oF
Z Popbog YXMRI
ro'I,So's -

ro'rSG ro— sg

p"pq“ 1- X MR

papqo 1+i o R

(54b)

popaog 1+i X MR p"pq" I MR
Ws a WS. v'ar (543)
b i Thae = ]

{ \/_ apwajﬁ \/— WSZJﬂ Z \/’ apwﬂ]ﬂ \/7 wsy i
{ p“pq” X MR,

papqo 1+ |, wr
Eal Pt LTy e (54¢)
E T Py V2 }
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oF ; ;
1 popaoy 1+1 X MR p"pq(’ =1 MR,
+ — az X s (54d)
{bzz 2 anlZZﬂ \/_ b £ Z \/_ apbaza \/_ ’ 1
oF
1 Poyog ¥ MR P"pq” 1 R
+ R . —X i (546)
{% 2 apbﬂ]a \/’ bﬁ] Z \/7 apb/“a \/E bjj
oF
1 Popdog X MR.I p"pq" 1 R
IDL S I a — e XM (541)
{; \/E 6Pbajﬂ \/— b iB Z \/— apbajﬂ \/— ba jp
+ Zl GFp‘qu‘Tq + an"pq"q XML l anapq“q _ an"pq i MR (54g)
wz 2 aPwﬁzoz aPwazﬂ 2 aPwazzgz aPwﬁz,b’ 2

In each of Egs. (54a)-(54f), two terms are given come from Ms = + 1
and -1 references. The excitation amplitude in the left term
corresponds to a configuration with Ms = O, and that in the right term
corresponds to a configuration with Ms # 0. While, in Eq. (54g), the left
term come from both Ms = +1 and -1 references, and the right term
1s the redundant term. From this fact, the separated excitation

amplitudes can be defined as in Tab. 2.
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M, =0 amplitudes M #0 amplitudes

Mg =0l _ 1+i MR, Mg=-11 _ 1-i MR, Mg=0,I _ .y, Mg=-11
Xuszia = \/E usyia Xuszia = \/E Xuszia Xuszia - IXusziaz
X Mg=0,1 _ 1-i MR, 1 Mg=+L1 _ 1+i MR, | X Mg =01 _ iX Mg =+1,1
us,if = \/E usift usiff = \/E us,if8 usyif T ! usyif
Mg=01 _ 1-1  wry Mg=-11 _ 1+1 , wr Mg=00 _ iy, Mg=-1
Xaﬁvsl - \/5 Xaﬁvsl Xa/ivsl - \/E Xaﬁvsl Xa,b‘vs1 - Ixaﬂvs1
Mg =0,1 _1+i MR, | Mg =+L1 _1—i MR, 1 Mg=0,1 _ -y, Mg=+11
Xaavsl = \/E xawzvsl xaavsl = 2 Xaozvs1 Xewzvs1 - Xalavs1
XM5=0J — 1 X MRl st“z' _ 1 X MRI Mg=0,1 _ \, Mg=-21
afia - \/E afia afia - 2 afia Xaﬂia - xaﬂia
XM5=0J — 1 X MR Mg=+21 _ 1 X MR x Mg =01 _ y Mg =+
aaip = \/E aaip aaip - \/’ acaif aaip ~ Nagip
Mg=0l _ v, MR, Redun,I _ sys MR,I Mg =01 _ .\, Redun,I
Xuszvsl = Us,Vsy XUSZVSl - IXU52V51 Xuszvsl - IXuszvs1

Table 2. Detailed connection between the new excitation amplitudes and their
respective separated contributions. 7he Ms value represented at superscript
of a newly defined excitation amplitude denotes the value of a corresponding

configuration.
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After substituting amplitude matrices defined in Tab. 2, the equation

54a-g becomes

z an“pq"q X MR

ro.so

fo Sog ro.sog
Z F’quﬂ Ms_o | Z Dﬁpqﬁ
\/— apwﬂja WSZJ”‘ \/— aPwozjoz
oF
1 Po o, x Ms=01 papqa
+ N S
{% V2 Py s Z 72 8PWﬂJﬂ
1 P Aoy M =01 pcf a0
+ R i I S~ p
{%ﬁ P ZI an
oF
1 podoy =01 papqa
+4) —= Xpos®
{%: \/E apbazﬂ baza Z \/_ aPbarzaf
s 1 Ty oS Forge
bj \/5 apbﬁja pe \/7 apbﬂja
oF
1 Popaoy |, M =0.l 1 Fp a0
+ — S P a
{§ \/E apbmﬂ " Z \/7 aphaJﬂ
oF
1 Poy o popdog Me 0,1
+4y = X +
{% 2 [ aPwﬁ'zoz aPwazzﬂ 2 %

34

MS——
Wszja
MS =+1,1
WSZJﬂ
Msf—
bﬁzsl
MS =+1,1
bozzs1
MS——
bﬁ]a

MS =+2,1
bajﬂ

PO'pCIO' _
aPWocZoc

(55a)

(55b)

(55¢)

(55d)

(55e)

(551)

} (55g)



2.2 Disentangling different Ms response

Using the newly defined separated excitation amplitudes in Tab. 2, one
can separate equations of motion (EOM) into EOMs with different Ms

values. Of the nine types of the X amplitudes shown in Tab. 1,
p9%q

the last two amplitudes, X)%' and X\VRC' , do not include the M =0

amplitudes and they are dropped in the EOM. For the remaining seven
types, the My =+1 contributions shown of the light gray background
in the last column of Tab. 1 and the M, =+2 contributions (dark gray
background) are removed from the EOM of the My =0 amplitudes as

described in the following.

Removal of the contributions with Mg #0 from the response equations

is illustrated by the example of the XM?' amplitude matrix. The EOM

LIS la

are first pre—multiplied by (1+i)/\/§ and then transformed according

to Eq. (55) to yield

l{ x M=ol o X S——ll}

2 USZI{Z USzla
1 ok, Mg =0,1
= Z FO 5, - FO 5 4 uﬂlajx 70
upwg aia ™~ uw ws, ja
2{ wj [ : apwﬁja 2!
Y| R0, — L0, + S X e S e (562)
wj wa ja 2 aPWﬂlﬂ 2
1 OF pia  Mg=01 OF e v Mg=+11  OF Mg =-11
+= BREX, ST iy | e ) s T —_udla TS T (56b)
2{2 R i %“ OPRoua " ORopep i



bsja b ja

8F i L Fuie Ry
+— F(O) S upia MS =01 +i F(O) ugia Uaia XRedun,I .
2./2 {%[ zaia uw oP wszzs1 Z zaia uw oP apwpzﬂ WS, 28

wphza waza
(56d)

1 © OF, sia Mg =0,1 © OF e Mg =-2,1
+E{Z£Fuﬁbﬂ5 o Ko Z Fumsdi + 257 | Xogia (56¢)
1

In Egs. (56a) and (56b), the M =11 amplitudes make purely
imaginary contributions into the response equations and are dropped
from the equations for the Mg =0 amplitudes; the same is true for the
redundant part of the O—O transitions, see Eq. (56d). Although the
M, =-2 amplitude, Eq. (56¢), is coupled with the M;=0
contributions, its amplitude is neglected in the final response equation;
this is similar to the assumptions behind the standard SF-TDDFT
formalism. Hence, keeping only the Mg =0 amplitudes the response

equations read

=0,1 =0,1 =0,1 =0,1 M¢ =0,1
a)l XOSZC = 'A\ll)<0s C AlZXVSOSl A13XVSC A14x S (57)
where amplitude vectors are (XNIS > s XWS;;I (Xy S_Ol)bz = b,m;m ,

(XMS'O')bJ bhzsj;m (XOSE,0 Vs = V“v/ls;sf'l , and the coupling block matrices

oF, OFs
are (All)ui,WJ = Fu(/(i)’zlvﬂﬁ F122a5uw " ufia_ , (Alz)ui,bz = upia ,
anﬂja prﬁza
o 1 oF,,
_£O upia = © s
(A13)ui,bj Fuﬂbﬂé‘ + apbﬂja and (A14)ui,wz =$(_ania5uw + a Wﬂza) .

It is noted that all the zeroth—-order Fock matrices in Eqg. (56) are
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originated from Ms = +1 reference. Those from from Ms = -1

(0)

poyaoy ’

reference will be represented with a tilde as F and these satisfy

following equalities

—FO

ppap? (58)

—FO

paqa*

FO©

)
F pAap

paqa

The response equations for the Ms = O amplitudes of the other six
types also can be obtained in a similar way, and collecting all these

equations can form a matrix equation as

Ay Ap A Ay 0 0 0 Xg':;:il X?)ASSZZ?

A, A, A, A, 0O 0 0 3”;;:' “V”;g:'

A, A, A, A, 0O 0 O x\“fﬁsgj' X\hfﬁsc:;"

An Ap Ap Ay As Ag Ay Xglssz;:l — o, Xgﬂsszzozl ,  (59)

0 0 0 A, A A Ay x\'\;'aSC:;" x\n;l;c:;J

0 0 0 Ay Ay Ay Ay x“v”;g:l’" X“v”jgsj"

O 0 0 A, A, A, A, gsszzf;' g:z:c(;.
where the amplitude vectors are (x\“fas;;v')bj - thisj;m ,
(x\'\faSO::I)bz = thi?sjo'ly and (ngszzzl)wj = szj:;", and 0 is the zero matrix

block. Complete specifications of the block matrices A,, (k,m=1~7)

are given in the Tab. 3.
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By spin symmetry, the block-coupling matrices from the Mg =+1
component are identical to the respective matrices from Mg =-1.

Hence, the matrix elements of A satisfy

Aw = Agem KM=1,23. (60)

In addition, A is a symmetric matrix (A=A"), see Tab. 3.
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oF,

OF, . !
(All) Wi Fu(,g?/vﬂaij - Fj(zi)?aé‘uw + b (A12) i b = i
ur,wj apwﬁju ul,bz apbﬂza
Fus 1 oF,,
(A = Fi -5, 0 Ao = 5, e
13 Jui, bj upbp i apbﬂja ( 14 )ul,wz \/E ala apwﬂza
oF oF
_ _ apva —FO © apva
( Zl)av,wj = anﬂja (AZZ )av,bz = Fa/ib,/}(svz - anvaé‘ah +mv
oF oF
A,)  =-FO 5 4 e _Llfo apa
( 23 )av,b] java™ab anﬁja (A24 )av,wz = \/E Faﬁwﬁé‘vz + apwﬂza
O] afia _ (0) afia
(A31)ai,Wi = Faﬁwf’(sij + an/}ja (ASZ )ai,bz = _Fjaiaé‘ab +m
oF, . 1 oF,,
(Ass )ai P = F%@- - F'((S?aa b + 2 (A34 )ai w5 e
,bj a, ) ] al 8Pbﬂja , \/E apwﬂm
1 oF 1 oF,
A = -FO 5+ A =——|F9 §, +—L
( 41 )uv,WJ \/E( java ~uw apija ( 42 )uv‘bz \/E upbp vz apb/;m
1 Ry 1 - oF
(A43)uv iT 5 A | _FO 5 Tuaw
bj ﬁ apbﬂja ( 45 )UV,WJ ﬁ jpvpQuw apwajﬁ
1 Fope | 1 2 o o Oy
(A44 )uv,wz = E( Fu(;{cvﬂ 5vz - FZ(tS\)la 5uw + .- + E Fu(tgfmz 5VZ - FZ(R/" 5UW + apL
wpza wazp
1 = a 1 6Fuavﬂ
A == F(O) o, + vevp (A )uv iy
( 46 )uv,bz \/E[ uaba Yvz apbazﬁ 47 Juv,bj \/E anajp
1 OFuip =0 =) Fasip
(A54 )ai,wz = ﬁ 6PW0,Z/} (A55 )ai,bj = Faotbaé‘ij - Fjﬁiﬂé‘ab + apbam
= oF,, = aFaai[f
(A56 )ai,hz = _Fz(ﬂogﬁé‘ab +Lﬂ (A57 )ai,wj = Fa(szl‘lflé‘ij + oP
bazp wa jf
1 =~ oF = (0) aFazzvﬁ
A =_|FO 5 2% Ags )i = FipupOm +—=—
( 64 )av,wz \/E{ aawa “vz apwaw ( 65) \bj jpvp~ab apbajﬂ
- - oF oF
(Ao =00 S0 (), o o
o0 Javbe e apbaz/} o i aPWozjﬂ
1 = OF i = (0 aFuaiﬁ
A o= _FZ(O? 5uw + uaifp (A )Ui = F(a)aé‘i' 4 uab
( 74 )ul,wz \/E( BB aPWaZ/; 75 \bj uab. I] apbajﬂ
O, - - OF ;
(A76 )“i b = - (A77 )ui wj = Fu((g?maé‘ij - Fi(,g%ﬂéuw + vl
! 8Pbazﬂ ' apwaj/}

Table 3. Details of the block—coupling matrices. 7he zeroth-order Fock matrix
without a tilde denote that from Ms = + 1 reference, while that with tilde is

from Ms = ~1 reference. Explicit expression of the kernel, oF,, . / P, -

with the collinear approximation is given in Eq. (38).
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2.3 Recovery of one-to-one relation between configuration
and excitation amplitude

MS:O’I

sy, (k,m=01,02) correspond to the

The excitation amplitudes X

type I configurations, see Fig. 2. Unlike the other six types, this type
of excitation amplitudes include amplitudes from both Ms = +1 and -1
components of the mixed reference not from one. Figure 4 shows
configurations and the KS determinants, which are labeled as G
(ground), D (double), L (left), and R (right) according to the character
of the excitation. A subscript added to the label represents the Mg
value of the parent component of the reference state. With these

notations, the amplitude xgﬂg;g'sl corresponds to the KS determinants

Mg =0,1 Mg =0,l Mg =0,
s70 570 s70
G, 025,015 O D, . )(01520151 to L, and R, and )(02520251 to R,

and L,. Although X(';E;);sl and Xgnzsszzoo'llsl correspond to specific G
and D configurations, respectively, the signs of the respective
determinants originating from different components of the mixed

reference are opposite as shown in Fig. 4a and b, ie., G,=-G,,

D,=-D,. On the other hand, xg”g;’ill corresponds to different
configurations L and R originating from Mg=1 and -1,
respectively, see Fig. 5a. A similar correspondence of configurations

Mc=0,1 . . .
for XOZS520251 is shown in Fig. 5b.
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SR A
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G, = ¢g1¢§1) D, = |¢g2¢gz) L, E|¢£1¢gz) R, = ¢gl¢oﬁz>

G, =|¢hes)  D.=leadh)  La=[Hen)  Ri=

#5085 )

,_.
-t

(@) (b) (c) (d)

Figure. 4. Type I configurations and notation of their Slater determinants
originating from spin flip transitions from the Ms= +1 and -1 components of
mixed reference. The subscript at the notation denotes the Ms value of the
parent component.
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(b)

Figure. 5. Connection between one electron transition from the mixed-spin
reference and that from the open-shell configuration. Dotted curves show
one—electron spin—{flip excitation generating the given configuration.
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To obtain amplitudes corresponding to pure configurations G, D, L, and
R, the respective part of the orbital Hessian matrix A needs to be
modified in such a way as to resolve the sign changes (G, D) and mixed
configurations (Z, R). Equivalently, the corresponding EOM could be
modified with the identical result. Before the modification, let us re—
write the affected blocks in the fourth row or column of the A matrix
in Eq. (59) in terms of the individual determinants shown in Fig. 4. The

elements A, (k=1,2,3) in Eq. (59) correspond to the a—p
transitions from the Mg=+1 component and the elements
A, (m=56,7 to the pB—a transitions from the Mg=-1

component. In terms of the determinants shown in Fig. 4, these

elements are represented as

Ak4 = (AkG+1AkD+1AkL+1AkR+1 ), k=1,23, 61)

Ane = (Ans Aro Ans At ). m=56,7. (62)

These block matrices satisfy the following symmetric relations as

A, = Aeie,
Ay =Ag
I W X (63)
Ad,, = Aeir,
AkR+1 - A(8—k)L71
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the a—pf and p—a transitions from the Mg=+1 and My=-1
components, respectively. Hence, the individual contributions to this

element can be represented as A, - and As respectively. With

similar notations, the block matrix of the fourth row and column of the

A matrix can be written out as

A Poo Ao A
Ao Aol Ax
Au= AL Ag
A
Aso, TP e, Moo, Pep, P, TP, Popr,th,
1 AD+1D+1 + AD_1D_1 AD+lL+1 + AD_lR_l AD+1R+1 + AD_lL_l
= E AL+1'-+1 + AR—lR—l AL+1R+1 + AR—lL—l
AR+1R+1 + AL—lL—l

(64)
The lower triangular part is not shown in the above equations, because
the block matrix A, is symmetric, A, =A], . Parts of elements

satisfy the following symmetric relations as

A‘+1G+1 = A“—le-l
Ao, = Ao,
A, T AR,
A = Aﬂ—ll‘—l

(,m)={(G,G), (D,D), (LLR), R,L)}).  (65)

R
where the symmetry between L, and R, and between R, and L,

1S seen.
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The Hessian A matrix can be written out as

Ar Ay Ay Aol Ap Al Agl
Ay Ay A Ap Ay A

A33 A?’G+1 A3D+l A3L+1 A3R+l

At—}G AYBD AbL ASR

Ae Ao Aw Ay
AL Ax

ARR

, (66)

where symmetry relations of Eq. (60) were used at A,,(k,m=5,6,7)

and the lower triangular part is not shown with the same reason of Eq.

(64). The advantage of the new labeling scheme for the matrix

elements of A is that the contributions from Mg =+1 and Mg=-1

components can now be clearly identified.

With the new notation, amplitudes corresponding to G, D, L and R

of Fig. 4 can be easily obtained by exchanging R, <> L, in all the

elements of Egs. (64), (65) and (66) with simultaneous sign change of

the elements for G, and D_; double replacement leaves the sign

unchanged. Such an exchange is possible, because, ideally, amplitude

and configuration should have one-to-one correspondence. For an

45



example, let us consider matrix elements of A, and A, , i.e.,

As

i A R, and A r, t P respectively. As discussed above, one

makes a sign change of As ., and A, , terms connected with G ,,
and exchanges these terms to bring L, together with L, and R,

together with R, . Then, the modified elements become A, | -A,

b 1k

and As o —As g, which are denoted as B, and B, in the following.

The Hessian of Eq. (66) becomes modified by applying these

discussions. The resulting Hessian matrix Ago) 1s given by

A, A, A, A1G+1 AlD+1 A1|_+1 A1R+1 0 0 0
A, A, A2G+1 A2D+1 AZI_+1 A2R+1 0 0 0
A, A3G+1 A3D+1 A3L+1 A3R+1 0 0 0

BGG BGD BGL BGR _Aefls _AG 12 _A6711

A = Boo  Bor B —Aps Ap ., —Aps ’
B, Bir AI__13 A, 2 AL_11

Bgr ARi13 AR,12 AR,ll

A, A, A,

A, A,

Ay

(67)

where the superscript (0) in the orbital Hessian matrix do not denote
the zeroth—order quantity but will denote Hessian without spin—pairing

coupling, and rearranged coupling between type I configurations are
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N |-

Bso Bo  Ber
Boo Bo. B
B.. B
Ber
AG+1G+1 + AG-1‘3-1 AG+1D+1 + Ab—lD—l AG+1'-+1 B AS-1L-1 AS+1R+1
AD+1D+1 + AD—lD—l AD+1'-+1 B AD—lL—l AD+1R+1
AL+1'-+1 + AL-1'-—1 AL+1R+1
AR+1R+1

B AS-1R-1
AD—lR—l
+ AL—lR—l
+ AR—lR—l

(68)

As A=A, and A, =A;, in Eq. (65), a new relation By =

-Bs; holds. Likewise, new symmetric relations of B, =-By,;, and B, =

B.x also appear. These symmetric relations completely eliminate the

spin—contamination of type I in the response states.

In addition, with spin—pairing coupling which will be introduced in

subsection 3 of Spin-pairing coupling, Hessian matrix A, is given by

A Ay, Ay Ag, Ap,
Ay Au Ax Ay
A33 A36+1 A3D+l

BGG BGD

BDD

A1L+1 A1R+1
A, L A, R
A L A R
BaL Bor
Bow Bor
=N B.q
Brr

47

Cis
Cos
C33
_AG 3

-1

12

C

Ca

Cy
-A

G 42




2.4 Separating matrix equations for singlet and triplet
response states

Pure spin configurations are obtained by pairing the respective

configurations originating from Ms = + 1 and —1 references for the type

I, IT and III (see Fig. 2), which is achieved by a unitary transformation

l 0 0 0 0 0 0 0 0 Iy

0O l, 0 0 0 00 O 1, O

o 01, O 0 OO0 I, O O

0 0 0 +2 0 0 0 0 0 0
g=Ll[0 0 0 0 V200 0 0 0| (4

V2o 0o 0o 0 0 11 0 0 O

o 0 0 0 0 1-1 0 0 0

0O 0 I, 0 0 00 -l 0 0

O l, 0 0 0 OO0 O ~-l, O

l 0 0 0 0 0 0 0 0 -l

Wlth (IOC )ui,wj = S0, (IOV )av,bz = §ab5vz ’ (IVC )ai,bj = 53b5ij and (IOO )uv,wz = 5UW5VZ :

uwij 2
The rotated amplitude vector by the transformation matrix is given by
(Xese +XoS ) N2
Sy Ta Sy B
M. =0,1 M. =0,1
(Xugo, +Xui, )2
(XVe, +Xu, )12
MS =0,1

XG
" - Xps ™
Ux, = s s ) 5 | (71)
(X, + Xq ) /2
(XEASZO,I_XQASZO,I)/\/E
(XS, =X, )Nz

Mc =0,1 M =0,1
(xvﬂsoSl _Xv;osl )/\/E

(Xofe, =Xolc, )2
82 a 52
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and the orbital Hessian matrix A” of Eq. (67) can be split into two

blocks with the rotation as

All AIZ A13 'A\ZLL+:l + A1R+l
A21 AZZ A23 A2L+1 + A2R+1
A(T)(O) = A31 A32 A33 A3L+1 +A3R+l ! (72)
L+ll + AR+11 AZL_'_:L + 'A\ZR_*_:l AL+13 + AR+13 BLL + BLR
BGG BGD \/EBGL \/EAG+13 \/EAGH.Z \/EAG+11
BGD BDD \/EBDL \/EAD+13 \/EAD+12 \/EADJrll
\/EBGL \/EBDL BLL - BLR AL 13 _AR 3 AL 12 _ARHZ AL+11 _AR+11
()0 —
A - \/EABGJF:l \/EAGID A3L 1 A3R+1 A33 A23 A13
\/EAZG_H_ \/EAZD 'A‘ZL_'_1 AZR_'_1 A23 A22 A12
\/EAIG”_ \/EAlD AlL 1 A1R+1 A13 A12 All
(73)
Hence, two matrix equations
ATOXMO = QET)(O) XM, (74)
ALOXOO = ol XG0 (75)

($)0)
are obtained, for the triplet (7) and singlet (S) state amplitudes. In

these equations, the excitation amplitude vectors are

XEM) [ (Xose +Xg3e) 12
X(T)(O),I Mg =0,1 Mg=0,l
xpo= - o, +Xuio, )12 , (76)
S SR S
Xoor™' ) WX 4 X357 142
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X S0 X 570!
X D0 X s

X0 _ Xoos " ~ (XFS:OVI‘XFTS:O’I)/«/E -
XQO (X S:' MS-O')/(
XEO |1 (Ko 5'°' Ms-‘“)/\f

Here also, the superscript (0) do not denote the zeroth—order quantity
but will denote quantity without spin—pairing coupling. The new
response equations (74) and (75) yield spin—adapted excited states,
where a complete decontamination of the type I, II and type III
configurations is achieved. Hence, clean separation of triplet and
singlet states 1s achieved in MRSF-TDDFT,; which is an advantage

before the standard SF-TDDFT formalism.

For the type IV configurations, only one missing configuration (out of
five) is recovered in MRSF-TDDFT and spin—adaptation of this type
of configurations remains incomplete. However, contribution of these
configurations into the low lying excited states is expected to be small
and the resulting spin contamination insignificant.

Likewise, rotation of the Hessian matrix A, of Eq. (69), which can be

split into two blocks
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A(T) - A]_3 + C13 A23 + (:23 A33 + C33 A3|_+1 + A3R+1 ’ (78)

BGG BGD ‘/EBGL \/EAeﬂa ‘/§A<3+12 \/EAGHl
BGD BDD \/EBDL \/EAD+13 \/EADAZ \/EADﬂl
\/EBGL \/EBDL BLL - BLR AL 13 AR 13 AL+12 _ARHZ AL+11 _AR+11
(S) —
A - \/EAac;+1 \/EAe,D+1 A3L+1 _A3R+ A33 C33 A23 _Cza A13 _C13 !
\/EAze \/§A20+ A2L 1 _AZR A23 Czs Azz _sz A12 _C12
\/EAIG \/EAlD 1 All_+l - AlR 3 A13 C13 A12 - C12 A11 - Cn
(79)
leads to two sets of response equations
ADXD =0l X7, (80)
AOXE = 0l X, (81)

2.5 Expectation value of S? operator for response states of
MRSF-TDDFT

It has been a common practice that the spin—contamination of TDDFT
is measured by the operation of S$* on a wave function of

noninteracting system. The s? operator is represented as

$?=5,(S,+1)+S.S,, with (82)
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T2 m (83)

L= 2S5 (m)'
; (84)

where s,(m), s,(m), and s (m) are the one—electron operators of the
spin Z —component, spin raising and lowering operators for the mth
electron, respectively. In the second quantization, the S, operators

are

s =>ala,, (85)
p

S, =Yala,, (86)
q

where the p and q indices are running over all the MOs and the

ay, s &, (op =a,f) are the creation and annihilation operators of
p

electron in the ¢:P orbital. Therefore, the last term of Eq. (82) can be

written as

ss,=Yal,a,ala (87)
P.q

ps~pa “da “qp

With the help of the anti—commutation relations, the above equation is
re—-written as

P~ da “pa Tap "

S.s, =>ala,->alal.a,a (88)
p p.q

The second term on the right hand side of above equation can be split

as

_ T Tt T4t
S8, = Zapﬂapﬂ _Zapﬂapa LY pzq:apﬂaqa A, gy (89)
p p p;q L .
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The three terms on right hand side of Eq. (89) correspond to the

operators of the number of electrons in the g —spin MOs, in the doubly

occupied MOs, and in the open-shell configurations with two singly
occupied MOs, respectively. The MR-SF-TDDFT wavefunction for an
excited state with Mg =0 is

=0, Ms:+1 =0,

OlﬁOZa

Mg =0.1
D

MS =+1
02p01a

Mg =0, N Mg =+1

02802a

g = x s +X sy + X[l X s

otpote T

MS=OI S—+1 S—OI S S—OI S—+1 MS=OI S——l
+Z( Xuszioz \Puﬂla Xus |ﬂ \Pualﬂ Z Xaﬁws1 \Pap‘wa Xaozwsl \Paawﬂ
ui aw

=0,1 =1

;(xaﬂ?a_m aﬂw:+1+xamsﬂ ‘Paasnﬂ ) (90)

and ¥Vt

pﬂqa g are the determinants obtained by the spin-

where W3
flip transitions from the M, =+1 and M =-1 components of the
mixed reference state, respectively. The first four terms on the right
hand side of Eq. (90) correspond to the type I configurations, see Fig.
2, while bth, 6th, 7th terms represent the type II, III, IV, respectively.
Using ¥, the expectation value of S* becomes

(P, [S%|¥, )= (¥, [S,(S, +1)|¥, ) +(

¥ (9D
where the first term on the right hand side vanishes, since Mg =0, and

the second term is given by

_ 2 - -
oo | 1) == s - o R
(¥,]8.8,[¥,)=1-(x¢5™") (xMS‘°') T DO S

M¢=0,1 \, Mc=0,1 M¢=0,1 \, Mc =0,1 M¢ =0,1 M:O,I
+2(quszsia usslﬂ Zxaﬂ?/vsl aaﬁvsl Zxap?a amsﬁ ) (92)

us
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=0,1

Magnitudes of two amplitudes for each pair which is (XLMs , XQAS:O"),

M =0,1 M =0, M =0,1 M =0, Mg =0,1 Mg =0, .
(XOSECa ’XOSECﬂ ’ (XVﬂSOSl ’XVaSOsl )’ or (xVﬂCa 'XVaCﬂ ) are same, while

those sign are different and same for singlet and triplet response
states, respectively. Thus, with the orthonormal condition, the
expectation values of S? for singlet and triplet response states are
always O and 2, respectively. This shows that MRSF-TDDFT
eliminates spin contamination of SF=TDDFT for singlet and triplet
response states. As discussed in the beginning of this section, there
1s still quintet mixing for C—V configurations but it is minor

contribution for low-lying excited states.

2.6 Dimensional transformation matrix

The different singlet and triplet response dimensions of MRSF-TDDFT
as compared to SF-TDDFT could introduce complications to the
subsequent derivations and potentially require a major modification to
the existing SF-TDDFT code. Therefore, in this subsection, we

introduce dimensional-transformation Ul and UQ matrices, which

cause the singlet and triplet response dimensions of MRSF-TDDEFT to

be equal to that of SF-TDDFT. With these transformation matrices,
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the expanded Xvectors, which have the same dimension of SF=TDDFT,
can be represented as UPXS® and Ul XP® for the singlet and
triplet response spaces, respectively. For example, the expanded X
vectors of G and D configurations for the singlet and triplet spaces,

respectively, are defined as:

UREXED =6,0,8,6, X80, (93a)
ULPXE = 6,018,00X 5™, (93b)
ULeXg® =o, (94a)
Ug”Xg " =0. (94D)

Likewise, the expanded X vectors of OOS and OOT configurations

for the singlet and triplet spaces, respectively, are defined as:

1

U ;CJ)qOS Xésgéo) = E(%mdm - 5p025qoz ) Xc(%)éo) ) (95)
1

u SqOT Xgo)é()) = _(5;)015(101 + 5p025q02 ) Xc(>To)T(O)- (96)

J2
Note that the one-dimensional excitation amplitudes of X&® and
X8O are represented as two-dimensional excitation amplitudes of
(UG XD, USS X)) and (USRCXSY, UGS XS?), respectively. As
compared to the OO type, the u$™, up™, and Ug are defined
without changing their dimensions as:

0,

com v/ (k)(0) _ (k)(0)
UMYX WO =5 5.0, X 9O, (97)

p<O1

55 A L) ¢



WO X W00 Z 5 5 XKO, (98)

pOm*~q>02

US X0 =5 18,0, X8, (99)

where m=1,2, k=S,T, and
8yc0r =1 for p<01, &, =0 for p>01, (100a)
80 =1 forg>02, §,.,, =0 for q<02. (100b)

As a result, the expanded dimensions of both singlet and triplet

response spaces are equal to n%n? of SF-TDDFT. With the help of

occ ' vir

these transformation matrices, the expanded single and triplet
response spaces can be elegantly defined, respectively, as:

(S) _11(5)G (s)D 00S co1 co2 o o2v cv

UL =UR® +URP +U> +U> +U 2 +U0Y +USY +U (101a)

pq ?

T — (T)G (T)D ooT co1l Cco2 owv ozv cv
UG =00 +UQP +UST +US +USO2 +U Y +USY +U S (101b)

With the collinear approximation, the singlet and triplet orbital
Hessians of Egs. (72) and (73) can be succinctly represented with a

single form of:

(K)O) =)&)
ARO =ul) {5, F

pa.rs

5. F —cH(pr|sq)}Ufsk’, (102)

gsp ~ Yas’ pra
where k=S,T and the zeroth-order Fock matrix from Ms = +1 is

represented with more concise notation as F,,=F%  and all Fock
p~q

matrices from Ms = -1, E©  is converted to that from Ms = + 1. The

poyqog

singlet and triplet response equations can be represented as:
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ALOX 0O =) X (90 (103)

pa.rs (k)(©) “* pa

the Q and Q are their eigenvalues or excitation energies from

(8)(0) (1))

the reference.

3. Spin-pairing coupling

Because no coupling occurs between the responses originating from
the two different references of the MR-RDM, a posteriori coupling was

introduced as

’ _ MS =+1
qu,rs =Cs <\¥ paqp

H \qjﬂ> (104)

M5 =+1
paqf

MS =1
rpsa

where <‘P

and “If > are the bra and ket vectors for

configurations originating from the My =+1 and M, =-1 components
of the mixed reference state, respectively. The pairing—strength
coefficient, cg, is adjustable depending on situations or a specific
molecule. The best pairing strength may be able to be determined by
benchmarking calculations. However, by default one can use the
pairing strength with the same value of HF exchange mixing
coefficient, i.e., cg =c,- . After defining a sign function for the singlet
and triplet states as

sgn(k) =+1, if k=S5, (105a)

sgn(k) = -1, if k=T, (105b)
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the two types of couplings can be defined by:

H(k)intra ESgn(k)CH (p5|rq), (1068.)

pa.rs

HR =sgn(k)c, {( pq|rs)—(pr|sq)}, (106b)
where k=5,T. With these, the spin—-pairing coupling in Eq. (104) for
the singlet and triplet response equations in Eq. (74) and (75),

respectively, are represented as:

1(k) — pg (k)intra g j CO1 Co2 co1 co2 (k)intra 7y | OV o2v ow oav
quvrs_HPEv@ (qu ~Uy U -U )+Hpq,[s (qu —Ug UL -U)

(k)inter CO1y [ O2v Cco2 o ow CO02 o2v Cco1
+HH M UMY LY +USPUSY U UL +USMUSY) (107)
Note that the underline notation used in the indices of the coupling

H{me in Eq. (107) is defined as:

02, if p=01, (108a)

p

o1, if p=02. (108b)

b
As a result, the orbital Hessians for the singlet and triplet responses
with the spin—pairing coupling can be simply given by:

AW = AKO . ANK) (109)

pa,rs pa,rs pa,rs *
It should be noted that even with the couplings, the excitation

amplitudes of singlet ( X ) and triplet configurations ( x{’) are

completely decoupled from each other. In addition, the response

spaces can be expanded with the same dimensional-transformation
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u® and U matrices in Eq. (101a) and (101b). Finally, the singlet

and triplet response equations with the spin—pairing coupling are given
by:

AO XD =0 X (110)

pa.rs pq ’

where k=S§,T and the Qg and Qg are their eigenvalues or

excitation energies.
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ANALYTIC ENERGY GRADIENT OF MIXED-

REFERENCE SPIN-FLIP TDDFT

An analytic gradient with respect to nuclear coordinates represents
the essential quantity for the vast majority of quantum mechanical
applications such as geometry optimization, reaction path following,
and molecular dynamics simulations. In addition, gradients of excited
states are crucial in the emerging field of nonadiabatic dynamics. The
analytic energy gradient of LR— and SF-TDDFT is formulated by using
the Lagrangian formalism.[46, 49] Likewise, that of MRSF-TDDFT
can be obtained with similar way[50] which will be describing in this
section. In the first subsection of Lagrangian, the Lagrangians of both
singlet and triplet response states are defined with two new Lagrange
multipliers W and Z These two multipliers can be determined by
orbital stationary condition described by subsections 2 and 3,
respectively. With the determined multipliers satisfying orbital
stationary conditions, analytic energy gradient can be represented by

concise form which will be derived in the last subsection 4.
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1. Lagrangian

The reference of MRSF-TDDFT is optimized by variational conditions
for the restricted open—shell Kohn—-Sham MOs in the Guest—Saunders

canonicalization.[51]

Foo = Foow + Fogs (111)
with
Fi. /2 0 Fo, /2
Fue=| O Fou /2 Fuu | (112)
Fi./2 F,, Ful2
B Fisl2  Fy  Fyl2
s =| Fas  Fypl2 0o | (113)
Fs /2 0 Faop 2

The off-diagonal blocks represent the wvariational conditions, 1.e.,

rotations between C-0, C-V, and O-V orbitals that go to zero.

MRSF-TDDFT vyields two independent Lagrangian for singlet (k=S5)
and triplet response states (k=T) as:

LOLXY, Q. C, 2%, WO = GIXY, Q1+ 2D ZLOF,, + D Z{F,

lac ~ lac IXo ~ IXo

zzgl xao ZZENW pgo (114)
Xao p<q o

where the vector C and S, are the MO coefficients and MO overlap

integral, respectively, and the Z® and W% vectors are

undetermined Lagrange multipliers. The first term on the rlglht hand
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side is:

v c.,00Vv v v v Cc,00Vv v v
GIX", Q1= D Y XWAW X© -0, O > XPX® -1). (115)
pq

pg,rs
prgs

It is noteworthy that only the G[X%, Q] term differs in SF- and

MRSF-TDDFT except for the undetermined Lagrange—-multipliers Z®

and wW®,

2. Orbital stationary condition | (Coupled perturbed

Hartree-Fock equation): Lagrange multiplizer Z

Two independent sets of orbital stationary conditions for singlet (k=S5)

and triplet response states (k=T) are defined, respectively, as

(k) (k)
Lo >t ¢ =0 (116)

e nup
" ac,uta H ac#t/)’

From this condition, the following Z® -vector equation can be derived

as

Cc,00V

ZZ‘qu,rsZ_r(sk) :—§ég), PEC,O qEO,V, (117)

where the unique spin—independent Z% vector (with the bar symbol)
1s introduced as:

70 = 709 (118a)

ixp 1

70 = 7 (118b)

xaa !

¥ by i §
6 2 .__ZI_\_! _'-I.-._ 1'!; _..-\:.I!
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ZW =78 =784, otherwise, 0. (118¢)

laa

The orbital Hessian J of MRSF-TDDFT takes the identical forms

pg.rs

of SF-TDDFT[46] as:

1

- . . .. 1
Joy = (ix| Jy)—C?H[(Iy| i)+ (i Py )1+ £33 5 Fip0y +§nyﬁ5ij' (119a)
- . . .. 1
Jay = 2('a|1y)_c7H[('y|Ja)+('J |ya)]+ fac.ivs + Tap.ivs +§Fyaﬁ5ij' (119b)
Jay = (@] iy)+ £ s _iFjaagxy’

' o2 (119c¢)

‘Tia,jb = 4(ia|jb)—cH [(ib|ja)+(ij|ab)]+ finer ibe + Tineriop + Tiap o + i

iaf, jba iag, jbp

+ (651 -6 )é}jgab’

(119d)
T = 2(xa|jb)—c, [(xb|ja)+(jx[ab)]+ £, 4, + £ s —%ijéab, (119e)
- 1 .1 1
Ty = (xa|yb)—c—[(xb|ya)+(xy|ab)]+ fos o -3 Frye O +3 Fabu Oy (1199)

H

where fx represents the matrix elements of the second functional

pgo,rst
derivatives of the exchange—correlation functional with respect to the

electron density. The spin-state-specific R on the right-hand side

of Eq. (7) for the singlet (k=S) and triplet states (k=T) are given by:

RY = % ap[TOTHH X XOTH X9, XO]=H, [XY, XY, (120a)
RY = % Hyo [TOT+H [X®, XOT+ H o [ XY, XOT-H,,[XY, X®], (120b)
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Ra = %(Héa [TOT+Hu, [TO]) + H [XY, X9 H, ,[X®, XY, (120¢)
where
Hooo V1= D 42(pafrs)+ 2 . —c.d,. [( ps|ra)+(prlsa )V, (121)
with
T8 = Zu<k>x<k>u<k>x§:>, p.rec,o, (122a)
qug:@<k>x<k>u<k>xg§>, 4,5€0,V. (122b)
And the H, [X®,X®] of Eq. (120) is defined as
Hyo [X®, X0 = HO X, X0+ H [ (ckx’,x‘k)]+ZH!u”§a X XV1
Xy
FXHITDXE X1 THIF DX X1 (123)
where
(9) k k &Y k k k k
HOIX®, X9 = 3 SUOXO, Fyy 5,y ~C (Ur[saPUEXO, (1242)
rogs
HOX® X = S SULXEHS, B,y 8, —cy (prIUPUOXY,  (124D)
pr s
and
HOe X, XY] = (-1) ™ ZEJ“X(“HS?LT“U 2X, (125a)
rogs
HIR (X9, X901 = (-1) XVZZUXVX‘”HU‘E)!S"HUyVstk), (125Db)
rogs
Hue X, X 1= ZZU X QR Wmery w x 0, (125¢)
rqg s
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Haw [X3, X8 1= ZZZU WX oy X ), (125d)

r s q

HMe (X, X Y] = (1) ‘”y;gu“xw;z):";faucvx;:% (125¢)
Hi XY X = (1) *ygguwx(“H;?::‘“uWx,‘:), (125f)
HU IXE X1= ZZZU R XEHRTUR XY, (125g)

HES DX, X8 = SO UL XWX (125h)

ropr

Four terms on the right-hand side of Eq. (123) except for the first
term are derived from the spin—pairing coupling in Eq. (107). Without
these terms, all equations for the Z® -vector equation are almost
same as those of SF-TDDFT.[46] Only the difference is using the

expanded excitation amplitudes, U% X%, in MRSF-TDDFT. This is

pq ’
great advantage since one can simply utilize the same existing routines

for SF-TDDFT.
3. Orbital stationary condition Il: Lagrange multiplizer W

After Z® vector is determined by solving Eq. (117), the relaxed

difference density matrix P® can thus be calculated as:

Pl —T® 709 (126)

pao pao pgo *
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If we define the spin-state-specific W% as

WO =W +w (127)

the other Lagrange multiplier W% can be obtained by:

W& =H . [X(k) X(k)]+ H -ﬂ[X(k) X(k)]+ F. [X(k) X(k)]-i-l H* [p(k)]
IX Xl ! X1 ! Xl ! 2 X
1S 70, 15 700 (128a)
+EZ ijpeix +EZ jac < xa ! a
j a

ia ixa =xa ?

_ .1 _
W® =H X X +ez® +=NF 7O (128b)
alﬂ[ 1+6Z; 2;

VVX‘,:):Haxﬂ[X(k),X(k)]+Faxﬂ[X(k),X(k’]+%ZF z‘(k>+12|:i zo, (128¢)
y i

Xya T ya 2 Xa Tia !

_ 1,,., N o
WO (146 ) = Hy, [X®©, X9+ Fija[X(k),X(k)]+§(Hija[P(k)]+ Hi, [P©]), i< ]

(128d)

va(yk) (1+ 5Xy) = nya [X(k), X(k)]—l— nyﬂ[x(k), X(k)]+ |:ija [X(k) , X(k)]-l— Ejﬁ[x(k), X(k)]

+%H:ya[P(“], X<y (128e)

Vva(bk) (l+5ab) - Haba [X(k) , X(k)]+ Faba [X(k) , X(k)], a< b, (128f)
where

Fuo [X®,X®]= -XPF,_ XL, (129a)

Fup [X®, X©1= X R X5, (129b)

Also in this case, form of equations are exactly same as those of SF-

TDDFT[46] without four terms originated from spin-pairing coupling

in Eq. (107).
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4. Analytic energy gradient with respect to the nuclear

coordinate

From the stationary condition of Lagrangian for a nuclear coordinate
(&) of

oL
4

=0, (130)

the analytic gradient of the excitation energy (ka)) can be obtained

by:

ka) = Zhiv P,Lflljgr - zsﬁvw;ft; + Z (IUV | ’d) Fifv)cr KAT ! (13 1)

uvo uvo uvo KAT

where the superscript & denote the derivative with respect to the
nuclear coordinate. h; and (,uv|1c/1)§ are the derivatives of one— and
two-electron integrals in AO basis. s; 1is the derivative of AO overlap

integral. P® and w® are

uvoe pvo

c,0

Pave = ZC o P G (132a)
(k) — (k)

ﬂVﬂ = Zcﬂpﬁ pqﬂcvqﬁ’ (132b)
(k) — (k)

W e = Zcﬂpaw pac Craa » (133a)

p=<q

W =S, Whe (133b)

wp = pas=vap
p=q
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In addition, r®

HVO KAT

are given by

Lo wie = [2P,553 =0, (PD,, +PYD, ) ~€,5,,0,(XEXI + XX
+5gn(K)Cy 0,8, X [{(X )% = (X g ) H(X o) = (X Sa )}
(X)) — (X)X E) % — (X fra) &)
+ (X)W (X)) + (X 3 )90 (X fer ) &0
+ (X )00 (X fmer )0 (X e )9 (X e ) 80
— (X&) (Xam )5 = (X&oa)b (Xow )5
— (X)W (XIS = (X (X &s)W1,  (134)
where
Cc,0
Dve =2 CupuCopar (135a)
p
C
Dous = CupsCops- (135b)
p
C,00V
x;,kg—zzcupauw;ycvqﬂ, (136)
q
and
(Xom Yo -ZZC;,MU‘””VX.S:)CW (137a)
(Xom Vo -ZZcﬂanme.ﬁz)cvqﬁ- (137b)
(X e )®) = zzcﬂpauomvacvqﬂ, (137¢)
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inter y(k) _ Com yr (k)
>(COm );zv ZZC;IPOIU X Pq CVQﬂ

(137d)

Finally, the gradient of the ground state energy is given by:

Eé = zhyv nvo Zsivwlzva Z (IUV | Kﬂ’) Hvo kAT

uvo uvo uvo kAT
where

'

Fuvo’,tdz_ (Dyva KAT CH50'1 Ao VI(O')

/lVO' Zc# po " pgo qu'

The gradient of excited response states can be obtained by

(138)

(139)

(140)

adding the

gradient of excitation energy in Eq. (131) and that of ground energy in

Eq. (138). The second term on the right-hand side of Eq. (134) is

derived from the spin—pairing coupling in Eq. (107). Without this term,

all equations for the energy gradient are almost same as those of SF-

TDDFT.[46] Similarly, only the difference is using the

expanded

excitation amplitudes, U X, in MRSF-TDDFT. In the same manner,

one can simply utilize the same existing routines for SF-TDDFT.
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NUMERICAL RESULTS

In this section, it is investigated that how spin—contamination and spin-—
pairing coupling affects various calculations containing 1. Vertical
excitation energy, 2. Singlet—triplet energy gap, 3. Geometry-
optimization structure, 4. Adiabatic excitation energy, 5. Minimum
energy conical intersection, 6. Non—adiabatic coupling matrix elements,

and 7. Non-adiabatic molecular dynamics.

MRSF-, MRSF(0)-, SF-TDDFT, and MRSF-CIS are utilized for these
calculations. The MRSF(0)-TDDFT is a MRSF-TDDFT without the
spin—pairing coupling and MRSF-CIS is a MRSF-TDDFT using 100%
HF exchange. All calculations are performed by a local development

version of the GAMESS-US program.[52]

The differences between MRSF(0)- and SF-TDDFT can specifically
represent the pure spin—contamination effect of SF=TDDFT. Also, the

effects of spin—pairing coupling to geometry can be understood from

the differences between MRSF- and MRSF(0)-TDDFT.



1. Vertical excitation energy

1.1 P excited state of Be atom

Be atom has the 'S ground state arising in the configuration 1s°2s?.
The low-lying excited states of Be are the SPX,y,Z and the IPX,y,Z states

arising in the configuration 1s*2s'2pi!', k=x,y,z. The SF-TDDFT and
the MR-SF-TDDFT calculations use the Pz state (1s?2s'2p,h) as the

reference state. With this choice of reference, the XEAS:O'I and

XQASZO'I amplitudes generate the 'P, and °P. states, while the rest of

the P states are produced by the X{,ﬁo and X, o amplitudes.

The results of the calculations are collected in Tab. 4. SF-TDDFT,
MRSF-TDDFT(0) and MRSF-TDDFT, yield nearly identical energy for
the 'S ground electronic state since there is little spin—contamination
in the SF-TDDFT. The collinear SF-TDDFT method yields relatively
minor spin—contamination of the 'P, and ®*P, components, for which the
excitation amplitudes arise in the O—0O excitation (type I in Fig. 2).
However, the °P., components, which are described by the amplitudes
arising in the OV excitation (type II in Fig. 2), are strongly spin-

contaminated; (S?) =1.0, which is typical for mixtures of the true



singlet and triplet states. As a result, there are absences of 'P.,
components. Strictly, one cannot say the strongly spin—contaminated
states as neither singlet nor triplet states. Hence, an erroneous energy
splitting between the (x,») components and z component of the °P and
'P multiplets is predicted by SF-TDDFT; 0.811 eV and 1.247 eV,

respectively.

Although the removal of the spin—contamination by MRSF-TDDFT(0)
does not improve the energies of the multiplet components, the P,
and BPX,y can now be distinguished. The use of the pairing strengths in
MRSF-TDDFT lifts the degeneracy of these components of the 'P and
*P multiplets, see the fourth column in Tab. 4. The magnitude of the
splitting between the components of the same multiplet with the non—
zero pairings is considerably reduced as compared to SF-TDDFT; the
3Px,y and °P, splitting is now 0.233 eV and the 'P., and 'P, splitting is
reduced to 0.223 eV. It can be expected that the residual splitting
between the (x,y) and z components can be further reduced by
considering more accurate expressions for the pairing strengths than

simple Eq. (104) used here.

To understand the origin of the residual splitting, calculations with 100%

HF exchange instead of the XC functional (labeled MRSF-CIS in Tab.
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4) were performed. The use of the self-interaction free HF exchange
completely eliminates the erroneous splitting between the SPX,y and °P,
components and reduces the 1PX,y_1PZ splitting to only 0.09 eV. This
indicates that the bulk of the splitting between the multiplet
components may be caused by the effect of the self-interaction error
of the density functional. The remaining tiny splitting between the
components of the !'P multiplet are probably caused by the

incompleteness of the mixed reference.

Not only for Be atom but also for other examples, MRSF-TDDFT
properly splits an unphysical state of SF-TDDFT (half-singlet and
half-triplet mixed state) into correct singlet and triplet states. A

posteriori spin—pairing coupling is expected to improve the split states.
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State SF-TDDFT

MRSF-TDDFT(0) MRSF-TDDFT MRSF-CIS

g -14.651 (0.00)  -14.651 (0.00) -14.651 (0.00) -14.584 (0.00)
*P, 2.877 (1.98) 2.899 (2.00) 2.900 (2.00)  2.107 (2.00)
*P., 3.688 (1.00) 3.688 (2.00) 2.667 (2.00)  2.107 (2.00)
'p, 4.935 (0.02) 4.913 (0.00) 4.913 (0.00)  6.042 (0.00)
lp,, 3.688 (0.00) 4.690 (0.00)  5.952 (0.00)

Table 4. Ground state total energies (Hartree) and excitation energies (eV) for
Be atom. MRSF-TDDFT(0) denote MRSF-TDDFT without spin—pairing
coupling, and MRSF-CIS denote using 100% HF exchange within the MRSF-

TDDFT formalism. The BHHLYP functional and 6-31G basis set are utilized

for these calculations. The expectation value of S< is given in parentheses.
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1.2 Singlet valence excited state of molecule

Benchmark calculations for the singlet valence excited states with
organic molecules of Thiel set[53] were performed. Vertical
excitation energies to Franck—Condon excited states are calculated by
MRSF- and SF-TDDFT with cc-pVTZ basis set.[54] Mean absolute
errors (MAE) in unit of eV for the benchmark calculations by MRSF-,
SF-, and LR-TDDFT are tabulated in Tab. 5 compared against the
TBE-2 reference.[55] In MRSF-TDDFT, sets of MAE with different

the pairing—strength coefficient csp are tabulated.

As the csp coefficient increases from 0.3 to 0.9 the MAE values
somewhat rise. This is related to the fact that the vertical excitation
energies also rise, although weakly, as csp changes. Note, the SF-
TDDFT MAE values can be considered as those obtained from MRSF-
TDDFT at csp=0, due to the fact that MRSF-TDDFT is similar to SF-
TDDFT when the pairing—strength is neglected (csp=0). Thus, one can
say that there is a minimum for the dependence of MAE on csp. In other
word, there is a minimum value of MAE at a particular value(s) of the
csp coefficient. For the BSLYP, PBEO, and BHHLYP this minimum is at
the following values of cspi 0.4-0.5, 0.3-0.5, and 0.0-0.3,

correspondingly. This means that overall MRSF-TDDFT outperforms



SF-TDDFT.

LR-TDDFT gives better MAE than MRSF- and SF-TDDFT for every
xc functional in this calculations. This can be understandable. Since
the vertical excitation energy is calculated at the optimized structure
in the So ground state, the reference state of LR-TDDFT (i.e., closed-
shell singlet state) describes the geometry better than that of MRSF-
and SF-TDDFT (/.e., open-shell triplet state). Better reference could
give better linear response of density, which lead to give better

vertical excitation energy.

Although the vertical excitation energy is important, the main focus of
SF- and MRSF-TDDFT is on describing conical intersections and
single-bond breaking/twisted systems. Therefore, we can conclude
that the slightly large 0.5 ~ 0.6 MAE at the Franck—-Condon region can
be allowed for many other advantages around conical intersections and

avolded crossing points.
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Table 5. Mean absolute errors MAE (in eV) for the vertical excitation energies
computed at MRSF-, SF-, and LR-TDDFT level of theory compared against
the TBE-2 reference. Four different xc functionals and the cc-pV1Z basis
set are utilized for this benchmark calculations. In MRSF-TDDFT, sets of

MAE with different the pairing—strength coefficient csp are given.

B3LYP PBEO BHHLYP MO08-SO
Csp MRSF-TDDFT
0.3 0.58 0.51 0.53 0.50
0.4 0.58 0.50 0.54 0.51
0.5 0.58 0.50 0.55 0.52
0.6 0.58 0.51 0.57 0.54
0.7 0.59 0.51 0.60 0.57
0.8 0.60 0.53 0.63 0.59
0.9 0.61 0.54 0.65 0.62
SF-TDDFT
0.65 0.57 0.53 0.51
LR-TDDFT
0.30 0.28 0.53 0.34
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2. Singlet-triplet energy gap

Singlet—triplet energy gap is an important chemical property to study
intersystem crossing or singlet fission. We have performed MRSF-
and LR-TDDFT calculations for the singlet—triplet (ST) gaps in a
series of molecules. For the majority of the molecules, adiabatic ST
gaps were calculated, except c—CsHa4, C3Hs, br—C7Hi4, In-C7H14, C2oHa,
butadiene, and hexatriene for which vertical ST gaps were calculated.
6-31G(d) basis set is utilized for all calculations with several other
functionals; D18X, B3LYP, PBEO, BHHLYP and MO8-HX. Here, a
functional D18X functional stands for a new hybrid functional
consisting 0.15 Becke + 0.75 Hartree—Fock exchange and Lee-Yang—

Parr correlation, which yield the best performance for MRSF-TDDFT.

Figure 6a and 6b show absolute errors of the ST gaps with respect to
experimental results for MRSF- and LR-TDDFT, respectively. For
small molecules from NH to PHs", the best agreement with the
experimental ST gaps is obtained with the use of the D18X functional.
The use of lower fraction of the HF exchange resulted in greater
errors. For molecules of medium size, it were the MO8-HX and
BHHLYP functionals that showed the best agreement with the

experimental ST gaps.



On the other hand, with LR-TDDFT, the best agreement with the
experiment is delivered by MO8-HX. For the medium-sized molecules
all functionals give the deviations from the experiment strongly

exceeding 0.36 eV with large values for absolute errors.
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3. Geometry-optimization structure

In this subsection, it 1is Investigated that how spin-
contamination and spin-pairing coupling affects the optimized
geometries of ground and excited states. All geometries were obtained
by using the analytic gradients of MRSF-, MRSF(0)-, and SF-TDDFT.
The BHHLYP[56-58] collinear XC kernel combined with the 6-31G (d)
basis set[59] were adopted for TDDFT calculations. In order to
measure accuracy of these geometries, geometry optimizations with
the equation—of-motion coupled—cluster singles and doubles (EOM-
CCSD)[60, 61] were also performed as a benchmarks level of theory
with the same basis set. Geometries of 8 organic molecules are
optimized for different states, which leads 20 different geometries (8
for Sp state, 8 for Si state, and 4 for Ss state). All the structures were
optimized with the default threshold of 10™* a.u./bohr and the default
integration grid for DFT (nrad = 96, nleb = 302) and TDDFT (nrad =
48, nleb = 110). All minimum points are confirmed by numerical

calculations of the Hessian.

After aligning all geometries obtained by different methods by
using vmd, geometric RMSDs of SF-, MRSF(0)- and MRSF-TDDFT

with respect to the reference geometry of EOM-CCSD are calculated.
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1 N
RMSD = WZ||RM ~Reomecso - (141)
m=1

Here, N is the number of atoms for a molecule and R, 1is the
geometry vector of an optimized molecule by the M/ method (where M
=SF-, MRSF(0)-, or MRSF-TDDFT). The double vertical bar denotes
the Euclidean norm. Each RMSD is represented as a point in Fig. 7

along the (s?) value of SF-TDDEFT.

The spin contamination resulting from missing configurations
for the So states is rare. Thus, RMSDs of the Sy state are accumulated
around 0.0 ~ 0.1 of the (S?) values. At the same time, their geometric
RMSDs against EOM-CCSD turned out to be small. The predicted

results with (S?) values of 0.1 ~ 0.7 are coming from the type I

(0O—0). Even for excited states composed of the spin—-complete type I
(O—0) configurations of SF-TDDFT shown in Fig. 1, considerable spin
contamination appears due to the asymmetric nature of SF-TDDFT.
Both MRSF(0)- and MRSF-TDDFT well improve the geometric RMSDs
compared to those of SF-TDDFT. However, in the cases of
cyclopentadiene (S1), propanamide (S1), formamide (S1), and acetamide
(S1), MRSF-TDDFT is slightly inferior to MRSF(Q)-TDDFT. While, the
MRSF-TDDFT in particular significantly improves RMSDs with

(S%y>0.8 which are from the type II (C—0) and type III (O—=V).
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Overall, the average RMSD of MRSF-TDDEFT as represented
by horizontal black line is smaller than that of MRSF(0)-TDDFT in blue
line. The improved prediction accuracy of MRSF-TDDFT can justify

the introduction of a posteriori coupling.
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Figure 7. Geometric RMSDs of SF-, MRSF(0)- and MRSF-TDDFT with respect
to the reference geometry of EOM-CCSD. Each point denotes the RMSD for
an optimized structure for 8 organic molecules. There are 20 points (8 for So,
8 for S;, and 4 for So optimized structures) The x-axis represents the
expectation value of S° operator for SF-TDDFT. The red, blue and black
horizontal lines represent the average values of SF-, MRSF(0)- and MRSF-

TDDFT, respectively.
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4. Adiabatic excitation energy

In this subsection, adiabatic excitation energies (AEEs) were
calculated with the optimized structures obtained in previous
subsection. Then, the AEEs by SF-, MRSF(0)-, MRSF-TDDFT are
compared to those by EOM-CCSD and the magnitude of differences

are presented in Fig. 8 in unit of eV with the same x-axis as Fig. 7.

In the case of AEEs, the MRSF-TDDFT performs extremely
well to the degree that many of predicted AEEs are nearly identical to
those of EOM-CCSD, which is also seen from the average AEE
differences as presented by the black horizontal line. The improved
prediction accuracy of MRSF-TDDFT can justify the introduction of a

posteriori coupling.
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Figure 8. Magnitudes of AEE differences of SF-, MRSF(0)- and MRSF-TDDFT
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the AEE difference for the same set of Fig. 7. Thus, there are 12 points (8
for AEE(S;-Sy) and 4 for AEE(S:-Sp)) The x-axis and horizontal lines
represent same as Fig. 7.
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5. Conical intersection

5.1 Minimum energy conical intersection of PSB3

The penta-2,4-dieniminium cation (PSB3) is an important model
system for vision used to test the ability of methods to correctly
describe topology of the conical intersections between the Sp and S
states.[28, 29, 62-64] While LR-TDDFT fails to produce the conical
intersections correctly,[27-29, 65] SF-TDDFT does this correctly.

[28, 46, 65] However, (S?) of Sp and S; at the MECI geometry of SF-

TDDFT are 0.31 and 0.36, respectively.[42]

The MECI geometries of MRSF- and MRSF(0)-TDDFT also can be
obtained and the spin contamination is eliminated. Geometric RMSDs
of MRSF- and MRSF(0)-, SF-TDDFT with respect to MRCISD are
0.077, 0.165 and 0.240 in unit of A, respectively. The MECI geometries

are aligned and presented in Fig. 9.

As clearly seen in the RMSDs as well as in Fig. 9, the geometric
improvement between SF- and MRSF(O)-TDDFT is seen, which is
purely from spin contamination. The geometry is further improved in

MRSF-TDDFT with a posteriori coupling.
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—— MRSF-TDDFT
—— MRSF(0)-TDDFT
—— SF-TDDFT

- MRCISD

Figure 9. Aligned MECI geometry for the PSB3 molecule optimized by MRSF-,
MRSF(0)-, SF-TDDFT, and MR-CISD. 7he geometric RMSDs of MRSF- and
MRSF()-, SF-TDDFT with respect to MRCISD are 0.077, 0.165 and 0.240 in

A, respectively.
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5.2 Topology of conical intersection for PSB3

In describing non—adiabatic process, the importance of the topology of
the conical intersection has been emphasized from the early stage of
study.[66-68] The conical intersection topology of PSB3 molecule has
been studied by Gozem et al.[28] and Huix—Rotllant et al..[29] They
reported that multi-reference methods (CASSCF and MRCISD) yield
double cone topology (i.e., conical intersection), while a linear Si/So
crossing is obtained by the LR-TDDFT (ie., linear intersection). In
addition, SEF-TDDFT provided a correct topology even though there is

a spin—contamination.

This topology was able to be measured by calculating difference of
energies between S; and So states in a circular loop around the conical
intersection for each method. The double cone topology should
provide non-zero energy difference anywhere in the loop, while the

linear topology yield two zero points in the loop.

We performed the loop calculation with the MRSF-TDDFT shown in
Fig. 10. MRSF-TDDFT predict the non-zero energy difference round
the loop; hence, the correct double cone topology is reproduced by

the method.
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Figure 10. Energy difference between S; and Sy states calculated a loop around

the conical intersection of PSB3 molecule with MRSF-TDDEFT.
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6. Non-adiabatic coupling term

6.1 Numerical non-adiabatic coupling term

The Tully’'s fewest-switches trajectory-surface—hopping (TSH)
method is one of the most popular semi-classical methods to study
excited state dynamics with radiationless vibronic transition. In TSH
method,[69] nuclear wave packets are described by ensembles of
independent classical trajectories. Each trajectory is propagated on a
single adiabatic PES, and it is allowed to hop to other adiabatic PESs
at every time step according to hopping probabilities. The hopping
probabilities between different electronic states depend on the
nonadiabatic coupling term (NACT). The NACT can be obtained
numerically by the finite difference approximation in terms of overlap

integrals (OIs) between wave functions at different time steps as
0
<lP| (t- A/2)|E|‘PJ (t— A/2)>
1
= (¥ -V 0)- (¥, Ovi-a)). 142

Here, the notation prime is introduced to emphasize that the state is
in a different time-step ¢ as opposed to ¢ —A. In this subsection, the

time variable will be omitted with the notation prime.
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The OIs between wave functions at different time steps are
represented as a function of products Ols between MOs at different

time steps.
(1195 )= 1 (i (A d0) (82| )(ta |y ) (143)

where  &j,..j,, 1s the Levi-Civita symbol which is the sign of a

M

permutation of the natural number.

6.2 Fast overlap evaluations with truncation

If one multiplies an unit parameter A, 1.e., A=1, to each OI between MOs,
<¢m ‘¢,’m> only when the index is different m=i,,, the Ols between the
wave function can be represented as ascending order of the parameter

A as

M

(P [¥))=2 Apa™. (144)

m=0

Although the MOs at consecutive time steps are formally

nonorthogonal, they become nearly orthogonal as time-step size A

becomes zero. Thus, Ols between MOs, i.e., <¢m ‘gb,;n> become nearly

the Kronecker delta function dpj . When using a time step smaller
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than change of the wave function, especially in the non-adiabatic
molecular dynamics simulation, one can truncate the series depending

on an order of the parameter A.[70]

The computing times for calculating an OI between wave functions are
obtained with different the truncation order from O to 2 and without
the truncation. Here, wave functions of SF-TDDFT are utilized and
size of basis set M is varying. The ratio of the computing times with

respect to the time with the zeroth order is shown in Fig. 11.

The truncation up to the second and the zeroth order gives four and
five orders improvements of system size compared to the calculation
without truncation, which is enormous time reduction for the OI

calculation.
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Figure 11. Ratios of computation times for evaluating Ols varying the truncation
order with respect to the time with the lowest truncation order. Both x— and
y-axis are represented in log scale. From the slopes one can obtain the
computational order of system size.
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6.3 Accuracy of truncation

In order to investigate accuracies of the truncated Ol in actual
calculations, the NACTs near three different conical interactions were
studied. They are twisted—-pyramidalized, H-migrated ethylene, and
twisted-pyramidalized stilbene. The BHHLYP[56-58] functional in
combination with 6-31G(d) basis set[59] was utilized. NACTs between
S1 and Sp states for the three different conical intersections and for
three different time—step sizes are tabulated in the third column of Tab.
6. NACTs errors with the truncation of OlIs are tabulated in the fourth,
the fifth, the sixth columns. Those are calculated with truncated Ols
up to the Oth, 1st, 2nd order of the A. All NACT values even with non—
truncated Ols are subjected to the finite difference approximation,
therefore any differences below 1077 are meaningless. In the table,
when the error magnitudes become smaller than 1077, we simply

specify them as < 1077,

It can be expected that the NACT errors with truncated Ols up to the
Oth, 1Ist, 2nd order of A are nearly on the zeroth, the first, and the
second order of the time-step size, respectively. This expectation is
supported by results for which the error magnitudes with Ols up to the

2nd order is always under 1077, and those up to the 1st order yield
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similar dependencies in the finite difference approximation. On the
other hand, those up to the Oth order are one or two orders larger than
others, and slightly larger than those of the finite difference
approximation. Nevertheless, these are still highly accurate compared
to the absolute NACT values. In general, it can be concluded that the
truncated Ols up to the 1st and 2nd order do not introduce additional
errors to the NACT. On the other hand, although the truncated Ols with
only Oth order adds error higher by one order of magnitude, it is still

capable of producing accurate values compared to the absolute NACT.
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NACT (a.u.)

NACT with truncation - NACT (a.u.)

Molecule A (fs) -
w/o truncation Oth 1st 2nd
. 0.1  0.2361078 28x10°% <107 <1077
Twisted 557711199419 2.5 x 10° <107 <107
ethylene
0.5  0.0480514 45x10°% -6.0x107 <107
- 0.1  0.0885232 4.8x10°% <107 <1077
migrated 0.2 0.1156795 3.0 X 107° <1077 <1077
Ethylene o5 00472909 5.4 x10° <107 <1077
. 0.1  0.0105009 4.7x10° -1.2x10"7 <107
Twisted 55774 0092561 5.2 x 10° -1.1 x 107 < 10
stilbene
0.5  0.0085117 9.9x10°% -2.1x107 <107

Table 6. Errors of nonadiabatic coupling term (NACT) with the truncated
overlap integrals. NACTs (a.u.) between S; and Sy states for three different
conical intersections and for three different time-step sizes (A) are in the
third column. NACTs error (a.u.) with the truncation of Ols are in the fourth,
the fifth, the sixth columns. Those are calculated with truncated Ols up to the
Oth, 1st, Znd order of the A. In all calculations, the NACTSs were calculated
between the given geometries and propagated geometries by velocity—Verlet
algorithm with its gradient of the first excited state. “< 107" " denotes that the
magnitude of difference is lower than 1.0 X 1077,
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7. Non-adiabatic molecular dynamic

7.1 Photoisomerization and photocyclization of cis-stilbene

The photoisomerization mechanism has been examined considerable
experimental and theoretical studies. As a prototypical model system,
1,2-diphenylethylene (stilbene) has been intensively studied. From
early experimental research, the quantum yield for the photoreaction
of the excitation on the S; state of cis—stilbene have been reported to
be 10% for DHP, 35% for trans-stilbene and 55 % for cis—stilbene.
Figure 12[71] illustrate a schematic diagram for the excited (S1) cis—
stilbene dynamics based on previous mechanism studies. The three
branching points are well known represented by A, B and C,
respectively in Fig. 12. The S; cis-stilbene branch into two channels
at the A point, which are referred as cis—trans (photoisomerization)
and c7/s—DHP (photocyclization) channels. As much as 70% of Sy cis—
stilbene head to cis—trans channel.[72, 73] At the B branching point,
half of them yield So trans—stilbene, and the other half convert to So
cis-stilbene.[74-77] Meanwhile, the remaining 30% of S; cis—stilbene
head to the cis-DHP channel, and one-third yield So DHP while the

other two—-thirds become Sy cis—stilbene at the C point.[78]
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Figure 12. Schematic diagram of cis-stilbene photodynamics. 7hree branching

points A, B, and C are presented on the schematic potential energy diagram.
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7.2 Branching ratio and Quantum yield

Nonadiabatic molecular dynamics simulations for the nn* excited crs—
stilbene have been performed for 2 ps using SF- or MRSF(0)-TDDFT
[50] with the TSH method.[69] Two sets of 50 trajectories are
simulated for the methods with initial geometries randomly chosen
from a 30 ps ground-state simulation of cis-stilbene. Full vibrational
degrees of freedom have been explored with 0.5 fs time step divided
into sub-time steps of 5.0 X 107 fs. The BHHLYP hybrid
functional[56-58] with 6-31G(d) basis set[59] has been utilized for
all calculations. The nonadiabatic coupling terms (NACT) are
numerically calculated with finite difference method and with truncated
overlap integrals[70] as described in previous subsection 5 of Non-

adiabatic coupling term.

First, we could obtain branching ratios at three branching points A, B
and C and quantum yield for both sets of calculations, and these are
tabulated in Tabs. 7 and 8. Error bars for all values denote the 90%

confidence interval obtained by the bootstrapping.

Branching ratios of the MRSF-TDDEFT at branching points B and C are

well agree with those of experimental results except for slight



discrepancy at a branching point A as 70/30 for experiment and
60(£9)/40(£9) for MRSF-TDDFT. On the other hand, the branching ratios at
A and C for SF-TDDFT are well agree, while the branching ratios at B have
quite large discrepancy as 50/50 for experiment and 74(£10)/26(+10) for SF-

TDDFT.

For the final quantum yields of cis—, trans—stilbene and DHP in Tab. 8,
all wvalues with MRSF-TDDEFT are well agree with those of
experiments as 56(+£9)/32(£8)/12(+6) for MRSF-TDDFT and 55/35/10
for experiments. On the other hand, SF-TDDFT underestimates
quantum yield of cis-stilbene and overestimates that of frans—stilbene
as 36(x9)/50(+9) for SF-TDDFT and 55/35 for experiments. In NAMD
with LR-TDDFT,[79] it cannot yield DHP product at all, and that of
cis-stilbene is overestimated as 66(+3) for LR-TDDFT and 55 for an

experiment.

101 i’-! L ]



A B C

cis—trans cis—DHP  trans cIs DHP Cis
MRSF-TDDFT  60(x9) 40(x9) 53(x12) 47(x12) 25(¢12) 75(x12)
SF-TDDFT 68(£9) 32(#9) 74(£10) 26(x10) 44(%£16) 56(x16)
Experiment 70 30 50 50 33 67

Table 7. Branching ratio (%) at three branching points during non-adiabatic
molecular dynamics of cis—stilbene. Values in parentheses denote the 90%

confidence interval obtained by the bootstrapping
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CIS trans DHP
MRSF-TDDFT 56 (+9) 32 (+8) 12 (£ 6)

SF-TDDEFT 36 (+9) 50 (+9) 14 (+ 6)
LR-TDDFT 66 (+ 3) 34 (+ 3) 0
Experiment 55 35 10

Table 8. Quantum yields (%) of zz* excited cis—stilbene. Values in parentheses

denote the 90% confidence interval obtained by the bootstrapping

b i 211
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7.3 Dynamics in the branching point

Further understanding about the branching ratio is investigated with
two dimensional histogram shown in Fig. 13. The x—axis is a bond
length (/) between two carbons in which a new single bond is formed
in DHP product, and the y—axis is a dihedral angle (Dc=c) between two
bonds which connect the centered double bond and two phenyl rings.
The histograms for all 50 trajectories in the excited states are
presented in a and b for MRSF- and SF-TDDEFT, respectively. The
histograms for 30 and 34 trajectories headed to the cis—frans channel
in the ground state is presented in ¢ and d for MRSF- and SF-TDDFT
with points where hopping from S; to So occur. Likewise, the ground
state histograms for 20 and 16 trajectories headed to ¢is—DHP channel
are shown in e and f for MRSF- and SF-TDDFT, respectively with the

hopping points.

A clear discrepancy between S; state histograms for MRSF- and SF-
TDDFT is seen. The A branching point is highly populated, while both
A and B points are highly populated in SF-TDDFT. It represent
trajectories hopping from S; to So quite fast not to reside around B
points for MRSF-TDDFT. Since a difference between MRSF(0)- and

SF-TDDFT is the absence or presence of spin contamination, it is

7 3 11 =1
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expected that the difference come from spin contamination problem of
SF-TDDFT. Figure 14 shows averaged <S?> value of SF-TDDFT in
the excited state. Overall region for A and B points has 0.2 ~ 0.4 of

<S?> value, which is not negligible spin contamination.

Around branching point B (cis—trans), surface hoppings appear in
broad region of the histogram. It is seen that trajectories hopping with
relatively small A and Dc-c become cis-stilbene, while these become
trans—stilbene in the other case. In MRSF-TDDFT, more trajectories
are hopping with relatively small # and Dc=c compared to those of SF-
TDDEFT. It lead to good agreement of branching ratio of MRSF-TDDEFT,
while overestimate frans—stilbene branching ratio of SF-TDDFT as

74(£10) for SF-TDDFT and 50 for experiment.

Branching ratios at branching point C (cis-DHP) for both MRSF- and
SF-TDDFT are agree with experiment results shown in Tab. 7.
However, a difference between distributions of hopping points for two
methods are seen. Surface hoppings appear in narrow region of the
histogram for MRSF-TDDFT, while these are relatively scattered for
SF-TDDEFT. In SF-TDDFT, there are a few hoppings with # less than
1.7 angstrom, which lead to DHP product. In Fig. 14, there is severe

spin contamination where <S> > 0.4. Although the branching ratio of



SF-TDDFT is agree with experiment result, these are seemed to be

problematic hoppings.
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CONCLUSION

A new method in the context of collinear spin—flip linear response
TDDFT is proposed, which employs an equiensemble of the Mg =+1
and Mg =-1 components of the triplet state as a (mixed) reference

state. The TD-KS equation with the mixed state can be solved within

linear response formalism by the use of spinor—like open-shell orbitals.

It is a novel attempt to add configurations within the realm of TDDFT.

The resulting MRSF-TDDFT has several advantages over the
conventional collinear SF-TDDFT. MRSF-TDDFT gives more
accurate results than SF-TDDFT by eliminating the spin contamination
of the response states of SEF-TDDFT. The accuracy of MRSF-TDDFT
has been tested and verified in various calculations. The spin
contaminated P state of Be atom for SF-=TDDFT properly splits into
singlet ('P) and triplet states (°P). A posteriori coupling is shown to be
improve degeneracy of the P states. In the vertical excitation energy
calculations to Franck—-Condon states for organic molecules, results of
MRSF-TDDFT give slightly better than those of SF-TDDFT compared
to reference results of the theoretical best estimate (TBE-2). For the
structures and adiabatic excitation energies obtained from geometry

optimization of organic molecules, MRSF(0)-TDDFT results are closer



than SF-TDDFT results compared to the EOM-CCSD results. It is
shown that MRSF-TDDFT results (with a posteriori coupling) further
improve the results. Comparing MRCISD calculation, MRSF(Q)-TDDFT
1s also superior than SF-TDDFT in calculations for the minimum
energy conical intersection of PSB3 molecule, which is the important
model system in vision. Likewise, a posteriori coupling improves the
result. Apart from the accuracy of MRSF-TDDFT, we propose a
truncation method to calculate non-adiabatic coupling which
drastically reduce computation time while maintaining greatly high
accuracy. Using this non-adiabatic coupling term, non-—adiabatic
molecular dynamics of cis—stilbene molecules were able to be
performed by SF- and MRSF(0)-TDDFT. Both methods are superior
than LR-TDDFT since the methods produced a DHP product which
LR-TDDFT could not produce. The SF-TDDFT yield a non—negligible
amount of spin—contamination throughout the dynamics simulations
and the MRSF(O)-TDDFT could completely eliminate the spin
contamination. Branching ratio and quantum yield of MRSF(0)-TDDFT
1s more closer to the experimental value than those of SF-TDDFT.
Not only for the accuracy but clear separation of singlet and triplet
response states considerably simplify the means by which excited
states are identified, especially in ~ " black-box''-type applications,

such as automatic geometry optimization, reaction path following, and
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molecular dynamics simulations.

From these reasons it is highly expected that MRSF-TDDFT vyield
improved results than SF-TDDFT by eliminating spin contamination
problem in general cases. Therefore, we can conclude that MRSF-
TDDFT has advantages over SE-TDDFT in terms of both practicality

and accuracy.
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