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ABSTRACT 
 
The mixed-reference spin-flip time-dependent density functional 

theory (MRSF-TDDFT) is proposed, which is derived from linear 

response formalism for the time-dependent Kohn-Sham equation by 

the use of mixed reference. Linear response from the mixed reference, 

which combines MS = +1 and -1 components of triplet state, generates 

additional configurations in the realm of TDDFT. Resultantly, MRSF-

TDDFT eliminates the erroneous spin-contamination of the SF-

TDDFT. Analytic energy gradients of the response states with respect 

to nuclear coordinates are also derived and implemented. The 

computational overhead of singlet or triplet states for MRSF-TDDFT 

is nearly identical to that of SF-TDDFT. The resulting MRSF-TDDFT 

computational scheme has several advantages before the conventional 

SF-TDDFT. Linear-response equations for the singlet and triplet 

responses are clearly separated. This considerably simplifies the 

identification of the excited states, especially in the ̀ `black-box'' type 

applications, such as the automatic geometry optimization, reaction 

path following, or molecular dynamics simulations of the targeted 

states. Accuracy of MRSF-TDDFT has been tested and verified in 

various ways including vertical-excitation energy, singlet-triplet 

energy gap, adiabatic-excitation energy, optimized structure, 

minimum energy conical intersection, nonadiabatic coupling term, and 



   

nonadiabatic molecular dynamic simulation. Therefore, it is highly 

expected that the MRSF-TDDFT has advantages over SF-TDDFT in 

terms of both practicality and accuracy. 

 

Keyword: Photochemistry, Spin-flip time-dependent density 

functional theory, Spin contamination problem, Conical intersection, 

Nonadiabatic coupling matrix term, Nonadiabatic molecular dynamics.  
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 INTRODUCTION 
 

Proper and efficient descriptions of electronic excited states have 

become more important than ever, as the theoretical studies of 

emerging sciences, such as photovoltaics,[1, 2] molecular rotor[3] 

are heavily dependent on them. A widely used methodology for 

studying molecular excited states is the linear-response time-

dependent density functional theory (LR-TDDFT).[4-10] It is based 

on the time-dependent Kohn-Sham (TD-KS) equation with the linear-

response formalism using a singlet ground state as a reference state. 

In this approach, a fictitious noninteracting system is introduced whose 

density is equal to that of the real interacting system.[11, 12] A wave 

function of the noninteracting system is assumed to be described by a 

single Slater determinant, which is referred to as an idempotency of 

reduced density matrix in terms of the density matrix.[13, 14] 

 

Contrasting to its popularity, well-known failures of this 

methodology exist, in describing the energy of long-range charge 

transfer excitations,[15-19] excited states with substantial double 

excitation character,[20-23] excited states of molecules undergoing 

bond breaking,[23-25] and real and avoided crossings between the 

ground and excited states of molecules.[26-29] Some of these 
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drawbacks, in particular, the incorrect description of the S1/S0 conical 

intersections and the poor description of multi-reference electronic 

states, can be corrected to some extent by the spin-flip (SF)-

TDDFT,[30-32] which employs an Ms = +1 component of triplet 

ground state e.g., αα , as a reference state instead of the closed-

shell reference of the LR-TDDFT. However, the use of only one 

component of the degenerate triplet state leads to considerable spin 

contamination of the resulting excited electronic states, except in a 

few low-lying excited states.[33] The spin contamination of SF-

TDDFT is different from that of the unrestricted Hatree-Fock (UHF) 

wavefunction come from orbital asymmetries. On the other hand, in 

SF-TDDFT, the main source of spin contamination is due to spin 

incompleteness of an excited set of configurations. Therefore, a key 

solution for this problem is to expand the response space of SF-

TDDFT such that it can include the missing configurations.  

 

Within the same contexts, several approaches have been 

developed to tackle the spin-contamination problem of the SF 

configuration interaction with single excitations (CIS),[33-37] which 

is a wave function version of SF-TDDFT. However, unlike SF-CIS, a 

considerable challenge remains with respect to TDDFT when going 

beyond the adiabatic approximation to account for more than single 
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excitations.[38, 39] Because of this difficulty, only a few methods 

have been developed to address the spin-contamination problem of 

the SF-TDDFT. One means of adding more responses is to use a 

higher excitation operator.[38] Without the TD-KS equation being 

utilized, on the other hand, tensor equation-of-motion (TEOM) 

approaches achieved considerable progress, yielding a series of SA-

SF-DFT methodologies.[36, 40, 41] These approaches can produce 

correct spin eigenstates by applying tensor operators to a tensor 

reference. However, the matrix elements of TEOM are evaluated using 

the Wigner-Eckart theorem, which is not satisfied by the approximate 

density functionals. Thus, the SA-SF-DFT formalism[36] requires an 

a posteriori DFT correction to the SA-SF-CIS equations. Due to the 

complexity of TEOM, the analytic energy gradient for the SA-SF-DFT 

has yet to be derived. 

 

Rather than using a high excitation operator[38] or using a 

tensor operator with a tensor reference,[36] a means of expanding 

the response space by linear response from more than one 

reference[42] is shown in this thesis. In THEORETICAL 

BACKGROUND section, a brief review of derivation for linear 

response equation from time-dependent Kohn-Sham equation is 

described. In addition, SF-TDDFT is introduced and its advantages 
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and disadvantages are summarized. In MIXED-REFERENCE SPIN-

FLIP TDDFT section, mixed-reference spin-flip (MRSF)-TDDFT is 

proposed which eliminate spin-contamination problem of SF-TDDFT 

while maintaining its advantages. Linear response equation of MRSF-

TDDFT is derived and a posteriori coupling, which is referred as spin-

pairing coupling, is introduced. In ANALYTIC ENERGY GRADIENT OF 

MIXED-REFERENCE SPIN-FLIP TDDFT section, analytic energy 

gradient is derived by the Lagrangian of MRSF-TDDFT. In 

NUMERICAL RESULTS section, accuracy of MRSF-TDDFT has been 

tested and verified in various ways including vertical-excitation 

energy, adiabatic-excitation energy, optimized structure, minimum 

energy conical intersection, nonadiabatic coupling term, and 

nonadiabatic molecular dynamic simulation. 

 

It is noted that this thesis reorganizes the contents of three papers 

published in international journals and those of papers in preparation. 

MIXED-REFERENCE SPIN-FLIP TDDFT 

S. Lee, M. Filatov, S. Lee, C.H. Choi, J. Chem. Phys. 149, 104101 (2018) 

ANALYTIC ENERGY GRADIENT OF MIXED-REFERENCE SPIN-FLIP TDDFT 

S. Lee, E.E. Kim, H. Nakata, S. Lee, C.H. Choi, J. Chem. Phys. 150, 184111 (2019) 

NUMERICAL RESULTS 

1. Vertical excitation energy 

S. Lee, M. Filatov, S. Lee, C.H. Choi, J. Chem. Phys. 149, 104101 (2018) 
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Y. Horbatenko and S. Lee, M. Filatov, C.H. Choi submitted for publication 

2. Singlet-triplet energy gap 

Y. Horbatenko and S. Lee, M. Filatov, C.H. Choi submitted for publication 

3. Geometry-optimization structure 

S. Lee, E.E. Kim, H. Nakata, S. Lee, C.H. Choi, J. Chem. Phys. 150, 184111 (2019) 

3. Adiabatic excitation energy 

S. Lee, E.E. Kim, H. Nakata, S. Lee, C.H. Choi, J. Chem. Phys. 150, 184111 (2019) 

4. Conical intersection 

S. Lee, E.E. Kim, H. Nakata, S. Lee, C.H. Choi, J. Chem. Phys. 150, 184111 (2019) 

S. Lee and S. Shostak, M. Filatov, C.H. Choi, submitted for publication 

5. Non-adiabatic coupling matrix elements 

S. Lee, E.E. Kim, S. Lee, C.H. Choi, J. Chem. Theory Comput. 15, 882 (2019) 

6. Non-adiabatic molecular dynamics 

S. Lee, E.E. Kim, M. Filatov, S. Lee, C.H. Choi, in prepararation 
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THEORETICAL BACKGROUND 
 

 

1. Idempotency of reduced density matrix 

 

 

The essence of time-dependent density functional theory (TDDFT) is 

the determination of the exact density in a time domain or in a 

frequency domain from which any many-particle observable can be 

obtained.[4-10] In this paper we shall only consider the density of 

electrons. Based on the Runge-Gross theorem, the fictitious non-

interacting Kohn-Sham (KS) system is defined.[11, 12] In this system, 

there is no interaction between electrons but all potentials are 

described as one-particle operators. An one-electron wave function 

of non-interacting KS system, ( , )i
i t xσψ , is referred as KS molecular 

orbital (MO). The i  and iσ  stand for index of the spatial part and 

that of spin part for the i th occupied KS MO, respectively, and x  

denotes both position and spin of the electron, ( , )x r σ= . A many-

electron wave function of the non-interacting system, [ ]( )tρΨ , is 

usually restricted to be a normalized single Slater determinant. Then, 

the reduced density matrix (RDM) of the [ ]( )tρΨ  can be represented 

as  

 
occ

( , , ) ( , ) ( , )i i

i

i i
i

t x x t x t xσ σ

σ

ρ ψ ψ′ ′=∑ , (1) 



 

 ７ 

where the summation index of iiσ  denotes a summation over occupied 

MOs. It can be rewritten with the time-independent KS MO, ( )p
p xσφ , 

(which is the solution of the usual time-independent KS equation) as 

 ( , , ) ( ) ( ) ( )p q

p q

p q

p q p q
p q

t x x P t x xσ σ
σ σ

σ σ

ρ φ φ′ ′= ∑  (2) 

where summation indices of ppσ  and qqσ  represent summations 

over whole MOs, and ( )
p qp qP tσ σ  is the discrete representation of the 

RDM; denoted as the density matrix, in the following. The diagonal 

part of the RDM is the density of the non-interacting system,  

 ( , ) ( , , ),t x t x xρ ρ=  (3) 

which is assumed to be equal to the density of the corresponding real 

system. In this paper, we shall only consider a case of systems 

consisting of even-number (2n) electrons, 

 Tr ( , , ) 2 .t x x nρ =  (4) 

Due to the restriction of single Slater determinant of [ ]( )tρΨ , the 

RDM is idempotent, 

 ( , , ) ( , , ) ( , , ) ,t x x t x x t x x dxρ ρ ρ′ ′′ ′′ ′ ′′= ∫  (5) 

which can be rewritten for the density matrix as 

 ( ) ( ) ( ),            , .
p q p t t q

t

p q p t t q p q
t

P t P t P t p qσ σ σ σ σ σ
σ

σ σ= ∀∑  (6) 
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2. Time-dependent Kohn-Sham equation 

 

 

The TD density can be determined by the TD-KS equation which will 

be discussed in this subsection. First, let us consider the Dirac action: 

 
2

0
[ ] [ ]( ) ( ) [ ]( ) .

t
A t i H t t dt

t
ρ ρ ρ∂

= Ψ − Ψ
∂∫  (7) 

The stationary action principle with respect to the KS MO, 

[ ] ( , ) 0i
iA t xσδ ρ δ ψ = , leads to the TD-KS equations,[43] 

 ( , ) [ ( )] ( , ) ,            occupied MO.i i
i i ii t x F t t x i

t
σ σψ ρ ψ σ∂

= ∈
∂

 (8) 

In terms of the RDM, the TD-KS equation can be rewritten as 

 ,i F F
t
ρ ρ ρ∂
= −

∂
 (9) 

which become 

 ( ) ,      , whole MO.
p q p t t q p t t q

t

p q p t t q p t t q p q
t

i P F P P F p q
t σ σ σ σ σ σ σ σ σ σ

σ

σ σ∂
= − ∈

∂ ∑  (10) 

where 

* 2 ( , )1 [ ]( ) ( ) .
2 ( , )

p q

p q

XC
A

p q p q
A A

Z t x AF x dx x dx
r R r r t x

σ σ
σ σ

ρ δ ρφ φ
δρ

 ′
′= − ∇ − + +  ′− − 

∑∫ ∫ (11) 

Within the adiabatic approximation, the exchange-correlation (XC) 

part XCA  of the action functional is replaced by the XC functional of 

time-independent DFT evaluated with the density tρ  at time t, 

[ ] ( , ) [ ] ( )XC XC
t tA t x E xδ ρ δρ δ ρ δρ≅ . In the case of approximate hybrid XC 
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functionals, the Fock matrix, 
p qp qF σ σ , becomes 

* 2

*

* *

1( ) ( )
2

[ ]
(1 ) ( ) ( )

( )
ˆ(1 ( , ))

( ) ( ) ( ) ( ) ( ) ,

p q

p q

p q

p qs r

r s

r s

A
p q p q

A A

XC
t

H p q
t

H
r s p s r q

r s

Z
F x x dx

r R

E
c x x dx

x

c P x x
P t x x x x dxdx

r r

σ σ
σ σ

σ σ

σ σσ σ
σ σ

σ σ

φ φ

δ ρ
φ φ

δρ

φ φ φ φ

 
= − ∇ −  − 

+ −

′−
′ ′ ′+

′ −

∑∫

∫

∑ ∫ ∫

 (12) 

where ˆ( , )P x x′  is the permutation (exchange) operator and Hc  is the 

mixing coefficient for the exact (Hartree-Fock, HF) exchange; Hc  = 

0 or 1 recovers the pure DFT or pure HF limits, respectively. 

 

 

3. Linear-response theory 

 

 

A way to solve the density-matrix formulation of TD-KS equation in 

Eq. (10) within linear-response formalism is suggested by using the 

idempotency of RDM in Eq. (6).[13] In this subsection, a review of the 

derivation of linear-response equation is presented starting from the 

Volterra expansion. 

 

3.1 Volterra expansion 
 

 

Suppose a time-dependent one-electron external perturbation, e.g., a 

time-dependent electric field, with a frequency Ω  and a strength λ  
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 ext ( ) c.c.
p q p q

i t
p q p qv t h eσ σ σ σλ − Ω= +  (13) 

is applied to a reference system at time 0, whose density can be 

determined by the usual time-independent DFT. Here, c.c. denotes 

complex conjugate of the preceding term. Then, the density matrix, 

( )
p qp qP tσ σ , and the Fock matrix, ( )

p qp qF tσ σ , can be expanded in powers 

of λ  as 

 (0) (1) 2( ) ( ) ( ),
p q p q p qp q p q p qP t P P t Oσ σ σ σ σ σλ λ= + +  (14) 

 (0) (1) 2( ) ( ) ( ).
p q p q p qp q p q p qF t F F t Oσ σ σ σ σ σλ λ= + +  (15) 

If the reference system is described by a single Slater determinant, 

the zeroth-order density and Fock matrices are given in  

 (0)
,    for , occupied MO,

otherwise, 0
p q

p q

pq p q
p q

p q
P σ σ

σ σ

δ δ σ σ ∈= 


 (16) 

 

*(0) 2

* 0

0

occ
* *

1( ) ( )
2

[ ]
(1 ) ( ) ( )

( )
ˆ(1 ( , ))

( ) ( ) ( ) ( ) ,

p q

p q

p q

p qi i

i

A
p q p q

A A

XC

H p q

H
p i i q

i

Z
F x x dx

r R

E
c x x dx

x

c P x x
x x x x dxdx

r r

σ σ
σ σ

σ σ

σ σσ σ

σ

φ φ

δ ρ
φ φ

δρ

φ φ φ φ

 
= − ∇ −  − 

+ −

′−
′ ′ ′+

′ −

∑∫

∫

∑∫ ∫

 (17) 

The first-order density and Fock matrices can be represented by 

 (1) ( ) c.c.,
p q p q

i t
p q p qP t d eσ σ σ σ

− Ω= +  (18) 

 (1) ext (1)( ) ( ) ( ).p q

p q p q r s

r s r s

p q
p q p q r s

r s r s

F
F t v t P t

P
σ σ

σ σ σ σ σ σ
σ σ σ σ

∂
= +

∂∑  (19) 

The matrix, 
p qp qd σ σ  in Eq. (18), represent amplitudes of linear 
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response of density. The first and the second terms of Eq. (19) are the 

external perturbation potential and the response of the Fock matrix to 

the density variation, respectively. 

 

 

3.2 Connection between linear response of density and one-
electron excitation 

 

 

Substituting expansion of density matrix of Eq. (14) into the 

idempotency relation of Eq. (6) yields the idempotency relations for 

the zeroth- and first-order density matrices, respectively, 

 (0) (0) (0) ,
p t t q p q

t

p t t q p q
t

P P Pσ σ σ σ σ σ
σ

=∑  (20) 

 ( )(1) (0) (0) (1) (1) ,           , .
p t t q p t t q p q

t

p t t q p t t q p q p q
t

P P P P P p qσ σ σ σ σ σ σ σ σ σ
σ

σ σ+ = ∀∑  (21) 

The former relation of Eq. (20) satisfied with the condition in Eq. (16) 

enable to define projection matrices onto the subspace of the occupied 

MOs, (0)
i ii iPσ σ , and onto the unoccupied MOs, (0)

a a a aa a a aPσ σ σ σδ − . The orbital 

index convention used in this section is i, j for occupied MOs, a, b for 

virtual MOs, p, q, r, s, t for MOs in general. 

 

Meanwhile, substituting the first-order density matrix of Eq. (18) into 

the first-order idempotency relation of Eq. (21) yields 

 ( )(0) (0) ,
p t t q p t t q p q

t

p t t q p t t q p q
t

d P P d dσ σ σ σ σ σ σ σ σ σ
σ

+ =∑  (22) 
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from which the amplitude matrix 
p qp qd σ σ  can be represented as 

 ,
p q p q p qp q p q p qd X Yσ σ σ σ σ σ= +  (23) 

where 

 
(0) (0)( ) ,

p q p r p r r s s q

r s

p q p r p r r s s q
r s

X P M Pσ σ σ σ σ σ σ σ σ σ
σ σ

δ= −∑  (24) 

 (0) (0)( ).
p q p r r s s q s q

r s

p q p r r s s q s q
r s

Y P M Pσ σ σ σ σ σ σ σ σ σ
σ σ

δ= −∑  (25) 

Here 
r sr sM σ σ  is an arbitrary matrix. 

p qp qX σ σ  has non-zero elements 

between the unoccupied ppσ  and occupied qqσ  MOs and 

corresponds to one-electron excitations, whereas the matrix 
p qp qY σ σ  

has non-zero elements for the occupied ppσ  and unoccupied qqσ  

MOs and corresponds to one-electron de-excitations. It is emphasized 

that the first-order density matrix can be represented in terms of MOs 

of reference system, and these can be interpreted as one-electron 

excitation and de-excitation from the Eqs. (24) and (25). 

 

In this paper we shall use Tamm-Dancoff approximation (TDA)[44, 45] 

in which the excitation amplitude, 
p qp qX σ σ , is only considered and the 

de-excitation amplitude 
p qp qY σ σ  is ignored. 
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3.3 Linear response equation 
 

 

Substituting expansion of density and Fock matrices of Eqs. (14) and 

(15) into the TD-KS equation of Eq. (10) yields equation of motions 

for the nth-order density matrix. These for the zeroth- and the first-

order density matrix are given by 

 ( )(0) (0) (0) (0)0 ,
p t t q p t t q

t

p t t q p t t q
t

F P P Fσ σ σ σ σ σ σ σ
σ

= −∑  (26) 

 ( )(1) (0) (1) (1) (0) (1) (0) (0) (1) .
p q p t t q p t t q p t t q p t t q

t

p q p t t q p t t q p t t q p t t q
t

i P F P P F F P P F
t σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

σ

∂
= − + −

∂ ∑ (27) 

The former relation of Eq. (26) is already satisfied with a condition in 

Eq. (16), while the latter relation of Eq. (27) will determine linear-

response of density. Substituting the first-order density and Fock 

matrice of Eqs. (18) and (19) into the the latter relation yields 

 

( )
(

(0) (0)

(0) (0)

(0) (0) .

p q p t t q p t t q

t

p t t q p t t q

t

p t t q

r s t q p t r s

r s r sr s r s

p q p t t q p t t q
t

p t t q p t t q
t

p t t q
r s t q p t r s

r s r sr s r s

d h P P h

F d d F

F F
d P P d

P P

σ σ σ σ σ σ σ σ σ σ
σ

σ σ σ σ σ σ σ σ
σ

σ σ σ σ
σ σ σ σ σ σ σ σ

σ σ σ σσ σ σ σ

Ω = −

+ −

∂ ∂ 
+ − ∂ ∂ 

∑

∑

∑ ∑

 (28) 

Within TDA, the right-multiplication of all terms in Eq. (28) by 

projection matrices on occupied MO space, (0)
q iq iPσ σ , and the left-

multiplication by projection matrices on virtual MO space, 

(0)
q p q pa p a pPσ σ σ σδ − , gives 
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 ( ), ,
a i a i b j i j a b b j

b j

a i a i b j ij ab b j
b j

h A Xσ σ σ σ σ σ σ σ σ σ σ σ
σ σ

δ δ δ δ− = − Ω∑  (29) 

where orbital Hessian matrix is 

 (0) (0)
, .a i

a i b j a b i j i j a b

j b b j

a i
a i b j a b ij i j ab

j b b j

F
A F F

P
σ σ

σ σ σ σ σ σ σ σ σ σ σ σ
σ σ σ σ

δ δ δ δ
∂

= − +
∂∑  (30) 

 

 

3.4 Electronic excitation energy 
 

 

Electronic excitation energies can be obtained from the linear-

response amplitude of density by analysis of the poles of the 

polarizability suggested by M. E. Casida.[5] Within the sum-over-

states (SOS) approach, the dynamic polarizability is represented as 

 
ref  ref ref  ref

,
I I I I

x y x y
xy

I II I

µ µ µ µ
α = +

Ω − Ω Ω + Ω∑ ∑  (31) 

where ref 
ref

I
r Irµ = Ψ Ψ  and IΩ  are transition dipole moments in the 

r direction and the excitation energy, respectively, from the reference 

state to the Ith excited state, and Ω  is frequency of the external 

perturbation. 

 

Meanwhile, a linear-response amplitude of the dipole moment in x  

direction, xδµ , can be represented as 

 2 .
q p p q

p q

x q p p q
p q

x dσ σ σ σ
σ σ

δµ = − ∑  (32) 

Thus, an element of polarizability is given by 
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 2 .p q

q p

p q

p qx
xy q p

p qy y

d
x σ σ

σ σ
σ σ

δµ
α = = − ∑E E

 (33) 

where yE  is the TD perturbed electric field in y direction. As 

mentioned in a previous section, amplitude of linear-response density, 

p qp qd σ σ , is equal to the excitation amplitude, 
p qp qX σ σ , within TDA. 

With Eq. (29), it can be rewritten as 

 ( ) 1

,2 .
q p p q r s i j a b r s

p q r s

xy q p p q r s ij ab r s
p q r s

x A yσ σ σ σ σ σ σ σ σ σ σ σ
σ σ σ σ

α δ δ δ δ
−

= − Ω∑ ∑  (34) 

The first term on the right-hand side of Eq. (31) has poles at excitation 

energies, IΩ , and the second term has poles at de-excitation energies, 

I−Ω . Therefore, the excitation energy can be obtained by comparing 

the first term of Eq. (31) and Eq. (34) within TDA.[44, 45] It follows 

that the excitation energies are the solutions of the eigenvalue 

problem, 

 , .
p q r s r s p q

I I
p q r s r s I p qA X Xσ σ σ σ σ σ σ σ= Ω  (35) 

The final resulting equation is called as the linear-response equation 

or the Casida equation. 
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4. Spin-flip TDDFT 

 

 

If the zeroth-order (reference) density matrix for the Volterra 

expansion in Eq. (16) satisfy that of the closed-shell ground singlet 

state, the linear-response equation of Eq. (35) is the conventional 

linear-response TDDFT with TDA. Meanwhile, for the spin-flip (SF)-

TDDFT utilize the density matrix of the triplet open-shell 

reference[30, 31] shown in upper panel of Fig. 1. 

 

For consistency's sake of describing SF-TDDFT and mixed-reference 

(MR) SF-TDDFT, notations used in this rest of thesis are redefined. 

Indices for doubly and singly occupied KS spin molecular orbitals (MOs) 

of reference states are labeled as i, j and x, y, respectively, whereas 

those of the virtual KS spin MOs are labeled as a, b. Those for arbitrary 

(occupied or virtual) KS spin MOs are written as p, q, r, s, t, u, and 

four Greek indices (μ, ν, κ, λ) denote atomic orbitals. The σ and τ denote 

the index for the spin function of the MO. In addition, the closed, open, 

and virtual orbital spaces are denoted as C, O and V, respectively. The 

number of electrons is 2n, thus the nth and the (n+1)th MOs 

representing the two orbitals in O space. Indices of O1 and O2 are used 

instead of n and n+1 for these two specific orbitals. To prevent 
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repeated equations, the O1 and O2 are usually represented as Om (m=1, 

2) or On (n=1, 2), respectively. The singlet and triplet states are 

denoted as S and T, respectively, and the index for these is labeled as 

k (k=S, T). All two-electron integrals are written in chemist notation. 

 

Then, the density matrix of the MS = +1 triplet reference can be 

represented as 

 (0) (0) (0)
O1 O1 O2 O2= 1,   = 1,   = 1,     otherwise 0.i ii i

P P Pσ σ α α α α  (36) 

The SF-TDDFT usually utilize TDA and collinear approximation for 

exchange-correlation kernel. Thus, the linear-response equation of 

SF-TDDFT is given by 

 , = ,I I
p q r s r s I pr qs r s

rs rs
A X Xβ α β α β α β αδ δΩ∑ ∑  (37) 

with 

 ( )(0) (0)
, = | .p q r s p r sq s q pr HA F F c pr sqβ α β α β β α αδ δ− −  (38) 

Schematic diagram describing electronic configurations by one-

electron spin-flip excitation (linear response) from the triplet 

reference is shown with black full arrows in Fig. 1. The configurations 

are categorized by different initial and final MOs of a spin-flip 

excitation for four types: TYPE I (O→O), TYPE II (C→O), TYPE III 

(O→V), TYPE IV (C→V). The configurations shown by the gray dashed 

arrows are missing in SF-TDDFT. Hence, the excitation space defined 
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by SF-TDDFT is incomplete and spin-contaminated, as the individual 

configurations shown in Fig. 1 are not eigenfunctions of the total spin 

S2. 

 

SF-TDDFT is known to have great advantages in describing single-

bond breaking or single-bond twisting systems.[30, 33] Two features 

of SF-TDDFT can be supported this statement. One is that triplet 

reference can well-describe two degenerate open-shell MOs, which 

frequently occur when a bond is breaking or twisted. In other word, 

SF-TDDFT can take into account static correlation. In addition, since 

all singlet states are described as response states, there exists 

coupling between ground and excited states.[46] It has been found 

that there is a great advantage in describing avoided crossing or 

conical intersection topology correctly.[27, 46] Despite of such many 

advantages, severe spin-contamination of response states except for 

few of low-lying excited states makes it difficult to use SF-TDDFT 

practically. 
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Figure. 1. A schematic diagram of SF-TDDFT. The upper panel depicts the 

high-spin triplet reference and the corresponding zeroth-order RDM. In the 

lower pannel, a complete set of electronic configurations considered in SF-

TDDFT is given. Electronic configurations which can be generated by SF 

linear responses (SF one-electron transitions) from the zeroth-order RDM 

are given by black arrows in four types. Configurations unable to be obtained 

in the linear responses of SF-TD-DFT are given by gray dashed arrows.  
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MIXED-REFERENCE SPIN-FLIP TDDFT 
 

 

The main sources of spin-contamination in SF-TDDFT is the missing 

electronic configurations (and the respective amplitudes) shown by the 

gray arrows as type II, III and IV in Fig. 1. In this thesis, the new mixed 

zeroth-order RDM is introduced[42] as an equiensemble of the MS = 

+1 and -1 components of the triplet state in the first subsection of 

Mixed-reference reduced density matrix. As shown in Fig. 2, the use 

of the mixed-reference reduced density matrix (MR-RDM) includes 

many of the electronic configurations missing in SF-TDDFT. Linear-

response equation with the MR-RDM is derived in the second 

subsection of in the second subsection of Linear-response equation of 

mixed-reference spin-flip TDDFT. A posteriori coupling between 

configurations originating from MS = +1 and -1 are introduced in the 

next subsection of Spin-pairing coupling. Furthermore, expectation 

value of S2 operator is evaluated for the response states of MRSF-

TDDFT in the last subsection of Expectation value of S2 operator. 

From this, it is proved that the spin-contamination of SF-TDDFT is 

nearly eliminated in MRSF-TDDFT.[42] 

 

It is noteworthy that not all of the electronic configurations shown in 

Fig. 2 can be recovered by the use of the MR-RDM. Thus, four out of 
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six type IV configurations (four configurations shown with the gray 

arrows in Fig. 2) are still unencountered. Typically, these 

configurations represent high lying excited states and make 

insignificant contributions to the low lying states of molecules. Hence, 

the effect of the missing configurations for the spin-contamination of 

the SF-TDDFT response states is expected to be relatively small. 
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Figure. 2. A schematic diagram of MRSF-TDDFT. The upper panel shows the 
zeroth-order MR-RDM which is a combination of MS = +1 and -1 RDMs. In 
the lower pannel, electronic configurations which can be generated by spin-
flip linear responses from the MR-RDM are given by black arrows in four 
types. Configurations unable to be obtained in the linear responses of MR-
SF-TD-DFT are given by gray dashed arrows. 
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1. Mixed-reference reduced density matrix 

 

 

1.1 Definition of mixed-reference reduced density matrix 
 

 

The proposed mixed-reference reduced density matrix (MR-RDM) is  

 { }MR Ms=+1 Ms=-1
0 0 0

1( , ) ( , ) ( , ) .
2

x x x x x xρ ρ ρ′ ′ ′= +  (39) 

In terms of the zeroth-order Kohn-Sham (KS) molecular orbital (MO), 

it is represented by  

 
*M * *

0 O1 O1 O1 O1
1 1( , ) = ( ) ( ) ( ) ( ) ( ) ( )
2 2

R i i
i i

i i

x x x x x x x xσ σ α α β β

σ

ρ φ φ φ φ φ φ′ ′ ′ ′+ +∑  

* *
O2 O2 O2 O2

1 1( ) ( ) ( ) ( ),
2 2

x x x xα α β βφ φ φ φ′ ′+ +  (40) 

where the first term on the right hand side of the equation represents 

the RDM of the C space, the remaining terms - the RDM of the O space. 

The zeroth-order MR-RDM is a diagonal matrix with the elements  

 
(0)M (0)M (0)M (0)M (0)M

O1 O1 O1 O1 O2 O2 O2 O2
1 1 1 1= 1, = , = , = , = ,otherwise0,
2 2 2 2

R R R R R
i ii i

P P P P Pσ σ α α β β α α β β   (41) 

and its trace satisfy the number of electrons: 

 (0)MR 2 .
p p

p

p p
p

P nσ σ
σ

=∑  (42) 

 

 

1.2 Molecular orbital of mixed-reference reduced density 
matrix 

 

 

According to the ensemble DFT,[47, 48] the energy of MR-RDM of 



 

 ２４ 

Eq. (39) is given by  

 ( )= 1 = 1M
0 0 0

1[ ] = [ ] [ ] ,
2

M MR S SE E Eρ ρ ρ+ −+  (43) 

 where 
= 1

0[ ]MSE ρ +
 and 

= 1
0[ ]MSE ρ −

 are energies of = 1SM +  and 1−  

references, respectively. Since the energies of = 1SM +  and 1−  

references are same, the energy of MR-RDM and those of references 

are same as  

 
= 1 = 1M

0 0 0[ ] = [ ] = [ ].M MR S SE E Eρ ρ ρ+ −
 (44) 

By the ensemble DFT, the spatial part of MOs consisting MR-RDM, 

{ }kφ , can be obtained with two conditions as   

 ( )M
0[ ] = 0,R

pq qp q p
pqk

E Fδ ρ δ φ φ
δφ

 
+ − 

 
∑  (45a) 

 *= ,pq qpF F  (45b) 

where pqF  is the Lagrange multiplier. Substituting Eq. (44) into Eq. 

(45a) yield   

 ( )= 1
0[ ] = 0,MS

pq qp q p
pqk

E Fδ ρ δ φ φ
δφ

+ 
+ − 

 
∑  (46a) 

 *= .pq qpF F  (46b) 

The conditions of Eqs. (46a) and (46b) are those of restricted open-

shell Kohn-Sham method for = 1SM +  reference which is the way to 

obtain the spatial part of MOs in SF-TDDFT. Therefore, one can use 

same spatial part of MOs of SF-TDDFT in MRSF-TDDFT. 
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1.3 Restoring idempotency of the mixed-reference reduced 
density matrix 

 

 

The proposed MR-RDM does not satisfy the idempotency conditions 

as in Eq. (20); e.g., an open-shell RDM of the new MR-RDM, (0)MR
1 1O OP α α  

(as well as (0)MR
1 1O OP β β , (0)MR

2 2O OP α α , and (0)MR
2 2O OP β β ), violates the condition 

 (0)MR (0)MR (0)MR (0)MR (0)MR (0)MR
O1 O1 O1 O1 O1 O1 O1 O1 O1 O1

1 ,
2t t

t

t t
t

P P P P P Pα σ σ α α α α α α α α α
σ

= = ≠∑  (47) 

thus precluding straightforward derivation of the linear-response 

equation. As follows from Eqs. (40) and (41), the non-idempotency of 

the RDM of Eq. (47) originates from half-integer populations of the 

zeroth-order open-shell KS orbitals O1
σφ  and O2

σφ , ,σ α β= . To 

resolve this difficulty and to restore idempotency of the respective 

RDM, we replace the original spin-orbitals (with the α  or β  spin) by 

the orbitals of mixed spin, labeled in the following by s1 and s2, 

obtained by the application of a unitary transformation U 

 
1 2†

1 2

1 11 ,
2 1 1

s s i i

s s i i

α α

β β

  + − 
 = =  

   − +  
U  (48) 

which leads to the new mixed spin functions of the O space 

 1 2
(1 ) (1 ) (1 ) (1 ),  .

2 2
i i i is sα β α β+ + − − + +

= =  (49) 

The new mixed spin O orbitals O ,  , 1, 2ms
k k mφ =  are orthonormal among 

themselves and with respect to the C and V orbitals.   



 

 ２６ 

 
Figure. 3. Occupation of open-shell orbitals in a single KS determinant and its 

relationship with the respective zeroth-order RDM. A single KS determinant 
shown in subfigure (a) represents the RDM of the SF-TDDFT method. 
Subfigure (b) shows equivalence between four possible occupation patterns 
of the mixed spin-orbitals s1 and s2, which all yield the same zeroth order 
RDM. Populations of the conventional α spin-orbitals are shown with upward 
pointing arrows and of the mixed spin-orbitals are shown with dots. 
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There exist four possible choices for populating the new mixed spin-

orbitals, as shown in Fig. 3b. As all the four population patterns result 

in the same RDM, for convenience, the configuration in Fig. 3b with 

both s1 mixed spin-orbitals occupied is selected. With this choice of 

occupations, the RDM becomes 

 1 1 1 1* * *MR
0 O1 O1 O2 O2( , ) ( ) ( ) ( ) ( ) ( ) ( )i i

i

s s s s
i i

i
x x x x x x x xσ σ

σ

ρ φ φ φ φ φ φ′ ′ ′ ′= + +∑  (50) 

 
1 1 1 1

(0)MR (0)MR (0)MR
O1 O1 O2 O2,  1,  1,  otherwise 0.

i j i ji j ij s s s sP P Pσ σ σ σδ δ= = =  (51) 

With spatial part of MOs described by real function, the redefined RDM 

of Eq. (50) is identical to Eq. (40), as can be easily seen by expanding 

the open-shell contributions as, e.g., 

 

( ) ( )( ) ( ) ( )( )

{ }

{ }

1 1 2 1 1 2*
O1 O1

* * * *
O1 O1 O1 O1 O1 O1 O1 O1

* *
O1 O1 O1 O1

( ) ( )
1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2
1 ( ) ( ) ( ) ( )
2

i i i ix x

x x x x i x x i x x

x x x x

α β α β

α α β β α β β α

α α β β

φ φ

φ φ φ φ φ φ φ φ

φ φ φ φ

+ + − + + − ′

′ ′ ′ ′= + + −

′ ′= +

 (52) 

and a similar expression for the other open-shell contribution to Eq. 

(50). Replacing the old spin parts of the O spin-orbitals (represented 

by the α and β spin functions) by the mixed spin functions s1 and s2, 

while keeping the α and β spin functions for the C and V orbitals and 

using Eq. (51), lets one to show that the overall idempotency relation 

 (0)MR (0) MR (0) MR .
p t t q p q

t

p t t q p q
t

P P Pσ σ σ σ σ σ
σ

=∑  (53) 

holds for the redefined density matrix. 
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2. Linear-response equation of mixed-reference spin-flip 

TDDFT 

 

 

As described by previous section, the idempotency of the zeroth-

order density matrix can be recovered by the introduced spin rotation. 

Following same steps described in subsection 3 of the first 

THEORETICAL BACKGROUND section one can straightforwardly 

obtain a linear-response equation of MR-RDM. However, linear 

responses from each of MS = +1 and -1 references should appear 

mixed in the linear responses from the MR-RDM. Therefore, one need 

to disentangle the mixed responses which is described in subsection 

2.1 of Definition of separated excitation amplitude and subsection 2.2 

of Disentangling different MS response. In addition, type I (O→O) 

configurations shown in Fig. 2 can be generated by both MS = +1 and 

-1 reference. Due to the unmatching of configuration from different 

reference, additional rearrangement is required and it is presented in 

subsection 2.3 of Recovery of one-to-one relation between 

configuration and excitation amplitude. With these procedure, one can 

obtain clearly separated linear-response equation for singlet and 

triplet states, which is described in the next subsection 2.4 of 

Separating matrix equations for singlet and triplet response states. 

With dimensional transformation matrix introduced in the last 
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subsection 2.5 of Dimensional transformation matrix, the linear-

response equation for the singlet and triplet states can be described 

succinctly with a single form. Furthermore, this concept is useful for 

the implementation of MRSF-TDDFT with a little modification of code 

of SF-TDDFT. 
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SF-TDDFT  MRSF-TDDFT 

= 1SM +   = 1SM −   Mixed  Separated 

reference  reference  amplitude  amplitude 
I
O CX
β α

 + 
I
O CX
α α

 →  
M ,

2

R I
O Cs

X
α

 →  
=0,

2

M IS
O Cs

X
α

 + 
= 1,

2

M IS
O Cs

X
α

−
 

I
O CX
β β

 + 
I
O CX
α β

 →  
M ,

2

R I
O Cs

X
β

 →  
=0,

2

M IS
O Cs

X
β

 + 
= 1,

2

M IS
O Cs

X
β

+
 

I
V OX
β α

 + 
I

V OX
β β

 →  
M ,

1

R I
V Os

X
β

 →  
=0,

1

M IS
V Os

X
β

 + 
= 1,

1

M IS
V Os

X
β

−
 

I
V OX
α α

 + 
I

V OX
α β

 →  
M ,

1

R I
V Os

X
α

 →  
=0,

1

M IS
V Os

X
α

 + 
= 1,

1

M IS
V Os

X
α

+
 

I
V CX
β α

 + 
I

V CX
β α

 →  
M ,R I
V CX
β α

 →  
=0,M IS

V CX
β α

 + 
= 2,M IS

V CX
β α

−
 

I
V CX
α β

 + 
I

V CX
α β

 →  
M ,R I
V CX
α β

 →  
=0,M IS

V CX
α β

 + 
= 2,M IS

V CX
α β

+
 

I
O OX
β α

 + 
I
O OX
α β

 →  
M ,

2 1

R I
O Os s

X  →  
=0,

2 1

M IS
O Os s

X  + 
R ,

2 1

edun I
O Os s

X  

I
V CX
α α

 + 
I

V CX
α α

 →  
M ,R I
V CX
α α

         

I
V CX
β β

 + 
I

V CX
β β

 →  
M ,R I
V CX
β β

         

Table 1. Connection between the excitation amplitudes of the SF-TDDFT from 

each MS = +1 or -1 reference, and the new excitation amplitudes of the MRSF-

TDDFT from the mixed reference. 
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2.1 Definition of separated excitation amplitude 
 

 

As shown in Tab. 1, it is natural to think that total eighteen types of 

independent excitation amplitudes 
p q

I
p qX σ σ  from MS = +1 or MS = -1 

reference, are entangled in the nine types of new excitation amplitudes 

MR,
p q

I
p qX σ σ ; for each row, two 

p q

I
p qX σ σ  are entangled in MR,

p q

I
p qX σ σ . It is noted 

that 
2 1

MR,
O Os s

IX  on the 7th row has a redundant part since the 

configurations are same generated by O→O excitations from two 

different references. 

 

The starting point for separating these entangled excitation amplitudes 

can be found in the general expression of the summation 

( ) MR,
p q r s r sr s

I
p q r s r sr s

F P Xσ σ σ σ σ σσ σ
∂ ∂∑  in the matrix equation. For any index 

ppσ  and qqσ , the summation index rrσ  and ssσ  can be expanded 

into the 7 types of Tab. 1 as 

 M , =
p qp q R I

r sr s
r s r sr s r s

F
X

P
σ σ

σ σ
σ σ σ σ

∂

∂∑  

 
M , M ,

2 2

1 1 1 1
2 2 2 2

p q p qp q p qR I R I
ws j ws j

wj wjw j w j

F Fi iX X
P P
σ σ σ σ

α α
β α α α

∂ ∂ + − + + 
∂ ∂  

∑ ∑  (54a) 

 M , M ,

2 2

1 1 1 1
2 2 2 2

p q p qp q p qR I R I
ws j ws j

wj wjw j w j

F Fi iX X
P P
σ σ σ σ

β β
α β β β

∂ ∂ − + + + 
∂ ∂  

∑ ∑  (54b) 

 M , M ,

1 1

1 1 1 1
2 2 2 2

p q p qp q p qR I R I
b zs b zs

bz bzb z b z

F Fi iX X
P P
σ σ σ σ

β β
β α β β

∂ ∂ − + + + 
∂ ∂  

∑ ∑  (54c) 



 

 ３２ 

 
M , M ,

1 1

1 1 1 1
2 2 2 2

p q p qp q p qR I R I
b zs b zs

bz bzb z b z

F Fi iX X
P P
σ σ σ σ

α α
α β α α

∂ ∂ + − + + 
∂ ∂  

∑ ∑  (54d) 

 
M , M ,1 1 1 1

2 2 2 2

p q p qp q p qR I R I
b j b j

bj bjb j b j

F F
X X

P P
σ σ σ σ

β α β α
β α β α

∂ ∂  + + 
∂ ∂  

∑ ∑  (54e) 

 M , M ,1 1 1 1
2 2 2 2

p q p qp q p qR I R I
b j b j

bj bjb j b j

F F
X X

P P
σ σ σ σ

α β α β
α β α β

∂ ∂  + + 
∂ ∂  

∑ ∑  (54f) 

 M , M ,

2 1 2 1

1 1 .
2 2

p q p q p q p qp q p q p q p qR I R I
ws zs ws zs

wz wzw z w z w z w z

F F F F
X iX

P P P P
σ σ σ σ σ σ σ σ

β α α β α α β β

 ∂ ∂ ∂ ∂        + + + −    ∂ ∂ ∂ ∂     
∑ ∑  (54g) 

 

In each of Eqs. (54a)-(54f), two terms are given come from MS = +1 

and -1 references. The excitation amplitude in the left term 

corresponds to a configuration with MS = 0, and that in the right term 

corresponds to a configuration with MS ≠ 0. While, in Eq. (54g), the left 

term come from both MS = +1 and -1 references, and the right term 

is the redundant term. From this fact, the separated excitation 

amplitudes can be defined as in Tab. 2. 
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= 0SM  amplitudes 0SM ≠  amplitudes 

=0,

2

M IS
us iX α ≡ M ,

2

1
2

R I
us i

i X α
+

 
= 1,

2

M IS
us iX α

− ≡ M ,

2

1
2

R I
us i

i X α
−

 
=0,

2

M IS
us iX α =

= 1,

2

M IS
us iiX α

−
 

=0,

2

M IS
us iX β ≡ M ,

2

1
2

R I
us i

i X β
−

 
= 1,

2

M IS
us iX β

+ ≡ M ,

2

1
2

R I
us i

i X β
+

 
=0,

2

M IS
us iX β = −

= 1,

2

M IS
us iiX β

+
 

=0, M ,

1 1

1
2

M I R IS
a vs a vs

iX Xβ β
−

≡  
= 1, M ,

1 1

1
2

M I R IS
a vs a vs

iX Xβ β
− +

≡  
=0,

1

M IS
a vsX β = −

= 1,

1

M IS
a vsiX β

−
 

=0, M ,

1 1

1
2

M I R IS
a vs a vs

iX Xα α
+

≡  
= 1, M ,

1 1

1
2

M I R IS
a vs a vs

iX Xα α
+ −

≡  
=0,

1

M IS
a vsX α =

= 1,

1

M IS
a vsiX α

+
 

=0, M ,1
2

M I R IS
a i a iX Xβ α β α≡  

= 2, M ,1
2

M I R IS
a i a iX Xβ α β α

− ≡  =0,M IS
a iX β α =

= 2,M IS
a iX β α

−
 

=0, M ,1
2

M I R IS
a i a iX Xα β α β≡  

= 2, M ,1
2

M I R IS
a i a iX Xα β α β

+ ≡  =0,M IS
a iX α β =

= 2,M IS
a iX α β

+
 

=0, M ,

2 1 2 1

M I R IS
us vs us vsX X≡  

R , M ,

2 1 2 1

edun I R I
us vs us vsX iX≡  =0,

2 1

M IS
us vsX = − R ,

2 1

edun I
us vsiX  

Table 2. Detailed connection between the new excitation amplitudes and their 

respective separated contributions. The MS value represented at superscript 

of a newly defined excitation amplitude denotes the value of a corresponding 

configuration. 
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After substituting amplitude matrices defined in Tab. 2, the equation 

54a-g becomes 

 M , =
p qp q R I

r sr s
r s r sr s r s

F
X

P
σ σ

σ σ
σ σ σ σ

∂

∂∑  

 
=0, = 1,

2 2

1 1
2 2

p q p qM I M Ip q p qS S
ws j ws j

wj wjw j w j

F F
X X

P P
σ σ σ σ

α α
β α α α

−
∂ ∂  + + 
∂ ∂  

∑ ∑  (55a) 

 
=0, = 1,

2 2

1 1
2 2

p q p qM I M Ip q p qS S
ws j ws j

wj wjw j w j

F F
X X

P P
σ σ σ σ

β β
α β β β

+
∂ ∂  + + 
∂ ∂  

∑ ∑  (55b) 

 
=0, = 1,

1 1

1 1
2 2

p q p qM I M Ip q p qS S
b zs b zs

bz bzb z b z

F F
X X

P P
σ σ σ σ

β β
β α β β

−
∂ ∂  + + 
∂ ∂  

∑ ∑  (55c) 

 
=0, = 1,

1 1

1 1
2 2

p q p qM I M Ip q p qS S
b zs b zs

bz bzb z b z

F F
X X

P P
σ σ σ σ

α α
α β α α

+
∂ ∂  + + 
∂ ∂  

∑ ∑  (55d) 

 
=0, = 2,1 1

2 2

p q p qM I M Ip q p qS S
b j b j

bj bjb j b j

F F
X X

P P
σ σ σ σ

β α β α
β α β α

−
∂ ∂  + + 
∂ ∂  

∑ ∑  (55e) 

 
=0, = 2,1 1

2 2

p q p qM I M Ip q p qS S
b j b j

bj bjb j b j

F F
X X

P P
σ σ σ σ

α β α β
α β α β

+
∂ ∂  + + 
∂ ∂  

∑ ∑  (55f) 

 
=0, R ,

2 1 2 1

1 1 .
2 2

p q p q p q p qM Ip q p q p q p q edun IS
ws zs ws zs

wz wzw z w z w z w z

F F F F
X X

P P P P
σ σ σ σ σ σ σ σ

β α α β α α β β

 ∂ ∂ ∂ ∂        + + + −    ∂ ∂ ∂ ∂     
∑ ∑  (55g) 
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2.2 Disentangling different MS response 
 

 

Using the newly defined separated excitation amplitudes in Tab. 2, one 

can separate equations of motion (EOM) into EOMs with different MS 

values. Of the nine types of the M ,R I
p qp q

X σ σ  amplitudes shown in Tab. 1, 

the last two amplitudes, M ,R I
V CX
α α

 and M ,R I
V CX
β β

, do not include the = 0SM  

amplitudes and they are dropped in the EOM. For the remaining seven 

types, the 1SM = ±  contributions shown of the light gray background 

in the last column of Tab. 1 and the = 2SM ±  contributions (dark gray 

background) are removed from the EOM of the = 0SM  amplitudes as 

described in the following. 

 

Removal of the contributions with 0SM ≠  from the response equations 

is illustrated by the example of the M ,

2

R I
us iX α  amplitude matrix. The EOM 

are first pre-multiplied by (1 ) 2i+  and then transformed according 

to Eq. (55) to yield 

 { }=0, = 1,

2 2

1
2

M I M IS S
I us i I us iX i Xα αω ω −+  

 
=0,(0) (0)

2

1=
2

M Iu i S
u w ij j i uw ws j

wj w j

F
F F X

P
β α

β β α α α
β α

δ δ
  ∂ − +   ∂  
∑  

 
= 1, = 1,(0) (0)

2 2

M I M Iu i u iS S
u w ij j i uw ws j ws j

wj w j w j

F F
i F F X X

P P
α α α α

α α α α α β
α α β β

δ δ − +  ∂ ∂ + − + +  ∂ ∂  
∑  (56a) 

 
=0, = 1, = 1,

1 1 1

1
2

M I M I M Iu i u i u iS S S
b zs b zs b zs

bz bzb z b z b z

F F F
X i X X

P P P
β α α α α α

β α β
β α α α β β

+ −  ∂ ∂ ∂ + + +   ∂ ∂ ∂   
∑ ∑  (56b) 



 

 ３６ 

 
=0, = 2,(0) (0)1

2
M I M Iu i u iS S

u b ij b j u b ij b j
bj bjb j b j

F F
F X F X

P P
β α β α

β β β α β β β α
β α β α

δ δ −    ∂ ∂ + + + +       ∂ ∂     
∑ ∑  (56c) 

 
=0,(0) (0) R ,

2 1 2 1

1 .
2 2

M Iu i edun Iu i u iS
z i uw ws zs z i uw ws zs

wz wzw z w z w z

F F F
F X i F X

P P P
β α α α α α

α α α α
β α α α β β

δ δ
    ∂ ∂ ∂ + − + + − + −       ∂ ∂ ∂     
∑ ∑

  (56d) 
 

In Eqs. (56a) and (56b), the = 1SM ±  amplitudes make purely 

imaginary contributions into the response equations and are dropped 

from the equations for the = 0SM  amplitudes; the same is true for the 

redundant part of the O→O transitions, see Eq. (56d). Although the 

= 2SM −  amplitude, Eq. (56c), is coupled with the = 0SM  

contributions, its amplitude is neglected in the final response equation; 

this is similar to the assumptions behind the standard SF-TDDFT 

formalism. Hence, keeping only the = 0SM  amplitudes the response 

equations read  

 
=0, =0, =0, =0, =0,

O C 11 O C 12 V O 13 V C 14 O O
2 2 1 2 1

= ,M I M I M I M I M IS S S S S
I s s s s sα α β β α

ω + + +X A X A X A X A X  (57) 

where amplitude vectors are 
=0,

O C
2

( )M IS
wjs α

X = 
=0,

2

M IS
ws jX α , 

=0,
V O

1
( )M IS

bzsβ
X = 

=0,

1

M IS
b zsX β , 

=0,
V C( )M IS

bjβ α
X =

=0,M IS
b jX β α , 

=0,
O O

2 1
( )M IS

wzs s
X =

=0,

2 1

M IS
ws zsX , and the coupling block matrices 

are 
(0) (0)

11 ,( ) u i
ui wj u w ij j i uw

w j

F
F F

P
β α

β β α α
β α

δ δ
∂

≡ − +
∂

A , 12 ,( ) u i
ui bz

b z

F
P

β α

β α

∂
≡
∂

A ,

(0)
13 ,( ) u i

ui bj u b ij
b j

F
F

P
β α

β β
β α

δ
∂

≡ +
∂

A  and 
(0)

14 ,
1( ) ( )
2

u i
ui wz z i uw

w z

F
F

P
β α

α α
β α

δ
∂

≡ − +
∂

A . 

It is noted that all the zeroth-order Fock matrices in Eq. (56) are 
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originated from MS = +1 reference. Those from from MS = -1 

reference will be represented with a tilde as (0)
p qp qF σ σ

 , and these satisfy 

following equalities 

 (0) (0) (0) (0),    .p q p q p q p qF F F Fα α β β β β α α= =   (58) 

 

The response equations for the MS = 0 amplitudes of the other six 

types also can be obtained in a similar way, and collecting all these 

equations can form a matrix equation as 

 

=0,
O C11 12 13 14

2

=0,
V O21 22 23 24

1

=0,
V C31 32 33 34

=0,
O O41 42 43 44 45 46 47

2 1

54 55 56 57

64 65 66 67

74 75 76 77

M IS
s

M IS
s

M IS

MS
s s

α

β

β α

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

XA A A A 0 0 0

XA A A A 0 0 0

XA A A A 0 0 0

XA A A A A A A

0 0 0 A A A A

0 0 0 A A A A

0 0 0 A A A A

=0,
O C

2

=0,
V O

1

=0,
V C

=0,
O O

2 1

=0, =0,
V C V C

=0, =0,
V O V O

1 1

=0, =0,
O C O C

2 2

=

M IS
s

M IS
s

M IS

I M IS
I s s

M I M IS S

M I M IS S
s s

M I M IS S
s s

α

β

β α

α β α β

α α

β β

ω

   
   
   
   
   
   
   
   
   
   
   
   
   
   
  
  
  
  
  
  
   

X

X

X

X

X X

X X

X X

,








 (59) 

 where the amplitude vectors are 
=0, =0,

V C( ) =M I M IS S
bj b jX α βα β

X , 

=0, =0,
V O 11

( ) =M I M IS S
bz b zss

X αα
X , and 

=0, =0,
O C 22

( ) =M I M IS S
wj ws js

X ββ
X , and 0  is the zero matrix 

block. Complete specifications of the block matrices kmA  ( , = 1 7k m 
) 

are given in the Tab. 3.  
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By spin symmetry, the block-coupling matrices from the = 1SM +  

component are identical to the respective matrices from = 1SM − . 

Hence, the matrix elements of A satisfy  

 (8 )(8 )= , , = 1,2,3.km k m k m− −A A  (60) 

 In addition, A  is a symmetric matrix ( = TA A ), see Tab. 3.  
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( ) (0) (0)
11 ,

u i
u w ij j i uwui wj

w j

F
F F

P
β α

β β α α
β α

δ δ
∂

≡ − +
∂

A  ( )12 ,
u i

ui bz
b z

F
P

β α

β α

∂
≡
∂

A  

( ) (0)
13 , ,u i

u b ijui bj
b j

F
F

P
β α

β β
β α

δ
∂

≡ +
∂

A  ( ) (0)
14 ,

1
2

u i
z i uwui wz

w z

F
F

P
β α

α α
β α

δ
 ∂

≡ − +  ∂ 
A  

( )21 ,
a v

av wj
w j

F
P

β α

β α

∂
≡
∂

A  ( ) (0) (0)
22 , ,a v

a b vz z v abav bz
b z

F
F F

P
β α

β β α α
β α

δ δ
∂

≡ − +
∂

A  

( ) (0)
23 ,

a v
j v abav bj

b j

F
F

P
β α

α α
β α

δ
∂

≡ − +
∂

A  ( ) (0)
24 ,

1
2

a v
a w vzav wz

w z

F
F

P
β α

β β
β α

δ
 ∂

≡ +  ∂ 
A  

( ) (0)
31 ,

a i
a w ijai wj

w j

F
F

P
β α

β β
β α

δ
∂

≡ +
∂

A  ( ) (0)
32 ,

a i
j i abai bz

b z

F
F

P
β α

α α
β α

δ
∂

≡ − +
∂

A  

( ) (0) (0)
33 ,

a i
a b ij j i abai bj

b j

F
F F

P
β α

β β α α
β α

δ δ
∂

≡ − +
∂

A  ( )34 ,

1
2

a i
ai wz

w z

F
P

β α

β α

∂
≡

∂
A  

( ) (0)
41 ,

1
2

u v
j v uwuv wj

w j

F
F

P
β α

α α
β α

δ
 ∂

≡ − +  ∂ 
A  ( ) (0)

42 ,

1
2

u v
u b vzuv bz

b z

F
F

P
β α

β β
β α

δ
 ∂

≡ +  ∂ 
A  

( )43 ,

1
2

u v
uv bj

b j

F
P

β α

β α

∂
≡

∂
A  ( ) (0)

45 ,

1
2

u v
j v uwuv wj

w j

F
F

P
α β

β β
α β

δ
 ∂

≡ − +  ∂ 
A   

( ) (0) (0) (0) (0)
44 ,

1 1
2 2

u v u v
u w vz z v uw u w vz z v uwuv wz

w z w z

F F
F F F F

P P
β α α β

β β α α α α β β
β α α β

δ δ δ δ
   ∂ ∂

≡ − + + − +      ∂ ∂   
A    

( ) (0)
46 ,

1
2

u v
u b vzuv bz

b z

F
F

P
α β

α α
α β

δ
 ∂

≡ +  ∂ 
A   ( )47 ,

1
2

u v
uv bj

b j

F
P

α β

α β

∂
≡

∂
A  

( )54 ,

1
2

a i
ai wz

w z

F
P

α β

α β

∂
≡

∂
A  ( ) (0) (0)

55 ,
a i

a b ij j i abai bj
b j

F
F F

P
α β

α α β β
α β

δ δ
∂

≡ − +
∂

A    

( ) (0)
56 ,

a i
z i abai bz

b z

F
F

P
α β

β β
α β

δ
∂

≡ − +
∂

A   ( ) (0)
57 ,

a i
a w ijai wj

w j

F
F

P
α β

α α
α β

δ
∂

≡ +
∂

A   

( ) (0)
64 ,

1
2

a v
a w vzav wz

w z

F
F

P
α β

α α
α β

δ
 ∂

≡ +  ∂ 
A   ( ) (0)

65 ,
a v

j v abav bj
b j

F
F

P
α β

β β
α β

δ
∂

≡ − +
∂

A   

( ) (0) (0)
66 ,

a v
a b vz z v abav bz

b z

F
F F

P
α β

α α β β
α β

δ δ
∂

≡ − +
∂

A    ( )67 ,
a v

av wj
w j

F
P

α β

α β

∂
≡
∂

A  

( ) (0)
74 ,

1
2

u i
z i uwui wz

w z

F
F

P
α β

β β
α β

δ
 ∂

≡ − +  ∂ 
A   ( ) (0)

75 ,
u i

u b ijui bj
b j

F
F

P
α β

α α
α β

δ
∂

≡ +
∂

A   

( )76 ,
u i

ui bz
b z

F
P

α β

α β

∂
≡
∂

A  ( ) (0) (0)
77 ,

u i
u w ij j i uwui wj

w j

F
F F

P
α β

α α β β
α β

δ δ
∂

≡ − +
∂

A    

Table 3. Details of the block-coupling matrices. The zeroth-order Fock matrix 

without a tilde denote that from MS = +1 reference, while that with tilde is 

from MS = -1 reference. Explicit expression of the kernel, 
p q r sp q r sF Pσ σ σ σ∂ ∂ , 

with the collinear approximation is given in Eq. (38). 
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2.3 Recovery of one-to-one relation between configuration 
and excitation amplitude 

 

 

The excitation amplitudes 
=0,

2 1

M IS
ks msX  ( , =k m O1,O2) correspond to the 

type I configurations, see Fig. 2. Unlike the other six types, this type 

of excitation amplitudes include amplitudes from both MS = +1 and -1 

components of the mixed reference not from one. Figure 4 shows 

configurations and the KS determinants, which are labeled as G 

(ground), D (double), L (left), and R (right) according to the character 

of the excitation. A subscript added to the label represents the MS 

value of the parent component of the reference state. With these 

notations, the amplitude 
=0,

O1 O22 1

M IS
s sX  corresponds to the KS determinants 

1G± , 
=0,

2 12 1

M IS
O s O sX  to 1D± , 

=0,
O1 O12 1

M IS
s sX  to 1L+  and 1R− , and 

=0,
O2 O22 1

M IS
s sX  to 1R+  

and 1L− . Although 
=0,

O1 O22 1

M IS
s sX  and 

=0,
O2 O12 1

M IS
s sX  correspond to specific G  

and D  configurations, respectively, the signs of the respective 

determinants originating from different components of the mixed 

reference are opposite as shown in Fig. 4a and b, i.e., 1 1=G G+ −− , 

1 1=D D+ −− . On the other hand, 
=0,

O1 O12 1

M IS
s sX  corresponds to different 

configurations L  and R  originating from = 1SM  and 1− , 

respectively, see Fig. 5a. A similar correspondence of configurations 

for 
=0,

O2 O22 1

M IS
s sX  is shown in Fig. 5b.  



 

 ４１ 

 

Figure. 4. Type I configurations and notation of their Slater determinants 

originating from spin flip transitions from the MS = +1 and -1 components of 

mixed reference. The subscript at the notation denotes the MS value of the 
parent component. 

  



 

 ４２ 

 
Figure. 5. Connection between one electron transition from the mixed-spin 

reference and that from the open-shell configuration. Dotted curves show 
one-electron spin-flip excitation generating the given configuration. 
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To obtain amplitudes corresponding to pure configurations G, D, L, and 

R, the respective part of the orbital Hessian matrix A needs to be 

modified in such a way as to resolve the sign changes (G, D) and mixed 

configurations (L, R). Equivalently, the corresponding EOM could be 

modified with the identical result. Before the modification, let us re-

write the affected blocks in the fourth row or column of the A matrix 

in Eq. (59) in terms of the individual determinants shown in Fig. 4. The 

elements 4 ( = 1,2,3)k kA  in Eq. (59) correspond to the α β→  

transitions from the = 1SM +  component and the elements 

4 ( = 5,6,7)m mA  to the β α→  transitions from the = 1SM −  

component. In terms of the determinants shown in Fig. 4, these 

elements are represented as 

 ( )4 1 1 1 1
= ,          = 1,2,3,k kG kD kL kR k

+ + + +
A A A A A  (61) 

 ( )4 1 1 1 1
= ,           = 5,6,7.m mG mD mR mL m

− − − −
A A A A A  (62) 

 These block matrices satisfy the following symmetric relations as  

 

(8 )1 1

(8 )1 1

(8 )1 1

(8 )1 1

=

=
         = 1,2,3,

=

=

kG k G

kD k D

kL k R

kR k L

k

−+ −

−+ −

−+ −

−+ −









A A

A A

A A

A A

 (63) 

 

The first and second terms of 44 O1 2, 1 2( ) O O OA  (see Tab. 3) originate from 
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the α β→  and β α→  transitions from the = 1SM +  and = 1SM −  

components, respectively. Hence, the individual contributions to this 

element can be represented as 
1 1G GA
+ +

 and 
1 1G GA
− −

, respectively. With 

similar notations, the block matrix of the fourth row and column of the 

A  matrix can be written out as  

44

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1

1=
2

GG GD GL GR

DD DL DR

LL LR

RR

G G G G G D G D G L G R G R G L

D D D D D L D R D R D L

L L R R L R R L

R R L

A A A A
A A A

A A
A

A A A A A A A A

A A A A A A

A A A A

A A

+ + − − + + − − + + − − + + − −

+ + − − + + − − + + − −

+ + − − + + − −

+ + −

 
 
 
 ≡
 
 
 
 

+ + + +

+ + +

+ +

+

A

1L−

 
 
 
 
 
 
 
 
 

    

  (64) 

The lower triangular part is not shown in the above equations, because 

the block matrix 44A  is symmetric, 44 44= TA A . Parts of elements 

satisfy the following symmetric relations as  

 { }

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

=

=
         ( , ) = ( , ), ( , ), ( , ), ( , ) ).

=

=

l G m G

l D m D

l L m R

l R m L

A A

A A
l m G G D D L R R L

A A

A A

+ + − −

+ + − −

+ + − −

+ + − −









 (65) 

where the symmetry between 1L+  and 1R−  and between 1R+  and 1L−  

is seen.  



 

 ４５ 

 

The Hessian A  matrix can be written out as  

11 12 13 1 1 1 11 1 1 1

22 23 2 2 2 21 1 1 1

33 3 3 3 31 1 1 1

3 2 11 1 1

3 2 11 1 1

3 2 11 1 1

3 2 11 1 1

33 23 13

22 12

11

=

G D L R

G D L R

G D L R

GG GD GL GR G G G

DD DL DR D D D

LL LR R R R

RR L L L

A A A A

A A A

A A

A

+ + + +

+ + + +

+ + + +

− − −

− − −

− − −

− − −






A A A A A A A 0 0 0

A A A A A A 0 0 0

A A A A A 0 0 0

A A A

A A AA
A A A

A A A

A A A
A A

A

,




 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



(66) 

where symmetry relations of Eq. (60) were used at ( , = 5,6,7)km k mA  

and the lower triangular part is not shown with the same reason of Eq. 

(64). The advantage of the new labeling scheme for the matrix 

elements of A  is that the contributions from = 1SM +  and = 1SM −  

components can now be clearly identified. 

 

With the new notation, amplitudes corresponding to G , D , L  and R  

of Fig. 4 can be easily obtained by exchanging 1 1R L− −↔  in all the 

elements of Eqs. (64), (65) and (66) with simultaneous sign change of 

the elements for 1G− and 1D− ; double replacement leaves the sign 

unchanged. Such an exchange is possible, because, ideally, amplitude 

and configuration should have one-to-one correspondence. For an 
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example, let us consider matrix elements of GLA  and GRA , i.e., 

1 1 1 1G L G RA A
+ + − −

+  and 
1 1 1 1G R G LA A
+ + − −

+ , respectively. As discussed above, one 

makes a sign change of 
1 1G LA
− −

 and 
1 1G RA
− −

 terms connected with 1G− , 

and exchanges these terms to bring 1L+  together with 1L−  and 1R+  

together with 1R− . Then, the modified elements become 
1 1 1 1G L G LA A
+ + − −

−  

and 
1 1 1 1G R G RA A
+ + − −

− , which are denoted as GLB  and GRB , in the following. 

The Hessian of Eq. (66) becomes modified by applying these 

discussions. The resulting Hessian matrix (0)
sA  is given by  

 

11 12 13 1 1 1 11 1 1 1

22 23 2 2 2 21 1 1 1

33 3 3 3 31 1 1 1

3 2 11 1 1

(0) 3 2 11 1 1

3 2 11 1 1

3 2 11 1 1

33 23 13

2

=

G D L R

G D L R

G D L R

GG GD GL GR G G G

DD DL DR D D D
s

LL LR L L L

RR R R R

B B B B

B B B

B B

B

+ + + +

+ + + +

+ + + +

− − −

− − −

− − −

− − −

− − −

− − −

A A A A A A A 0 0 0

A A A A A A 0 0 0

A A A A A 0 0 0

A A A

A A AA
A A A

A A A

A A A
A 2 12

11

,

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A
A

 (67) 

where the superscript (0) in the orbital Hessian matrix do not denote 

the zeroth-order quantity but will denote Hessian without spin-pairing 

coupling, and rearranged coupling between type I configurations are 
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

1=
2

GG GD GL GR

DD DL DR

LL LR

RR

G G G G G D G D G L G L G R G R

D D D D D L D L D R D R

L L L L L R L R

R R R R

B B B B
B B B

B B
B

A A A A A A A A

A A A A A A

A A A A

A A

+ + − − + + − − + + − − + + − −

+ + − − + + − − + + − −

+ + − − + + − −

+ + − −

 
 
 
 
 
 
 
 

+ + − −

+ − −

+ +

+

.


 
 
 
 
 
 
 
 

(68) 

As 
1 1 1 1

=G L G RA A
+ + − −

 and 
1 1 1 1

=G R G LA A
+ + − −

 in Eq. (65), a new relation GLB =

GRB−  holds. Likewise, new symmetric relations of DLB = DRB−  and LLB =

RRB  also appear. These symmetric relations completely eliminate the 

spin-contamination of type I in the response states. 

 

In addition, with spin-pairing coupling which will be introduced in 

subsection 3 of Spin-pairing coupling, Hessian matrix sA  is given by 

 

11 12 13 1 1 1 1 13 12 111 1 1 1

22 23 2 2 2 2 23 22 211 1 1 1

33 3 3 3 3 33 32 311 1 1 1

3 2 11 1 1

3 2 11 1 1

3 2 11 1 1

3 21 1

=

G D L R

G D L R

G D L R

GG GD GL GR G G G

DD DL DR D D D
s

LL LR L L L

RR R R

B B B B

B B B

B B

B

+ + + +

+ + + +

+ + + +

− − −

− − −

− − −

− −

− − −

− − −

A A A A A A A C C C

A A A A A A C C C

A A A A A C C C

A A A

A A AA
A A A

A A A 11

33 23 13

22 12

11

.

R−

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A A A
A A

A

 

   (69) 
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2.4 Separating matrix equations for singlet and triplet 
response states 

 

 

Pure spin configurations are obtained by pairing the respective 

configurations originating from MS = +1 and -1 references for the type 

I, II and III (see Fig. 2), which is achieved by a unitary transformation 

 

O O

O O

V V

V V

O O

O O

2 0 0 0
1 0 2 0 0' = ,
2 0 0 1 1

0 0 1 1

C C

V V

C C

C C

V V

C C

 
 
 
 
 
 
 
 
 
 

− 
 − 
 −
 − 

I 0 0 0 0 0 0 0 0 I
0 I 0 0 0 0 0 0 I 0
0 0 I 0 0 0 0 I 0 0

0 0 0 0 0 0

0 0 0 0 0 0U
0 0 0 0 0 0
0 0 0 0 0 0
0 0 I 0 0 0 0 I 0 0
0 I 0 0 0 0 0 0 I 0

I 0 0 0 0 0 0 0 0 I

 (70) 

with ( )O , =C uw ijui wj δ δI , ( )O , =V ab vzav bz δ δI , ( )V , =C ab ijai bj δ δI  and ( )O , =O uw vzuv wz δ δI . 

The rotated amplitude vector by the transformation matrix is given by 

 

=0, =0,
O C O C

2 2
=0, =0,

V O V O
1 1

=0, =0,
V C V C

=0,
G

=0,
D

=0, =0,
L R

=0, =0,
L R

=0, =0,
V C V C

=0, =0,
V O V O

1 1

( ) / 2

( ) / 2

( ) / 2

' =
( ) / 2

( ) / 2

( ) / 2

(

M I M IS S
s s

M I M IS S
s s

M I M IS S

M IS

M IS

I M I M IS S

M I M IS S

M I M IS S

M I MS S
s s

X

X

X X

X X

α β

β α

β α α β

β α α β

β α

+

+

+

+

−

−

−

X X

X X

X X

U X

X X

X X

=0, =0,
O C O C

2 2

.

) / 2

( ) / 2

I

M I M IS S
s sα β

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − 
 

X X

 (71) 
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and the orbital Hessian matrix (0)
sA  of Eq. (67) can be split into two 

blocks with the rotation as 

 

11 12 13 1 11 1

21 22 23 2 21 1
( )(0)

31 32 33 3 31 1

1 1 2 2 3 31 1 1 1 1 1

= ,

L R

L R

T
L R

L R L R L R LL LRB B

+ +

+ +

+ +

+ + + + + +

+ 
 

+ 
 

+ 
 + + + + 
 
 

A A A A A

A A A A A

A A A A A A

A A A A A A

 (72) 

3 2 11 1 1

3 2 11 1 1

3 3 2 2 1 11 1 1 1 1 1
( )(0)

3 3 3 3 33 23 131 1 1 1

2 2 2 2 23 22 121 1 1 1

1 1 1 11 1 1 1

2 2 2 2

2 2 2 2

2 2

= 2 2

2 2

2 2

GG GD GL G G G

GD DD DL D D D

GL DL LL LR L R L R L R

S
G D L R

G D L R

G D L R

B B B

B B B

B B B B

+ + +

+ + +

+ + + + + +

+ + + +

+ + + +

+ + + +

− − − −

−

−

−

A A A

A A A

A A A A A A

A A A A A A A A

A A A A A A A

A A A A A13 12 11

.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

A A

  (73) 

 Hence, two matrix equations  

 ( )(0) ( )(0) ( )(0)
( )(0)= ,T T I T

I T IΩA X X  (74) 

 ( )(0) ( )(0) ( )(0)
( )(0)= ,S S I S

I S IΩA X X  (75) 

are obtained, for the triplet (T) and singlet (S) state amplitudes. In 

these equations, the excitation amplitude vectors are  

 

=0, =0,( )(0),
CO O C O C2 2

=0, =0,( )(0),
OV V O V O( )(0) 1 1

=0, =0,( )(0),
CV V C V C

=0, =0,( )(0),
OOT L R

( ) / 2

( ) / 2
,

( ) / 2

( ) / 2

M I M IT I S S
s s

M I M IT I S S
s sT

I
M I M IT I S S

M I M IT I S SX X X

α β

β α

β α α β

   +
  
  

+  
≡ =   

   +
  
    +   

X X X

X X X
X

X X X
 (76) 



 

 ５０ 

 

=0,( )(0),
GG

=0,( )(0),
DD

=0, =0,( )(0),
L ROOS( )(0)

=0, =0,( )(0),
V C V CCV

=0, =0,( )(0),
V O V OOV 1 1

( )(0),
OCO

( ) / 2

( ) / 2

( ) / 2

(

M ISS I

M ISS I

M I M IS SS I

S
I M I M IS SS I

M I M IS SS I
s s

S I
s

XX

XX

X XX

β α α β

β α

 
 
 
 
 

− 
 ≡ =
  −
 
  − 
 
 
 

X
X XX

X XX

XX
=0, =0,
C O C

2 2

.

) / 2M I M IS S
sα β

 
 
 
 
 
 
 
 
 
 
 
 
 − 
 

X

 (77) 

Here also, the superscript (0) do not denote the zeroth-order quantity 

but will denote quantity without spin-pairing coupling. The new 

response equations (74) and (75) yield spin-adapted excited states, 

where a complete decontamination of the type I, II and type III 

configurations is achieved. Hence, clean separation of triplet and 

singlet states is achieved in MRSF-TDDFT; which is an advantage 

before the standard SF-TDDFT formalism. 

 

For the type IV configurations, only one missing configuration (out of 

five) is recovered in MRSF-TDDFT and spin-adaptation of this type 

of configurations remains incomplete. However, contribution of these 

configurations into the low lying excited states is expected to be small 

and the resulting spin contamination insignificant. 

Likewise, rotation of the Hessian matrix sA  of Eq. (69), which can be 

split into two blocks  
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11 11 12 12 13 13 1 11 1

12 12 22 22 23 23 2 21 1
( )
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1 1 2 2 3 31 1 1 1 1 1

= ,

L R

L R

T
L R

L R L R L R LL LRB B

+ +

+ +

+ +

+ + + + + +

+ + + + 
 

+ + + + 
 

+ + + + 
 + + + + 
 
 

A C A C A C A A

A C A C A C A A

A A C A C A C A A
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3 2 11 1 1

3 2 11 1 1

3 3 2 2 1 11 1 1 1 1 1
( )

3 3 3 3 33 33 23 23 13 131 1 1 1

2 2 2 2 23 23 22 22 12 121 1 1 1

1

2 2 2 2

2 2 2 2

2 2

= 2 2

2 2

2

GG GD GL G G G

GD DD DL D D D

GL DL LL LR L R L R L R

S
G D L R

G D L R

B B B

B B B

B B B B

+ + +

+ + +

+ + + + + +

+ + + +

+ + + +

− − − −

− − − −

− − − −

A A A

A A A

A A A A A A

A A A A A A C A C A C

A A A A A C A C A C

A 1 1 1 13 13 12 12 11 111 1 1 1

,

2G D L R+ + + +

 
 
 
 
 
 
 
 
 
 
 

− − − − 
 
 

A A A A C A C A C

  (79) 

 leads to two sets of response equations  

 ( ) ( ) ( )
( )= ,T T I T

I T IΩA X X  (80) 

 ( ) ( ) ( )
( )= ,S S I S

I S IΩA X X  (81) 

 

 

2.5 Expectation value of S2 operator for response states of 
MRSF-TDDFT 

 

 

It has been a common practice that the spin-contamination of TDDFT 

is measured by the operation of 2S  on a wave function of 

noninteracting system. The 2S  operator is represented as  

 2 = ( 1) ,z zS S S S− ++ +S    with (82) 



 

 ５２ 

 
= ( ),z z

m
S s m∑

 (83) 

 
= ( ),

m
S s m± ±∑

 (84) 

 where ( )zs m , ( )s m+ , and ( )s m−  are the one-electron operators of the 

spin z -component, spin raising and lowering operators for the m th 

electron, respectively. In the second quantization, the S±  operators 

are  

 †= ,p p
p

S a aβ α− ∑  (85) 

 †= ,q q
q

S a aα β+ ∑  (86) 

 where the p  and q  indices are running over all the MOs and the 

†
p p

a σ , p p
a σ  ( = ,pσ α β ) are the creation and annihilation operators of 

electron in the p
p

σ
φ  orbital. Therefore, the last term of Eq. (82) can be 

written as  

 † †

,
= .p p q q

p q
S S a a a aβ α α β− + ∑  (87) 

With the help of the anti-commutation relations, the above equation is 

re-written as  

 † † †

,
= .p p p q p q

p p q
S S a a a a a aβ β β α α β− + −∑ ∑  (88) 

The second term on the right hand side of above equation can be split 

as  

 † † † † †

,
= .p p p p p p p q p q

p qp p
p q

S S a a a a a a a a a aβ β β α α β β α α β− +

≠

− −∑ ∑ ∑  (89) 



 

 ５３ 

The three terms on right hand side of Eq. (89) correspond to the 

operators of the number of electrons in the β -spin MOs, in the doubly 

occupied MOs, and in the open-shell configurations with two singly 

occupied MOs, respectively. The MR-SF-TDDFT wavefunction for an 

excited state with = 0SM  is  

 
=0, = 1 =0, = 1 =0, = 1 =0, = 1( )

O1 O2 O2 O1 O1 O1 O2 O2= M I M M I M M I M M I MS S S S S S S S S
G D L RX X X Xβ α β α β α β α

+ + + +Ψ Ψ + Ψ + Ψ + Ψ  

 
( ) ( )=0, = 1 =0, = 1 =0, = 1 =0, = 1

2 2 1 1

M I M M I M M I M M I MS S S S S S S S
us i u i us i u i a ws a w a ws a w

ui aw
X X X Xα β α β α β β β α α α β

+ − + −+ Ψ + Ψ + Ψ + Ψ∑ ∑
 

 
( )=0, = 1 =0, = 1M I M M I MS S S S

a i a i a i a i
ai

X Xβ α β α α β α β
+ −+ Ψ + Ψ∑

 (90) 

where 
= 1MS

p qβ α
+Ψ  and 

= 1MS
p qα β

−Ψ  are the determinants obtained by the spin-

flip transitions from the = 1SM +  and = 1SM −  components of the 

mixed reference state, respectively. The first four terms on the right 

hand side of Eq. (90) correspond to the type I configurations, see Fig. 

2, while 5th, 6th, 7th terms represent the type II, III, IV, respectively. 

Using IΨ  the expectation value of 2S  becomes  

 2 = ( 1) .I I I z z I I IS S S S− +Ψ Ψ Ψ + Ψ + Ψ ΨS  (91) 

where the first term on the right hand side vanishes, since = 0SM , and 

the second term is given by  

 ( ) ( )2 2=0, =0, =0, =0,= 1 2M I M I M I M IS S S S
I I G D L RS S X X X X− +Ψ Ψ − − +  

 
=0, =0, =0, =0, =0, =0,

2 2 1 1
2( ).M I M I M I M I M I M IS S S S S S

a i a ius i us i a ws a ws
us aw ai

X X X X X Xβ α α βα β β α+ + +∑ ∑ ∑  (92) 
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Magnitudes of two amplitudes for each pair which is 
=0, =0,( ,  )M I M IS S

L RX X , 

=0, =0,

2 2
( ,  )M I M IS S

Os C Os CX Xα β , 
=0, =0,

1 1
( ,  )M I M IS S

V Os V OsX Xβ α , or 
=0, =0,( ,  )M I M IS S

V C V CX Xβ α α β  are same, while 

those sign are different and same for singlet and triplet response 

states, respectively. Thus, with the orthonormal condition, the 

expectation values of 2S  for singlet and triplet response states are 

always 0 and 2, respectively. This shows that MRSF-TDDFT 

eliminates spin contamination of SF-TDDFT for singlet and triplet 

response states. As discussed in the beginning of this section, there 

is still quintet mixing for C→V configurations but it is minor 

contribution for low-lying excited states. 

 

 

2.6 Dimensional transformation matrix 
 

 

The different singlet and triplet response dimensions of MRSF-TDDFT 

as compared to SF-TDDFT could introduce complications to the 

subsequent derivations and potentially require a major modification to 

the existing SF-TDDFT code. Therefore, in this subsection, we 

introduce dimensional-transformation ( )S
pqU  and ( )T

pqU  matrices, which 

cause the singlet and triplet response dimensions of MRSF-TDDFT to 

be equal to that of SF-TDDFT. With these transformation matrices, 



 

 ５５ 

the expanded X vectors, which have the same dimension of SF-TDDFT, 

can be represented as ( ) ( )(0)S S
pq pqU X  and ( ) ( )(0)T T

pq pqU X  for the singlet and 

triplet response spaces, respectively. For example, the expanded X 

vectors of G and D configurations for the singlet and triplet spaces, 

respectively, are defined as:   

 ( ) ( )(0) ( )(0)
2 1 ,S G S S

pq G pO qO GU X Xδ δ≡  (93a) 

 ( ) ( )(0) ( )(0)
1 2 ,S D S S

pq D pO qO DU X Xδ δ≡  (93b) 

 ( ) ( )(0) 0,T G T
pq GU X ≡  (94a) 

 ( ) ( )(0) 0.T D T
pq DU X ≡  (94b) 

  Likewise, the expanded X vectors of OOS and OOT configurations 

for the singlet and triplet spaces, respectively, are defined as:   

 ( )( )(0) ( )(0)
1 1 2 2

1 ,
2

OOS S S
pq OOS pO qO pO qO OOSU X Xδ δ δ δ≡ −  (95) 

 ( )( )(0) ( )(0)
1 1 2 2

1 .
2

OOT T T
pq OOT pO qO pO qO OOTU X Xδ δ δ δ≡ +  (96) 

  Note that the one-dimensional excitation amplitudes of ( )(0)S
OOSX  and 

( )(0)T
OOTX  are represented as two-dimensional excitation amplitudes of 

( ( ) ( )(0)
1 1
S OO S

O O OOSU X , ( ) ( )(0)
2 2
S OO S

O O OOSU X ) and ( ( ) ( )(0)
1 1
T OO T

O O OOTU X , ( ) ( )(0)
2 2

T OO T
O O OOTU X ), respectively. As 

compared to the OO type, the COm
pqU , OmV

pqU , and CV
pqU  are defined 

without changing their dimensions as:   

 ( )(0) ( )(0)
< 1 ,COm k k

pq pq p O qOm pqU X Xδ δ≡  (97) 
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 ( )(0) ( )(0)
> 2 ,OmV k k

pq pq pOm q O pqU X Xδ δ≡  (98) 

 ( )(0) ( )(0)
< 1 > 2 ,CV k k

pq pq p O q O pqU X Xδ δ≡  (99) 

  where = 1, 2m , = ,k S T , and   

 < 1 < 1= 1 f < 1, = 0 f 1,p O p Oor p O or p Oδ δ ≥  (100a) 

 > 2 > 2= 1 f > 2, = 0 f 2.q O q Oor q O or q Oδ δ ≤  (100b) 

  As a result, the expanded dimensions of both singlet and triplet 

response spaces are equal to occ virn nα β  of SF-TDDFT. With the help of 

these transformation matrices, the expanded single and triplet 

response spaces can be elegantly defined, respectively, as:   

 ( ) ( ) ( ) 1 2 1 2 ,S S G S D OOS CO CO O V O V CV
pq pq pq pq pq pq pq pq pqU U U U U U U U U≡ + + + + + + +  (101a) 

 ( ) ( ) ( ) 1 2 1 2 .T T G T D OOT CO CO O V O V CV
pq pq pq pq pq pq pq pq pqU U U U U U U U U≡ + + + + + + +  (101b) 

 

With the collinear approximation, the singlet and triplet orbital 

Hessians of Eqs. (72) and (73) can be succinctly represented with a 

single form of: 

 ( ){ }( )(0) ( ) ( )
, = ,k k k

pq rs pq pr qs qs pr H rsA U F F c pr sq Uβ αδ δ− −  (102) 

where = ,k S T  and the zeroth-order Fock matrix from MS = +1 is 

represented with more concise notation as (0)
p qpq p qF Fσ σ σ=  and all Fock 

matrices from MS = -1, (0)
p qp qF σ σ

 , is converted to that from MS = +1. The 

singlet and triplet response equations can be represented as: 
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 ( )(0) ( )(0) ( )(0)
, ( )(0)= ,k k k

pq rs rs k pqA X XΩ  (103) 

the ( )(0)SΩ  and ( )(0)TΩ  are their eigenvalues or excitation energies from 

the reference. 

 

 

3. Spin-pairing coupling 

 

 

Because no coupling occurs between the responses originating from 

the two different references of the MR-RDM, a posteriori coupling was 

introduced as 

 = 1 = 1
,

ˆ= ,M MS S
pq rs SP p q r sA c Hα β β α

+ −′ Ψ Ψ  (104) 

 where = 1MS
p qα β

+Ψ  and = 1MS
r sβ α

−Ψ  are the bra and ket vectors for 

configurations originating from the = 1SM +  and = 1SM −  components 

of the mixed reference state, respectively. The pairing-strength 

coefficient, SPc , is adjustable depending on situations or a specific 

molecule. The best pairing strength may be able to be determined by 

benchmarking calculations. However, by default one can use the 

pairing strength with the same value of HF exchange mixing 

coefficient, i.e., SP HFc c= . After defining a sign function for the singlet 

and triplet states as 

 s ( ) = 1, if = ,gn k k S+  (105a) 

 s ( ) = 1, if = ,gn k k T−  (105b) 
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the two types of couplings can be defined by:   

 ( )( )intra
, s ( ) ,k

pq rs HH gn k c ps rq≡  (106a) 

 ( ) ( ){ }( )inter
, s ( ) ,k

pq rs HH gn k c pq rs pr sq≡ −  (106b) 

where = ,k S T . With these, the spin-pairing coupling in Eq. (104) for 

the singlet and triplet response equations in Eq. (74) and (75), 

respectively, are represented as:  

 ( ) ( )intra 1 2 1 2 ( )intra 1 2 1 2
, , ,= ( )( ) ( )( )k k CO CO CO CO k O V O V O V O V

pq rs pq pq rs rs pq pq rs rspq r s pq rsA H U U U U H U U U U′ − − + − −  

 ( )inter 1 2 2 1 1 2 2 1
, ( )k CO O V CO O V O V CO O V CO

pq rs pq rs pq rs pq rs pq rsH U U U U U U U U+ + + +  (107) 

 Note that the underline notation used in the indices of the coupling 

( )intra
,

k
pq rsH  in Eq. (107) is defined as:  

 2, if = 1,p O p O≡  (108a) 

 1, if = 2.p O p O≡  (108b) 

 

As a result, the orbital Hessians for the singlet and triplet responses 

with the spin-pairing coupling can be simply given by:  

 ( ) ( )(0) ( )
, , ,= .k k k

pq rs pq rs pq rsA A A′+  (109) 

 It should be noted that even with the couplings, the excitation 

amplitudes of singlet ( ( )S
pqX ) and triplet configurations ( ( )T

pqX ) are 

completely decoupled from each other. In addition, the response 

spaces can be expanded with the same dimensional-transformation 
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( )S
pqU  and ( )T

pqU  matrices in Eq. (101a) and (101b). Finally, the singlet 

and triplet response equations with the spin-pairing coupling are given 

by:  

 ( ) ( ) ( )
, ( )= ,k k k

pq rs pq k pqA X XΩ  (110) 

 where = ,k S T  and the ( )SΩ  and ( )TΩ  are their eigenvalues or 

excitation energies.  
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ANALYTIC ENERGY GRADIENT OF MIXED-

REFERENCE SPIN-FLIP TDDFT 

 

An analytic gradient with respect to nuclear coordinates represents 

the essential quantity for the vast majority of quantum mechanical 

applications such as geometry optimization, reaction path following, 

and molecular dynamics simulations. In addition, gradients of excited 

states are crucial in the emerging field of nonadiabatic dynamics. The 

analytic energy gradient of LR- and SF-TDDFT is formulated by using 

the Lagrangian formalism.[46, 49] Likewise, that of MRSF-TDDFT 

can be obtained with similar way[50] which will be describing in this 

section. In the first subsection of Lagrangian, the Lagrangians of both 

singlet and triplet response states are defined with two new Lagrange 

multipliers W and Z. These two multipliers can be determined by 

orbital stationary condition described by subsections 2 and 3, 

respectively. With the determined multipliers satisfying orbital 

stationary conditions, analytic energy gradient can be represented by 

concise form which will be derived in the last subsection 4. 
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1. Lagrangian 
 

 

The reference of MRSF-TDDFT is optimized by variational conditions 

for the restricted open-shell Kohn-Sham MOs in the Guest-Saunders 

canonicalization.[51] 

 = ,pq pq pqF F Fα β+  (111) 

 with   

 

/ 2 0 / 2
= 0 / 2 ,

/ 2 / 2

ij ib

pq xy xb

aj ay ab

F F
F F F

F F F

α α

α α α

α α α

 
 
 
 
 

 (112) 

 

/ 2 / 2
= / 2 0 .

/ 2 0 / 2

ij iy ib

pq xj xy

aj ab

F F F
F F F

F F

β β β

β β β

β β

 
 
 
 
 

 (113) 

The off-diagonal blocks represent the variational conditions, i.e., 

rotations between C-O, C-V, and O-V orbitals that go to zero. 

 

MRSF-TDDFT yields two independent Lagrangian for singlet ( =k S ) 

and triplet response states ( =k T ) as: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )[ , , , , ] = [ , ] 2k k k k k k k
k k ia ia ix ix

ia ix
L G Z F Z Fσ σ σ σ

σ σ

Ω Ω + +∑ ∑X C Z W X  

 ( ) ( )2 ( ),k k
xa xa pq pq pq

xa p q
Z F W Sσ σ σ σ

σ σ

δ
≤

+ − −∑ ∑∑  (114) 

where the vector C  and pqS σ  are the MO coefficients and MO overlap 

integral, respectively, and the ( )kZ  and ( )kW  vectors are 

undetermined Lagrange multipliers. The first term on the right-hand 
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side is:  

 
, , , ,

( ) ( ) ( ) ( ) ( ) ( )
( ) , ( )[ , ] = ( 1).

C OO V C OO V
k k k k k k

k pq pq rs rs k pq pq
pr qs p q

G X A X X XΩ −Ω −∑∑ ∑∑X  (115) 

It is noteworthy that only the ( )
( )[ , ]k
kG ΩX  term differs in SF- and 

MRSF-TDDFT except for the undetermined Lagrange-multipliers ( )kZ  

and ( )kW . 

 

 

2. Orbital stationary condition I (Coupled perturbed 

Hartree-Fock equation): Lagrange multiplizer Z 

 

 

Two independent sets of orbital stationary conditions for singlet ( =k S ) 

and triplet response states ( =k T ) are defined, respectively, as  

 
( ) ( )

= 0.
k k

u u
t t

L Lc c
c cµ α µ β

µ µµ α µ β

∂ ∂
+

∂ ∂∑ ∑  (116) 

From this condition, the following ( )kZ -vector equation can be derived 

as 

 
, ,

( ) ( )
, = , , , ,

C OO V
k k

pq rs rs pq
r s

J Z R p C O q O V− ∈ ∈∑∑  (117) 

where the unique spin-independent ( )kZ  vector (with the bar symbol) 

is introduced as:   

 ( ) ( )= ,k k
ix ixZ Z β  (118a) 

 ( ) ( )= ,k k
xa xaZ Z α  (118b) 
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 ( ) ( ) ( )= = , otherwise, 0.k k k
ia ia iaZ Z Zα β  (118c) 

The orbital Hessian ,pq rsJ  of MRSF-TDDFT takes the identical forms 

of SF-TDDFT[46] as: 

( ) ( ) ( ), ,
1 1= [ ] ,

2 2 2
xcH

ix jy ix jy ij xy xy ij
cJ ix jy iy jx ij xy f F Fβ β β βδ δ− + + − +  (119a) 

( ) ( ) ( ), , ,
1= 2 [ ] ,

2 2
xc xcH

ia jy ia jy ia jy ya ij
c

J ia jy iy ja ij ya f f Fα β β β β δ− + + + +  (119b) 

( ), ,
1= ,
2

xc
xa jy xa jy ja xyJ xa jy f Fα β αδ+ −

 (119c) 

 

( ) ( ) ( ), , , , ,= 4 [ ] ( ) ,xc xc xc xc
ia jb H ia jb ia jb ia jb ia jb a i ij abJ ia jb c ib ja ij ab f f f fα α α β β α β β δ δ− + + + + + + − 

  (119d) 

( ) ( ) ( ), , ,
1= 2 [ ] ,
2

xc xc
xa jb H xa jb xa jb jx abJ xa jb c xb ja jx ab f f Fα α α β αδ− + + + −  (119e) 

( ) ( ) ( ), ,
1 1 1= [ ] ,

2 2
xc

xa yb xa yb xy ab ab xy
H

J xa yb xb ya xy ab f F F
c α α α αδ δ− + + − +  (119f) 

where ,
xc

pq rsf σ τ  represents the matrix elements of the second functional 

derivatives of the exchange-correlation functional with respect to the 

electron density. The spin-state-specific ( )k
pqR  on the right-hand side 

of Eq. (7) for the singlet ( =k S ) and triplet states ( =k T ) are given by:  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1= [ ] [ , ] [ , ] [ , ],
2

k k k k k k k k
ix ix ix xi xiR H H H Hβ α α β

+ + − −T X X X X X X  (120a) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1= [ ] [ , ] [ , ] [ , ],
2

k k k k k k k k
xa xa xa xa axR H H H Hα α β β

+ + + −T X X X X X X  (120b) 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )1= ( [ ] [ ]) [ , ] [ , ],
2

k k k k k k k
ia ia ia ia aiR H H H Hα β α β

+ ++ + −T T X X X X  (120c) 

 where  

 ( ) ( ) ( ),[ ] {2 2 [ ]} ,xc
pq pq rs H rs

rs
H V pq rs f c ps rq pr sq Vσ σ τ στ τ

τ

δ+ ≡ + − +∑  (121) 

 with  

 
,

( ) ( ) ( ) ( ) ( ) , , , ,
O V

k k k k k
pr pq pq rq rq

q
T U X U X p r C Oα ≡ − ∈∑  (122a) 

 
,

( ) ( ) ( ) ( ) ( ) , , , .
C O

k k k k k
qs pq pq ps ps

p
T U X U X q s O Vβ ≡ ∈∑  (122b) 

And the ( ) ( )[ , ]k k
tuH σ X X  of Eq. (120) is defined as 

 ( ) ( ) (0) ( ) ( ) i ( ) ( ) i ( ) ( )[ , ] [ , ] [ , ] [ , ]k k k k ntra k k ntra k k
tu tu tu Cx Cy tu xV yV

xy xy
H H H Hσ σ σ σ≡ + +∑ ∑X X X X X X X X  

 i ( ) ( ) i ( ) ( )[ , ] [ , ],nter k k nter k k
tu Cx xV tu xV C x

x x
H Hσ σ+ +∑ ∑X X X X  (123) 

 where  

 ( )
, ,

(0) ( ) ( ) ( ) ( ) ( ) ( )[ , ] { } ,
C OO V

k k k k k k
tu tq tq ur qs qs ur H rs rs

r qs
H U X F F c ur sq U Xα β αδ δ≡ − −∑∑X X  (124a) 

 ( )
, ,

(0) ( ) ( ) ( ) ( ) ( ) ( )[ , ] { } ,
C OO V

k k k k k k
tu pt pt pr us us pr H rs rs

pr s
H U X F F c pr su U Xβ β αδ δ≡ − −∑∑X X  (124b) 

 and  

 
1i ( ) ( ) ( ) ( )i ( )

,[ , ] ( 1) ,
C O

ntra k k Cx k k ntra Cy kxy
tu Cx Cy tq tq uq r s rs rs

r qs
H U X H U X

δ

α

−
≡ − ∑∑X X  (125a) 

 
1i ( ) ( ) ( ) ( )i ( )

,[ , ] ( 1) ,
O V

ntra k k xV k k ntra yV kxy
tu xV yV tq tq uq rs rs rs

r qs
H U X H U X

δ

α

−
≡ − ∑∑X X  (125b) 

 i ( ) ( ) ( ) ( )i ( )
,[ , ] ,

O V
nter k k Cx k k nter yV k

tu Cx yV tq tq uq rs rs rs
rq s

H U X H U Xα ≡ ∑∑X X  (125c) 
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 i ( ) ( ) ( ) ( )i ( )
,[ , ] ,

C O V
nter k k xV k k nter Cy k

tu xV Cy tq tq uq rs rs rs
r s q

H U X H U Xα ≡ ∑∑∑X X  (125d) 

 
1i ( ) ( ) ( ) ( )i ( )

,[ , ] ( 1) ,
C O

ntra k k Cx k k ntra Cy kxy
tu Cx Cy pt pt pu r s rs rs

pr s
H U X H U X

δ

β

−
≡ − ∑∑X X  (125e) 

 
1i ( ) ( ) ( ) ( )i ( )

,[ , ] ( 1) ,
O V

ntra k k xV k k ntra yV kxy
tu xV yV pt pt pu rs rs rs

pr s
H U X H U X

δ

β

−
≡ − ∑∑X X  (125f) 

 i ( ) ( ) ( ) ( )i ( )
,[ , ] ,

C O V
nter k k Cx k k nter yV k

tu Cx yV pt pt pu rs rs rs
p r s

H U X H U Xβ ≡ ∑∑∑X X  (125g) 

 i ( ) ( ) ( ) ( )i ( )
,[ , ] .

C O
nter k k xV k k nter Cy k

tu xV Cy pt pt pu rs rs rs
r pr

H U X H U Xβ ≡ ∑∑X X  (125h) 

 

Four terms on the right-hand side of Eq. (123) except for the first 

term are derived from the spin-pairing coupling in Eq. (107). Without 

these terms, all equations for the ( )kZ -vector equation are almost 

same as those of SF-TDDFT.[46] Only the difference is using the 

expanded excitation amplitudes, ( ) ( )k k
pq pqU X , in MRSF-TDDFT. This is 

great advantage since one can simply utilize the same existing routines 

for SF-TDDFT. 

 

 

3. Orbital stationary condition II: Lagrange multiplizer W 

 

 

After ( )kZ  vector is determined by solving Eq. (117), the relaxed 

difference density matrix ( )kP  can thus be calculated as:  

 ( ) ( ) ( )= .k k k
pq pq pqP T Zσ σ σ+  (126) 
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 If we define the spin-state-specific ( )k
pqW  as  

 ( ) ( ) ( ) ,k k k
pq pq pqW W Wα β≡ +  (127) 

 the other Lagrange multiplier ( )k
pqW  can be obtained by:   

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1= [ , ] [ , ] [ , ] [ ]
2

k k k k k k k k
ix xi xi xi ixW H H F Hα β α α

++ + +X X X X X X P  

 ( ) ( )1 1 ,
2 2

k k
ij jx ia xa

j a
F Z F Zβ α+ +∑ ∑  (128a) 

 ( ) ( ) ( ) ( ) ( )1= [ , ] ,
2

k k k k k
ia ai i ia ix xa

x
W H Z F Zβ α+ + ∑X X   (128b) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1= [ , ] [ , ] ,
2 2

k k k k k k k
xa ax ax xy ya ix ia

y i
W H F F Z F Zβ β α α+ + +∑ ∑X X X X  (128c) 

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )11 = [ , ] [ , ] [ ] [ ] ,
2

k k k k k k k
ij ij ij ij ij ijW H F H H i jα α α βδ + ++ + + + ≤X X X X P P

  (128d) 

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 = [ , ] [ , ] [ , ] [ , ]k k k k k k k k k
xy xy xy xy ij ijW H H F Fα β α βδ+ + + +X X X X X X X X  

 ( )1 [ ],
2

k
xyH x yα
++ ≤P  (128e) 

 ( )( ) ( ) ( ) ( ) ( )1 = [ , ] [ , ],   ,k k k k k
ab ab ab abW H F a bα αδ+ + ≤X X X X  (128f) 

  where 

 ( ) ( ) ( ) ( )[ , ] = ,k k k k
tu tq qs usF X F Xα β−X X  (129a) 

 ( ) ( ) ( ) ( )[ , ] = .k k k k
tu pt pr ruF X F Xβ αX X  (129b) 

Also in this case, form of equations are exactly same as those of SF-

TDDFT[46] without four terms originated from spin-pairing coupling 

in Eq. (107). 
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4. Analytic energy gradient with respect to the nuclear 

coordinate 

 

 

From the stationary condition of Lagrangian for a nuclear coordinate 

(ξ ) of  

 
( )

= 0,
kL
ξ

∂
∂

 (130) 

the analytic gradient of the excitation energy ( ( )k
ξΩ ) can be obtained 

by:  

 )( ) ( ) ( )
( ) ,

,
= ( | ,k k k

k h P S W ξξ ξ ξ
µν µνσ µν µνσ µνσ κλτ

µνσ µνσ µνσ κλτ

µν κλΩ − + Γ∑ ∑ ∑  (131) 

where the superscript ξ  denote the derivative with respect to the 

nuclear coordinate. hξ
µν  and )( | ξµν κλ  are the derivatives of one- and 

two-electron integrals in AO basis. Sξ
µν  is the derivative of AO overlap 

integral. ( )kPµνσ  and ( )kWµνσ  are   

 
,

( ) ( ) ,
C O

k k
p pq q

pq
P c P cµνα µ α α ν α≡ ∑  (132a) 

 
,

( ) ( ) ,
O V

k k
p pq q

pq
P c P cµνβ µ β β ν β≡ ∑  (132b) 

 ( ) ( ) ,k k
p pq q

p q
W c W cµνα µ α α ν α

≤

≡ ∑  (133a) 

 ( ) ( ) .k k
p pq q

p q
W c W cµνβ µ β β ν β

≤

≡ ∑  (133b) 



 

 ６８ 

 

In addition, ( )
,

k
µνσ κλτΓ  are given by  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
,

1= [2 ( ) ( )]
2

k k k k k k k k
H HP D c P D P D c X X X Xµνσ κλτ µνσ κλτ στ µκσ νλσ µλσ νκσ σα τβ µλ νκ µκ νλδ δ δΓ − + − +  

 i ( ) i ( ) i ( ) i ( )
1 2 1 2s ( ) [{( ) ( ) }{( ) ( ) }ntra k ntra k ntra k ntra k

H O V O V O V O Vgn k c X X X Xσα τβ µλ µλ κν κνδ δ+ × − −  

 i ( ) i ( ) i ( ) i ( )
1 2 1 2{( ) ( ) }{( ) ( ) }ntra k ntra k ntra k ntra k

CO CO CO COX X X Xµλ µλ κν κν+ − −  

 i ( ) i ( ) i ( ) i ( )
1 2 2 1( ) ( ) ( ) ( )nter k nter k nter k nter k

CO O V CO O VX X X Xµν κλ µν κλ+ +  

 i ( ) i ( ) i ( ) i ( )
2 1 1 2( ) ( ) ( ) ( )nter k nter k nter k nter k

O V CO O V COX X X Xµν κλ µν κλ+ +  

 i ( ) i ( ) i ( ) i ( )
1 2 2 1( ) ( ) ( ) ( )nter k nter k nter k nter k

CO O V CO O VX X X Xµλ νκ µλ νκ− −  

 i ( ) i ( ) i ( ) i ( )
2 1 1 2( ) ( ) ( ) ( ) ],nter k nter k nter k nter k

O V CO O V COX X X Xµλ νκ µλ νκ− −  (134) 

 where   

 
,

,
C O

p p
p

D c cµνα µ α ν α≡ ∑  (135a) 

 ,
C

p p
p

D c cµνβ µ β ν β≡ ∑  (135b) 

 
, ,

( ) ( ) ( ) ,
C OO V

k k k
p pq pq q

p q
X c U X cµν µ α ν β≡ ∑∑  (136) 

 and 

 i ( ) ( )( ) ,
O V

ntra k OmV k
OmV p pq pq q

p q
X c U X cµν µ α ν β≡ ∑∑  (137a) 

 i ( ) ( )( ) ,
C O

ntra k COm k
COm p pq pq q

p q
X c U X cµν µ α ν β≡ ∑∑  (137b) 

 i ( ) ( )( ) ,
O V

nter k OmV k
OmV p pq pq q

p q
X c U X cµν µ α ν β≡ ∑∑  (137c) 
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 i ( ) ( )( ) .
C O

nter k COm k
COm p pq pq q

p q
X c U X cµν µ α ν β≡ ∑∑  (137d) 

 

Finally, the gradient of the ground state energy is given by:  

 ) ,
,

= ( | ,E h D S W ξξ ξ ξ
µν µνσ µν µνσ µνσ κλτ

µνσ µνσ µνσ κλτ

µν κλ′ ′− + Γ∑ ∑ ∑  (138) 

where  

 ,
1= ( ).
2 HD D c D Dµνσ κλτ µνσ κλτ στ µλσ νκσδ′Γ −  (139) 

 
,

= p pq q
p q

W c F cµνσ µ σ σ ν σ′ ∑  (140) 

The gradient of excited response states can be obtained by adding the 

gradient of excitation energy in Eq. (131) and that of ground energy in 

Eq. (138). The second term on the right-hand side of Eq. (134) is 

derived from the spin-pairing coupling in Eq. (107). Without this term, 

all equations for the energy gradient are almost same as those of SF-

TDDFT.[46] Similarly, only the difference is using the expanded 

excitation amplitudes, ( ) ( )k k
pq pqU X , in MRSF-TDDFT. In the same manner, 

one can simply utilize the same existing routines for SF-TDDFT. 
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NUMERICAL RESULTS 
 

 

In this section, it is investigated that how spin-contamination and spin-

pairing coupling affects various calculations containing 1. Vertical 

excitation energy, 2. Singlet-triplet energy gap, 3. Geometry-

optimization structure, 4. Adiabatic excitation energy, 5. Minimum 

energy conical intersection, 6. Non-adiabatic coupling matrix elements, 

and 7. Non-adiabatic molecular dynamics. 

 

MRSF-, MRSF(0)-, SF-TDDFT, and MRSF-CIS are utilized for these 

calculations. The MRSF(0)-TDDFT is a MRSF-TDDFT without the 

spin-pairing coupling and MRSF-CIS is a MRSF-TDDFT using 100% 

HF exchange. All calculations are performed by a local development 

version of the GAMESS-US program.[52] 

 

The differences between MRSF(0)- and SF-TDDFT can specifically 

represent the pure spin-contamination effect of SF-TDDFT. Also, the 

effects of spin-pairing coupling to geometry can be understood from 

the differences between MRSF- and MRSF(0)-TDDFT.  
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1. Vertical excitation energy 

 

 

1.1 P excited state of Be atom 
 

 

Be atom has the 1S ground state arising in the configuration 1s22s2. 

The low-lying excited states of Be are the 3Px,y,z and the 1Px,y,z states 

arising in the configuration 1s22s12pk
1, k=x,y,z. The SF-TDDFT and 

the MR-SF-TDDFT calculations use the 
3
P z  state (1s22s12pz

1) as the 

reference state. With this choice of reference, the 
=0,M IS

LX  and 

=0,M IS
RX  amplitudes generate the 1Pz and 3Pz states, while the rest of 

the P states are produced by the V O
I

β α
X  and V O

I

α β
X  amplitudes. 

 

The results of the calculations are collected in Tab. 4. SF-TDDFT, 

MRSF-TDDFT(0) and MRSF-TDDFT, yield nearly identical energy for 

the 1S ground electronic state since there is little spin-contamination 

in the SF-TDDFT. The collinear SF-TDDFT method yields relatively 

minor spin-contamination of the 1Pz and 3Pz components, for which the 

excitation amplitudes arise in the O→O excitation (type I in Fig. 2). 

However, the 3Px,y components, which are described by the amplitudes 

arising in the OV excitation (type II in Fig. 2), are strongly spin-

contaminated; 2〈 〉S =1.0, which is typical for mixtures of the true 
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singlet and triplet states. As a result, there are absences of 1Px,y 

components. Strictly, one cannot say the strongly spin-contaminated 

states as neither singlet nor triplet states. Hence, an erroneous energy 

splitting between the (x,y) components and z component of the 3P and 

1P multiplets is predicted by SF-TDDFT; 0.811 eV and 1.247 eV, 

respectively. 

 

Although the removal of the spin-contamination by MRSF-TDDFT(0) 

does not improve the energies of the multiplet components, the 1Px,y 

and 3Px,y can now be distinguished. The use of the pairing strengths in 

MRSF-TDDFT lifts the degeneracy of these components of the 1P and 

3P multiplets, see the fourth column in Tab. 4. The magnitude of the 

splitting between the components of the same multiplet with the non-

zero pairings is considerably reduced as compared to SF-TDDFT; the 

3Px,y and 3Pz splitting is now 0.233 eV and the 1Px,y and 1Pz splitting is 

reduced to 0.223 eV. It can be expected that the residual splitting 

between the (x,y) and z components can be further reduced by 

considering more accurate expressions for the pairing strengths than 

simple Eq. (104) used here. 

 

To understand the origin of the residual splitting, calculations with 100% 

HF exchange instead of the XC functional (labeled MRSF-CIS in Tab. 
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4) were performed. The use of the self-interaction free HF exchange 

completely eliminates the erroneous splitting between the 3Px,y and 3Pz 

components and reduces the 1Px,y–
1Pz splitting to only 0.09 eV. This 

indicates that the bulk of the splitting between the multiplet 

components may be caused by the effect of the self-interaction error 

of the density functional. The remaining tiny splitting between the 

components of the 1P multiplet are probably caused by the 

incompleteness of the mixed reference. 

 

Not only for Be atom but also for other examples, MRSF-TDDFT 

properly splits an unphysical state of SF-TDDFT (half-singlet and 

half-triplet mixed state) into correct singlet and triplet states. A 

posteriori spin-pairing coupling is expected to improve the split states. 
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State SF-TDDFT MRSF-TDDFT(0) MRSF-TDDFT MRSF-CIS 
1 S -14.651 (0.00)  -14.651 (0.00) -14.651 (0.00) -14.584 (0.00) 
3 Pz 2.877 (1.98)  2.899 (2.00) 2.900 (2.00) 2.107 (2.00) 

3 Px,y 3.688 (1.00)  3.688 (2.00) 2.667 (2.00) 2.107 (2.00) 

1 Pz 4.935 (0.02)  4.913 (0.00) 4.913 (0.00) 6.042 (0.00) 

1 Px,y   3.688 (0.00) 4.690 (0.00) 5.952 (0.00) 

Table 4. Ground state total energies (Hartree) and excitation energies (eV) for 

Be atom. MRSF-TDDFT(0) denote MRSF-TDDFT without spin-pairing 

coupling, and MRSF-CIS denote using 100% HF exchange within the MRSF-

TDDFT formalism. The BHHLYP functional and 6-31G basis set are utilized 

for these calculations. The expectation value of S 2 is given in parentheses. 
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1.2 Singlet valence excited state of molecule 
 
 

Benchmark calculations for the singlet valence excited states with 

organic molecules of Thiel set[53] were performed. Vertical 

excitation energies to Franck-Condon excited states are calculated by 

MRSF- and SF-TDDFT with cc-pVTZ basis set.[54] Mean absolute 

errors (MAE) in unit of eV for the benchmark calculations by MRSF-, 

SF-, and LR-TDDFT are tabulated in Tab. 5 compared against the 

TBE-2 reference.[55] In MRSF-TDDFT, sets of MAE with different 

the pairing-strength coefficient cSP are tabulated. 

 

As the cSP coefficient increases from 0.3 to 0.9 the MAE values 

somewhat rise. This is related to the fact that the vertical excitation 

energies also rise, although weakly, as cSP changes. Note, the SF-

TDDFT MAE values can be considered as those obtained from MRSF-

TDDFT at cSP=0, due to the fact that MRSF-TDDFT is similar to SF-

TDDFT when the pairing-strength is neglected (cSP=0). Thus, one can 

say that there is a minimum for the dependence of MAE on cSP. In other 

word, there is a minimum value of MAE at a particular value(s) of the 

cSP coefficient. For the B3LYP, PBE0, and BHHLYP this minimum is at 

the following values of cSP: 0.4-0.5, 0.3-0.5, and 0.0-0.3, 

correspondingly. This means that overall MRSF-TDDFT outperforms 
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SF-TDDFT. 

 

LR-TDDFT gives better MAE than MRSF- and SF-TDDFT for every 

xc functional in this calculations. This can be understandable. Since 

the vertical excitation energy is calculated at the optimized structure 

in the S0 ground state, the reference state of LR-TDDFT (i.e., closed-

shell singlet state) describes the geometry better than that of MRSF- 

and SF-TDDFT (i.e., open-shell triplet state). Better reference could 

give better linear response of density, which lead to give better 

vertical excitation energy. 

 

Although the vertical excitation energy is important, the main focus of 

SF- and MRSF-TDDFT is on describing conical intersections and 

single-bond breaking/twisted systems. Therefore, we can conclude 

that the slightly large 0.5 ~ 0.6 MAE at the Franck-Condon region can 

be allowed for many other advantages around conical intersections and 

avoided crossing points. 
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Table 5. Mean absolute errors MAE (in eV) for the vertical excitation energies 

computed at MRSF-, SF-, and LR-TDDFT level of theory compared against 

the TBE-2 reference. Four different xc functionals and the cc-pVTZ basis 

set are utilized for this benchmark calculations. In MRSF-TDDFT, sets of 

MAE with different the pairing-strength coefficient cSP are given. 

 B3LYP PBE0 BHHLYP M08-SO 

  

cSP MRSF-TDDFT 

0.3 0.58 0.51 0.53 0.50 

0.4 0.58 0.50 0.54 0.51 

0.5 0.58 0.50 0.55 0.52 

0.6 0.58 0.51 0.57 0.54 

0.7 0.59 0.51 0.60 0.57 

0.8 0.60 0.53 0.63 0.59 

0.9 0.61 0.54 0.65 0.62 

  

 SF-TDDFT 

 0.65 0.57 0.53 0.51 

     

 LR-TDDFT 

 0.30 0.28 0.53 0.34 
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2. Singlet-triplet energy gap 

 

 

Singlet-triplet energy gap is an important chemical property to study 

intersystem crossing or singlet fission. We have performed MRSF- 

and LR-TDDFT calculations for the singlet-triplet (ST) gaps in a 

series of molecules. For the majority of the molecules, adiabatic ST 

gaps were calculated, except c-C4H4, C3H6, br-C7H14, ln-C7H14, C2H4, 

butadiene, and hexatriene for which vertical ST gaps were calculated. 

6-31G(d) basis set is utilized for all calculations with several other 

functionals; D18X, B3LYP, PBE0, BHHLYP and M08-HX. Here, a 

functional D18X functional stands for a new hybrid functional 

consisting 0.15 Becke + 0.75 Hartree-Fock exchange and Lee-Yang-

Parr correlation, which yield the best performance for MRSF-TDDFT. 

 

Figure 6a and 6b show absolute errors of the ST gaps with respect to 

experimental results for MRSF- and LR-TDDFT, respectively. For 

small molecules from NH to PH2
+, the best agreement with the 

experimental ST gaps is obtained with the use of the D18X functional. 

The use of lower fraction of the HF exchange resulted in greater 

errors. For molecules of medium size, it were the M08-HX and 

BHHLYP functionals that showed the best agreement with the 

experimental ST gaps. 
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On the other hand, with LR-TDDFT, the best agreement with the 

experiment is delivered by M08-HX. For the medium-sized molecules 

all functionals give the deviations from the experiment strongly 

exceeding 0.36 eV with large values for absolute errors. 
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Figure 6. Comparison of the absolute errors (AE) of singlet-triplet energy gaps 

for the organic molecules. 6-31G(d) basis set is utilized for all calculations. 
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3. Geometry-optimization structure 

 

 

In this subsection, it is investigated that how spin-

contamination and spin-pairing coupling affects the optimized 

geometries of ground and excited states. All geometries were obtained 

by using the analytic gradients of MRSF-, MRSF(0)-, and SF-TDDFT. 

The BHHLYP[56-58] collinear XC kernel combined with the 6-31G (d) 

basis set[59] were adopted for TDDFT calculations. In order to 

measure accuracy of these geometries, geometry optimizations with 

the equation-of-motion coupled-cluster singles and doubles (EOM-

CCSD)[60, 61] were also performed as a benchmarks level of theory 

with the same basis set. Geometries of 8 organic molecules are 

optimized for different states, which leads 20 different geometries (8 

for S0 state, 8 for S1 state, and 4 for S2 state). All the structures were 

optimized with the default threshold of 10-4 a.u./bohr and the default 

integration grid for DFT (nrad = 96, nleb = 302) and TDDFT (nrad = 

48, nleb = 110). All minimum points are confirmed by numerical 

calculations of the Hessian. 

 

After aligning all geometries obtained by different methods by 

using vmd, geometric RMSDs of SF-, MRSF(0)- and MRSF-TDDFT 

with respect to the reference geometry of EOM-CCSD are calculated. 
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2

EOM-CCSD
1

1RMSD .
N

M
mN =

= −∑ R R  (141) 

Here, N is the number of atoms for a molecule and MR  is the 

geometry vector of an optimized molecule by the M method (where M 

=SF-, MRSF(0)-, or MRSF-TDDFT). The double vertical bar denotes 

the Euclidean norm. Each RMSD is represented as a point in Fig. 7 

along the 2〈 〉S  value of SF-TDDFT.  

 

The spin contamination resulting from missing configurations 

for the S0 states is rare. Thus, RMSDs of the S0 state are accumulated 

around 0.0 ~ 0.1 of the 2〈 〉S  values. At the same time, their geometric 

RMSDs against EOM-CCSD turned out to be small. The predicted 

results with 2〈 〉S  values of 0.1   0.7 are coming from the type I 

(O→O). Even for excited states composed of the spin-complete type I 

(O→O) configurations of SF-TDDFT shown in Fig. 1, considerable spin 

contamination appears due to the asymmetric nature of SF-TDDFT. 

Both MRSF(0)- and MRSF-TDDFT well improve the geometric RMSDs 

compared to those of SF-TDDFT. However, in the cases of 

cyclopentadiene (S1), propanamide (S1), formamide (S1), and acetamide 

(S1), MRSF-TDDFT is slightly inferior to MRSF(0)-TDDFT. While, the 

MRSF-TDDFT in particular significantly improves RMSDs with 

2 > 0.8〈 〉S  which are from the type II (C→O) and type III (O→V). 
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Overall, the average RMSD of MRSF-TDDFT as represented 

by horizontal black line is smaller than that of MRSF(0)-TDDFT in blue 

line. The improved prediction accuracy of MRSF-TDDFT can justify 

the introduction of a posteriori coupling. 
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Figure 7. Geometric RMSDs of SF-, MRSF(0)- and MRSF-TDDFT with respect 

to the reference geometry of EOM-CCSD. Each point denotes the RMSD for 

an optimized structure for 8 organic molecules. There are 20 points (8 for S0, 

8 for S1, and 4 for S2 optimized structures) The x-axis represents the 

expectation value of S2 operator for SF-TDDFT. The red, blue and black 

horizontal lines represent the average values of SF-, MRSF(0)- and MRSF-

TDDFT, respectively. 
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4. Adiabatic excitation energy 

 

 

In this subsection, adiabatic excitation energies (AEEs) were 

calculated with the optimized structures obtained in previous 

subsection. Then, the AEEs by SF-, MRSF(0)-, MRSF-TDDFT are 

compared to those by EOM-CCSD and the magnitude of differences 

are presented in Fig. 8 in unit of eV with the same x-axis as Fig. 7.  

 

In the case of AEEs, the MRSF-TDDFT performs extremely 

well to the degree that many of predicted AEEs are nearly identical to 

those of EOM-CCSD, which is also seen from the average AEE 

differences as presented by the black horizontal line. The improved 

prediction accuracy of MRSF-TDDFT can justify the introduction of a 

posteriori coupling. 
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Figure 8. Magnitudes of AEE differences of SF-, MRSF(0)- and MRSF-TDDFT 

with respect to the reference AEE of EOM-CCSD in eV. Each point denotes 
the AEE difference for the same set of Fig. 7. Thus, there are 12 points (8 
for AEE(S1-S0) and 4 for AEE(S2-S0)) The x-axis and horizontal lines 
represent same as Fig. 7. 
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5. Conical intersection 

 

 

5.1 Minimum energy conical intersection of PSB3 
 

 

The penta-2,4-dieniminium cation (PSB3) is an important model 

system for vision used to test the ability of methods to correctly 

describe topology of the conical intersections between the S0 and S1 

states.[28, 29, 62-64] While LR-TDDFT fails to produce the conical 

intersections correctly,[27-29, 65] SF-TDDFT does this correctly. 

[28, 46, 65] However, 2〈 〉S  of S0 and S1 at the MECI geometry of SF-

TDDFT are 0.31 and 0.36, respectively.[42] 

 

The MECI geometries of MRSF- and MRSF(0)-TDDFT also can be 

obtained and the spin contamination is eliminated. Geometric RMSDs 

of MRSF- and MRSF(0)-, SF-TDDFT with respect to MRCISD are 

0.077, 0.165 and 0.240 in unit of Å, respectively. The MECI geometries 

are aligned and presented in Fig. 9.  

 

As clearly seen in the RMSDs as well as in Fig. 9, the geometric 

improvement between SF- and MRSF(0)-TDDFT is seen, which is 

purely from spin contamination. The geometry is further improved in 

MRSF-TDDFT with a posteriori coupling. 
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Figure 9. Aligned MECI geometry for the PSB3 molecule optimized by MRSF-, 

MRSF(0)-, SF-TDDFT, and MR-CISD. The geometric RMSDs of MRSF- and 

MRSF(0)-, SF-TDDFT with respect to MRCISD are 0.077, 0.165 and 0.240 in 

Å, respectively. 
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5.2  Topology of conical intersection for PSB3 
 

 

In describing non-adiabatic process, the importance of the topology of 

the conical intersection has been emphasized from the early stage of 

study.[66-68] The conical intersection topology of PSB3 molecule has 

been studied by Gozem et al.[28] and Huix-Rotllant et al..[29] They 

reported that multi-reference methods (CASSCF and MRCISD) yield 

double cone topology (i.e., conical intersection), while a linear S1/S0 

crossing is obtained by the LR-TDDFT (i.e., linear intersection). In 

addition, SF-TDDFT provided a correct topology even though there is 

a spin-contamination. 

 

This topology was able to be measured by calculating difference of 

energies between S1 and S0 states in a circular loop around the conical 

intersection for each method. The double cone topology should 

provide non-zero energy difference anywhere in the loop, while the 

linear topology yield two zero points in the loop. 

 

We performed the loop calculation with the MRSF-TDDFT shown in 

Fig. 10. MRSF-TDDFT predict the non-zero energy difference round 

the loop; hence, the correct double cone topology is reproduced by 

the method. 



 

 ９０ 

 

Figure 10. Energy difference between S1 and S0 states calculated a loop around 

the conical intersection of PSB3 molecule with MRSF-TDDFT. 
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6. Non-adiabatic coupling term 

 

 

6.1 Numerical non-adiabatic coupling term 
 

 

The Tully’s fewest-switches trajectory-surface-hopping (TSH) 

method is one of the most popular semi-classical methods to study 

excited state dynamics with radiationless vibronic transition. In TSH 

method,[69] nuclear wave packets are described by ensembles of 

independent classical trajectories. Each trajectory is propagated on a 

single adiabatic PES, and it is allowed to hop to other adiabatic PESs 

at every time step according to hopping probabilities. The hopping 

probabilities between different electronic states depend on the 

nonadiabatic coupling term (NACT). The NACT can be obtained 

numerically by the finite difference approximation in terms of overlap 

integrals (OIs) between wave functions at different time steps as 

 ( 2) ( 2)I Jt t
t
∂

Ψ − ∆ Ψ − ∆
∂

 

 ( )1 ( ) ( ) ( ) ( ) .
2 I J I Jt t t t′ ′≅ Ψ − ∆ Ψ − Ψ Ψ − ∆
∆

 (142) 

Here, the notation prime is introduced to emphasize that the state is 

in a different time-step t as opposed to t -∆. In this subsection, the 

time variable will be omitted with the notation prime. 
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The OIs between wave functions at different time steps are 

represented as a function of products OIs between MOs at different 

time steps. 

 ( )1 2 1 21 2M MI J i i i i i M if ε φ φ φ φ φ φ′ ′ ′ ′Ψ Ψ =    (143) 

where 1 2 Mi i iε   is the Levi-Civita symbol which is the sign of a 

permutation of the natural number. 

 

 

6.2 Fast overlap evaluations with truncation 
 

 

If one multiplies an unit parameter λ, i.e., λ=1, to each OI between MOs, 

mm iφ φ ′ , only when the index is different mm i≠ , the OIs between the 

wave function can be represented as ascending order of the parameter 

λ as 

 
0

.
M

m
I J m

m
A λ

=

′Ψ Ψ = ∑  (144) 

 

Although the MOs at consecutive time steps are formally 

nonorthogonal, they become nearly orthogonal as time-step size ∆  

becomes zero. Thus, OIs between MOs, i.e., mm iφ φ ′  become nearly 

the Kronecker delta function , mm iδ . When using a time step smaller 
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than change of the wave function, especially in the non-adiabatic 

molecular dynamics simulation, one can truncate the series depending 

on an order of the parameter λ.[70] 

 

The computing times for calculating an OI between wave functions are 

obtained with different the truncation order from 0 to 2 and without 

the truncation. Here, wave functions of SF-TDDFT are utilized and 

size of basis set M is varying. The ratio of the computing times with 

respect to the time with the zeroth order is shown in Fig. 11. 

 

The truncation up to the second and the zeroth order gives four and 

five orders improvements of system size compared to the calculation 

without truncation, which is enormous time reduction for the OI 

calculation. 
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Figure 11. Ratios of computation times for evaluating OIs varying the truncation 

order with respect to the time with the lowest truncation order. Both x- and 
y-axis are represented in log scale. From the slopes one can obtain the 
computational order of system size. 
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6.3 Accuracy of truncation 
 

 

In order to investigate accuracies of the truncated OI in actual 

calculations, the NACTs near three different conical interactions were 

studied. They are twisted-pyramidalized, H-migrated ethylene, and 

twisted-pyramidalized stilbene. The BHHLYP[56-58] functional in 

combination with 6-31G(d) basis set[59] was utilized. NACTs between 

S1 and S0 states for the three different conical intersections and for 

three different time-step sizes are tabulated in the third column of Tab. 

6. NACTs errors with the truncation of OIs are tabulated in the fourth, 

the fifth, the sixth columns. Those are calculated with truncated OIs 

up to the 0th, 1st, 2nd order of the λ. All NACT values even with non-

truncated OIs are subjected to the finite difference approximation, 

therefore any differences below 10-7 are meaningless. In the table, 

when the error magnitudes become smaller than 10-7, we simply 

specify them as < 10-7.  

 

It can be expected that the NACT errors with truncated OIs up to the 

0th, 1st, 2nd order of λ are nearly on the zeroth, the first, and the 

second order of the time-step size, respectively. This expectation is 

supported by results for which the error magnitudes with OIs up to the 

2nd order is always under 10-7, and those up to the 1st order yield 
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similar dependencies in the finite difference approximation. On the 

other hand, those up to the 0th order are one or two orders larger than 

others, and slightly larger than those of the finite difference 

approximation. Nevertheless, these are still highly accurate compared 

to the absolute NACT values. In general, it can be concluded that the 

truncated OIs up to the 1st and 2nd order do not introduce additional 

errors to the NACT. On the other hand, although the truncated OIs with 

only 0th order adds error higher by one order of magnitude, it is still 

capable of producing accurate values compared to the absolute NACT. 
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Molecule Δ (fs) 
NACT (a.u.) NACT with truncation - NACT (a.u.) 

w/o truncation 0th 1st 2nd 

Twisted 

ethylene 

0.1 0.2361078 2.8 × 10-6 < 10-7 < 10-7 

0.2 0.1199419 2.5 × 10-6 < 10-7 < 10-7 

0.5 0.0480514 4.5 × 10-6 -6.0 × 10-7 < 10-7 

H-

migrated 

Ethylene 

0.1 0.0885232 4.8 × 10-6 < 10-7 < 10-7 

0.2 0.1156795 3.0 × 10-6 < 10-7 < 10-7 

0.5 0.0472909 5.4 × 10-6 < 10-7 < 10-7 

Twisted 

stilbene 

0.1 0.0105009 4.7 × 10-6 -1.2 × 10-7 < 10-7 

0.2 0.0092561 5.2 × 10-6 -1.1 × 10-7 < 10-7 

0.5 0.0085117 9.9 × 10-6 -2.1 × 10-7 < 10-7 

Table 6. Errors of nonadiabatic coupling term (NACT) with the truncated 

overlap integrals. NACTs (a.u.) between S1 and S0 states for three different 
conical intersections and for three different time-step sizes (Δ) are in the 
third column. NACTs error (a.u.) with the truncation of OIs are in the fourth, 
the fifth, the sixth columns. Those are calculated with truncated OIs up to the 
0th, 1st, 2nd order of the λ. In all calculations, the NACTs were calculated 
between the given geometries and propagated geometries by velocity-Verlet 
algorithm with its gradient of the first excited state. “< 10-7” denotes that the 
magnitude of difference is lower than 1.0 × 10-7. 
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7. Non-adiabatic molecular dynamic 

 

 

7.1 Photoisomerization and photocyclization of cis-stilbene 
 

 

The photoisomerization mechanism has been examined considerable 

experimental and theoretical studies. As a prototypical model system, 

1,2-diphenylethylene (stilbene) has been intensively studied. From 

early experimental research, the quantum yield for the photoreaction 

of the excitation on the S1 state of cis-stilbene have been reported to 

be 10% for DHP, 35% for trans-stilbene and 55 % for cis-stilbene. 

Figure 12[71] illustrate a schematic diagram for the excited (S1) cis-

stilbene dynamics based on previous mechanism studies. The three 

branching points are well known represented by A, B and C, 

respectively in Fig. 12. The S1 cis-stilbene branch into two channels 

at the A point, which are referred as cis-trans (photoisomerization) 

and cis-DHP (photocyclization) channels. As much as 70% of S1 cis-

stilbene head to cis-trans channel.[72, 73] At the B branching point, 

half of them yield S0 trans-stilbene, and the other half convert to S0 

cis-stilbene.[74-77] Meanwhile, the remaining 30% of S1 cis-stilbene 

head to the cis-DHP channel, and one-third yield S0 DHP while the 

other two-thirds become S0 cis-stilbene at the C point.[78] 
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Figure 12. Schematic diagram of cis-stilbene photodynamics. Three branching 

points A, B, and C are presented on the schematic potential energy diagram. 
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7.2 Branching ratio and Quantum yield 
 

 

Nonadiabatic molecular dynamics simulations for the ππ* excited cis-

stilbene have been performed for 2 ps using SF- or MRSF(0)-TDDFT 

[50] with the TSH method.[69] Two sets of 50 trajectories are 

simulated for the methods with initial geometries randomly chosen 

from a 30 ps ground-state simulation of cis-stilbene. Full vibrational 

degrees of freedom have been explored with 0.5 fs time step divided 

into sub-time steps of 5.0 × 10-5 fs. The BHHLYP hybrid 

functional[56-58] with 6-31G(d) basis set[59] has been utilized for 

all calculations. The nonadiabatic coupling terms (NACT) are 

numerically calculated with finite difference method and with truncated 

overlap integrals[70] as described in previous subsection 5 of Non-

adiabatic coupling term. 

 

First, we could obtain branching ratios at three branching points A, B 

and C and quantum yield for both sets of calculations, and these are 

tabulated in Tabs. 7 and 8. Error bars for all values denote the 90% 

confidence interval obtained by the bootstrapping. 

 

Branching ratios of the MRSF-TDDFT at branching points B and C are 

well agree with those of experimental results except for slight 
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discrepancy at a branching point A as 70/30 for experiment and 

60(±9)/40(±9) for MRSF-TDDFT. On the other hand, the branching ratios at 

A and C for SF-TDDFT are well agree, while the branching ratios at B have 

quite large discrepancy as 50/50 for experiment and 74(±10)/26(±10) for SF-

TDDFT. 

 

For the final quantum yields of cis-, trans-stilbene and DHP in Tab. 8, 

all values with MRSF-TDDFT are well agree with those of 

experiments as 56(±9)/32(±8)/12(±6) for MRSF-TDDFT and 55/35/10 

for experiments. On the other hand, SF-TDDFT underestimates 

quantum yield of cis-stilbene and overestimates that of trans-stilbene 

as 36(±9)/50(±9) for SF-TDDFT and 55/35 for experiments. In NAMD 

with LR-TDDFT,[79] it cannot yield DHP product at all, and that of 

cis-stilbene is overestimated as 66(±3) for LR-TDDFT and 55 for an 

experiment. 
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 A B C 

 cis-trans cis-DHP trans cis DHP Cis 

MRSF-TDDFT  60(±9)  40(±9)  53(±12)  47(±12)  25(±12)  75(±12) 

SF-TDDFT  68(±9)  32(±9)  74(±10)  26(±10)  44(±16)  56(±16) 

Experiment  70  30  50  50  33  67 

Table 7. Branching ratio (%) at three branching points during non-adiabatic 

molecular dynamics of cis-stilbene. Values in parentheses denote the 90% 

confidence interval obtained by the bootstrapping 
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 cis trans DHP 

MRSF-TDDFT  56 (± 9)  32 (± 8)  12 (± 6) 

SF-TDDFT  36 (± 9)  50 (± 9)  14 (± 6) 

LR-TDDFT  66 (± 3)  34 (± 3)  0 

Experiment  55  35  10 

Table 8. Quantum yields (%) of ππ* excited cis-stilbene. Values in parentheses 

denote the 90% confidence interval obtained by the bootstrapping 
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7.3 Dynamics in the branching point 
 

 

Further understanding about the branching ratio is investigated with 

two dimensional histogram shown in Fig. 13. The x-axis is a bond 

length (R) between two carbons in which a new single bond is formed 

in DHP product, and the y-axis is a dihedral angle (DC=C) between two 

bonds which connect the centered double bond and two phenyl rings. 

The histograms for all 50 trajectories in the excited states are 

presented in a and b for MRSF- and SF-TDDFT, respectively. The 

histograms for 30 and 34 trajectories headed to the cis-trans channel 

in the ground state is presented in c and d for MRSF- and SF-TDDFT 

with points where hopping from S1 to S0 occur. Likewise, the ground 

state histograms for 20 and 16 trajectories headed to cis-DHP channel 

are shown in e and f for MRSF- and SF-TDDFT, respectively with the 

hopping points. 

 

A clear discrepancy between S1 state histograms for MRSF- and SF-

TDDFT is seen. The A branching point is highly populated, while both 

A and B points are highly populated in SF-TDDFT. It represent 

trajectories hopping from S1 to S0 quite fast not to reside around B 

points for MRSF-TDDFT. Since a difference between MRSF(0)- and 

SF-TDDFT is the absence or presence of spin contamination, it is 
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expected that the difference come from spin contamination problem of 

SF-TDDFT. Figure 14 shows averaged <S2> value of SF-TDDFT in 

the excited state. Overall region for A and B points has 0.2 ~ 0.4 of 

<S2> value, which is not negligible spin contamination. 

 

Around branching point B (cis-trans), surface hoppings appear in 

broad region of the histogram. It is seen that trajectories hopping with 

relatively small R and DC=C become cis-stilbene, while these become 

trans-stilbene in the other case. In MRSF-TDDFT, more trajectories 

are hopping with relatively small R and DC=C compared to those of SF-

TDDFT. It lead to good agreement of branching ratio of MRSF-TDDFT, 

while overestimate trans-stilbene branching ratio of SF-TDDFT as 

74(±10) for SF-TDDFT and 50 for experiment. 

 

Branching ratios at branching point C (cis-DHP) for both MRSF- and 

SF-TDDFT are agree with experiment results shown in Tab. 7. 

However, a difference between distributions of hopping points for two 

methods are seen. Surface hoppings appear in narrow region of the 

histogram for MRSF-TDDFT, while these are relatively scattered for 

SF-TDDFT. In SF-TDDFT, there are a few hoppings with R less than 

1.7 angstrom, which lead to DHP product. In Fig. 14, there is severe 

spin contamination where <S2> > 0.4. Although the branching ratio of 
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SF-TDDFT is agree with experiment result, these are seemed to be 

problematic hoppings. 
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Figure 13. Two-dimensional histogram of cis-stilbene NAMD dynamics 

simulation. The histograms for 50 trajectories in excited states are presented 

in a and b, The geometric RMSDs of MRSF- and MRSF(0)-, SF-TDDFT with 

respect to MRCISD are 0.077, 0.165 and 0.240 in Å, respectively. 
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Figure 14. Averaged <S2> value of SF-TDDFT for 50 trajectories in excited 

states.   
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CONCLUSION 
 

 

A new method in the context of collinear spin-flip linear response 

TDDFT is proposed, which employs an equiensemble of the = 1SM +  

and = 1SM −  components of the triplet state as a (mixed) reference 

state. The TD-KS equation with the mixed state can be solved within 

linear response formalism by the use of spinor-like open-shell orbitals. 

It is a novel attempt to add configurations within the realm of TDDFT.  

 

The resulting MRSF-TDDFT has several advantages over the 

conventional collinear SF-TDDFT. MRSF-TDDFT gives more 

accurate results than SF-TDDFT by eliminating the spin contamination 

of the response states of SF-TDDFT. The accuracy of MRSF-TDDFT 

has been tested and verified in various calculations. The spin 

contaminated P state of Be atom for SF-TDDFT properly splits into 

singlet (1P) and triplet states (3P). A posteriori coupling is shown to be 

improve degeneracy of the P states. In the vertical excitation energy 

calculations to Franck-Condon states for organic molecules, results of 

MRSF-TDDFT give slightly better than those of SF-TDDFT compared 

to reference results of the theoretical best estimate (TBE-2). For the 

structures and adiabatic excitation energies obtained from geometry 

optimization of organic molecules, MRSF(0)-TDDFT results are closer 
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than SF-TDDFT results compared to the EOM-CCSD results. It is 

shown that MRSF-TDDFT results (with a posteriori coupling) further 

improve the results. Comparing MRCISD calculation, MRSF(0)-TDDFT 

is also superior than SF-TDDFT in calculations for the minimum 

energy conical intersection of PSB3 molecule, which is the important 

model system in vision. Likewise, a posteriori coupling improves the 

result. Apart from the accuracy of MRSF-TDDFT, we propose a 

truncation method to calculate non-adiabatic coupling which 

drastically reduce computation time while maintaining greatly high 

accuracy. Using this non-adiabatic coupling term, non-adiabatic 

molecular dynamics of cis-stilbene molecules were able to be 

performed by SF- and MRSF(0)-TDDFT. Both methods are superior 

than LR-TDDFT since the methods produced a DHP product which 

LR-TDDFT could not produce. The SF-TDDFT yield a non-negligible 

amount of spin-contamination throughout the dynamics simulations 

and the MRSF(0)-TDDFT could completely eliminate the spin 

contamination. Branching ratio and quantum yield of MRSF(0)-TDDFT 

is more closer to the experimental value than those of SF-TDDFT. 

Not only for the accuracy but clear separation of singlet and triplet 

response states considerably simplify the means by which excited 

states are identified, especially in ``black-box''-type applications, 

such as automatic geometry optimization, reaction path following, and 
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molecular dynamics simulations. 

 

From these reasons it is highly expected that MRSF-TDDFT yield 

improved results than SF-TDDFT by eliminating spin contamination 

problem in general cases. Therefore, we can conclude that MRSF-

TDDFT has advantages over SF-TDDFT in terms of both practicality 

and accuracy. 
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ABSTRACT IN KOREAN (국문초록) 
 

혼합참조 스핀젖힘 시간의존 밀도범함수 이론(MRSF-TDDFT)이 제안 

됐다. 이 새로운 양자화학 계산 방법은 잘 알려진 시간의존 Kohn-Sham 

방정식의 선형응답 이론에 혼합참조라는 새로운 개념을 도입해 유도된다. 

혼합참조는 삼중항의 두 구성요소(MS=+1, -1)를 결합한 참조상태로, 혼

합참조로부터 나오는 선형응답은 기존 SF-TDDFT 방법이 만들지 못해 

문제가 됐던 전자구성을 TDDFT 이론 내에서 생성한다. MRSF-TDDFT

의 핵 좌표에 대한 응답상태의 에너지 기울기 수식이 유도됐고, 프로그

램화 됐다. 새로운 방법의 에너지 그리고 에너지 기울기에 대한 계산 요

구량은 기존 SF-TDDFT 의 요구량과 거의 동일하다. 새롭게 제안 된 

MRSF-TDDFT 방법은 기존 SF-TDDFT에 비해 실용성과 정확성 측면

에서 장점이 있다. 응답상태들을 단일항 또는 삼중항 상태로 완전히 분

리해냄으로써, 기존 SF-TDDFT의 응답상태들의 스핀오염문제를 제거한

다. 따라서, 특정 응답상태에 대한 자동 구조 최적화, 반응 경로 추적 또

는 분자 동력학 시뮬레이션과 같은 "블랙 박스(black-box)" 유형의 응용

에서 필수적인 응답 상태의 식별을 상당히 단순화한다. 또한, MRSF-

TDDFT의 정확성은 수직 여기 에너지, 단열 여기 에너지, 구조최적화 

된 구조, 최소 에너지 원뿔 교차점, 비단열 상호작용 항 및 비단열 분자 

동력학 시뮬레이션과 같은 다양한 방법으로 시험되고 검증되었다. 따라

서, MRSF-TDDFT 방법은 광화학 반응 연구에 유망한 양자화학 계산방

법으로 기대된다. 
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