22 research outputs found

    An improved shifted Laplace preconditioner for solving the Helmholtz equation

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๊ณ„์‚ฐ๊ณผํ•™์ „๊ณต, 2021. 2. ์‹ ์ฐฝ์ˆ˜.ํ—ฌ๋ฆ„ํ™€์ธ  ๋ฐฉ์ •์‹์€ ์ฃผํŒŒ์ˆ˜ ์„ฑ๋ถ„์˜ ํŒŒ๋™์žฅ์„ ์ง€๋ฐฐํ•˜๋Š” ํŽธ๋ฏธ๋ถ„ ๋ฐฉ์ •์‹(PDE)์ด๋‹ค. ์ด๋Š” ํƒ€์›ํ˜• PDE์ด๊ธฐ ๋•Œ๋ฌธ์—, ์†Œ์Šค ์ •๋ณด๋ฅผ ํฌํ•จํ•œ ์ฃผ์–ด์ง„ ์šฐ๋ณ€์— ๋Œ€ํ•ด ์„ ํ˜• ์‹œ์Šคํ…œ, ์ฆ‰ ์ž„ํ”ผ๋˜์Šค ๋งคํŠธ๋ฆญ์Šค๋ฅผ ๊ณ„์‚ฐํ•จ์œผ๋กœ์จ ํ•ด์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ํ—ฌ๋ฆ„ํ™€์ธ  ๋ฐฉ์ •์‹์˜ ์ƒํ˜ธ์ƒ๊ด€์„ฑ(reciorocity) ๋•Œ๋ฌธ์—, ์ด์‚ฐํ™”๋œ ์ž„ํ”ผ๋˜์Šค ํ–‰๋ ฌ์€ ๋ณต์†Œ ๋Œ€์นญ ํ–‰๋ ฌ๋กœ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ํ‘œํ˜„๋  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด๋ฅผ ํ†ตํ•ด Cholesky ๋ถ„ํ•ด๋ฅผ ์ ์šฉํ•˜์—ฌ ๋ฉ”๋ชจ๋ฆฌ ์š”๊ตฌ๋Ÿ‰๊ณผ ์‚ฐ์ˆ  ์—ฐ์‚ฐ์˜ ์ˆ˜๋ฅผ ์ ˆ๋ฐ˜์œผ๋กœ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ PML ๊ฒฝ๊ณ„์กฐ๊ฑด์„ ์‚ฌ์šฉํ•˜๋ฉด์„œ ํ–‰๋ ฌ์˜ ๋Œ€์นญ ํŠน์„ฑ์„ ๋ณด์กดํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ๋„๋ฆฌ ์‚ฌ์šฉ๋˜์ง€ ์•Š์•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” PML ๊ฒฝ๊ณ„์กฐ๊ฑด ์ธต์„ ํฌํ•จํ•œ ์ „์ฒด ๊ณต๊ฐ„ ๋…ธ๋“œ์— ๋Œ€ํ•œ ๋Œ€์นญ ํ–‰๋ ฌ๋กœ์„œ ํ—ฌ๋ฆ„ํ™€์ธ  ๋ฐฉ์ •์‹์„ ์ด์‚ฐํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ ํŒŒ์žฅ๋‹น ๊ฒฉ์ž ์ˆ˜๊ฐ€ 4๋ณด๋‹ค ํฐ ๋ฒ”์œ„ ๋‚ด ์—์„œ 0.5% ๋ฏธ๋งŒ์˜ ๋ถ„์‚ฐ ์˜ค์ฐจ๋ฅผ ๋งŒ์กฑํ•˜๋Š” ์ตœ์ ํ™”๋œ ์ด์‚ฐํ™” ๊ณ„์ˆ˜๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์„ ํ˜• ์‹œ์Šคํ…œ์€ ์ง์ ‘๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ 2์ฐจ์› ํ˜น์€ ์ž‘์€ 3์ฐจ์› ๋ฌธ์ œ๋ฅผ ํ’€ ์ˆ˜ ์žˆ์ง€๋งŒ, ๋ณต์žก๋„๋ฅผ ๊ณ ๋ คํ•˜๋ฉด ์ผ๋ฐ˜์ ์ธ 3์ฐจ์› ๋ฌธ์ œ๋ฅผ ํ’€๊ธฐ์—๋Š” ์‹œ๊ฐ„์ด ์†Œ์š”๋Ÿ‰, ํ–‰๋ ฌ์˜ ๋ถ„ํ•ด์‹œ ์ €์žฅ๊ณต๊ฐ„ ์š”๊ตฌ๋Ÿ‰ ๊ทธ๋ฆฌ๊ณ  ์ž„ํ”ผ๋˜์Šค ํ–‰๋ ฌ์„ ๊ณ„์‚ฐํ•˜๋Š”๋ฐ ๊ทนํžˆ ๋†’์€ ๋น„์šฉ์ด ํ•„์š”ํ•˜๊ฒŒ ๋œ๋‹ค. ์ด ๊ฒฝ์šฐ, ๋ฐ˜๋ณต๋ฒ•, ํŠนํžˆ, conjugate gradient(CG), GMRES ๋“ฑ๊ณผ ๊ฐ™์€ ํฌ๋ฆด๋กœ๋ธŒ ๋ถ€๋ถ„๊ณต๊ฐ„๋ฒ•์ด ํšจ๊ณผ์ ์œผ๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š”, ์—ฌ๋Ÿฌ ํฌ๋ฆด๋กœ ๋ธŒ ๋ถ€๋ถ„๊ณต๊ฐ„๋ฒ•๋“ค์„ ๋Œ€์นญ ํ–‰๋ ฌ์— ์ ์šฉํ•ด ์‹คํ—˜์ ์œผ๋กœ ์–ด๋–ค ๋ฐฉ๋ฒ•์ด ์ž„ํ”ผ๋˜์Šค ํ–‰๋ ฌ์„ ๊ณ„์‚ฐํ•˜๋Š”๋ฐ ์ ํ•ฉํ•œ์ง€ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด, ๋‹ค์–‘ํ•œ kh ์กฐ๊ฑด์— ๋Œ€ํ•ด conjugate residual(CR)์ด ๊ฐ€์žฅ ๋น ๋ฅด๊ฒŒ ํ•ด์„ ์ œ๊ณตํ•˜๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ•˜์˜€๋‹ค. ์ˆ˜๋ ด ์†๋„์˜๋ฅผ ๊ฐœ์„  ํ•˜๊ธฐ ์œ„ํ•ด, preconditioner ํ–‰๋ ฌ์˜ ๋ณต์†Œ ์‹œํ”„ํŠธ(ฯต)๋ฅผ ์กฐ์ ˆํ•˜์—ฌ ์ตœ์ ์˜ ๊ณ ์œ ๊ฐ’ ๊ตฐ์ง‘ํ™”๋ฅผ ๋ณด์—ฌ์ฃผ๋Š” Shifted Laplace preconditioner๊ฐ€ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์ด๋Ÿฌํ•œ preconditioner๋ฅผ ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด ๋ถˆ์™„์ „ ๋ถ„ํ•ด๊ฐ€ ์ฃผ๋กœ ์‚ฌ์šฉ๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š”, ๋ถ„ํ•ด๋œ ํ–‰๋ ฌ์˜ p๊ฐœ์˜ ๊ฐ€์žฅ ํฐ ๊ฐ’๋งŒ ๋‚จ๊ธฐ๋Š” ICT(p), ๋ถˆ์™„์ „ Cholesky ๋ถ„ํ•ด๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์„ ์ œ์•ˆํ•œ๋‹ค. ์ฃผ์–ด์ง„ kh ์กฐ๊ฑด์— ๋Œ€ํ•ด ์ตœ์ ์˜ ฯต๊ณผ p๋ฅผ ์ œ์•ˆํ•˜๊ณ , ์ด๋ฅผ ์ธ๊ณตํ•ฉ์„ฑ ์†๋„๋ชจ๋ธ์„ ์‚ฌ์šฉํ•œ ์ˆ˜์น˜ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ์ง์ ‘๋ฒ•๊ณผ ๋น„๊ตํ•˜์—ฌ ํŒŒ๋™์žฅ์˜ ํ•ด๋ฅผ ๊ตฌํ•˜๋Š”๋ฐ ์ ์€ ์‹œ๊ฐ„๊ณผ ๋ฌด์‹œํ•  ์ˆ˜ ์žˆ๋Š” ์˜ค์ฐจ๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ํŠนํžˆ, 169X169X50 ํฌ๊ธฐ์˜ 3์ฐจ ๋ฌธ์ œ์˜ ๊ฒฝ์šฐ, ๊ณ ๋„๋กœ ์ตœ์ ํ™”๋œ ํ”„๋ก ํƒˆ ์†”๋ฒ„์ธ UMFPACK์˜ ์—ฐ์‚ฐ ์‹œ ๊ฐ„์˜ ์•ฝ 5%์ธ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค.The Helmholtz equation is a partial differential equation (PDE) that governs the wavefield of a frequency component. Since it is an elliptic type PDE, it is expressed in the form that the solution can be obtained by solving a linear system, which is composed of the impedance matrix and a given right hand side including source information. Due to the reciprocity property of the Helmholtz equation, the discretized impedance matrix can be naturally expressed as a complex symmetric matrix that can reduce a memory requirement and the number of arithmetic operations by half by applying the Cholesky factorization. However, it is not widely disseminated how to reserve such symmetric property of the matrix using the PML boundary condition. Therefore, firstly, we propose a method that discretizes the Helmholtz equation as a symmetric matrix for the entire spatial nodes including the PML layer. We also suggest the optimized discrete coefficient to generate impedance matrix which satisfies the dispersion error of less than 0.5\% within the range that the number of grids per wavelength is greater than 4. The system can be solved by using the direct matrix solver for 2D or small 3D problems, however, time taken and memory requirement to factorize and solve the impedance matrix is extremely high to solve general 3D problems considering the complexities. In this case, iterative methods, in particular, the Krylov subspace methods, such as conjugate gradient method, general minimal residual method, etc., can be effectively applied. In this study, many Krylov iterative solvers that can be applied to the symmetric matrix are implemented to experimentally investigate which method is advantageous for solving the impedance matrix. As a result, it was observed that for various kh conditions, the conjugate residual method solves the matrix in the fastest time consistently. To shorten the convergence speed, we applied the shifted Laplacian preconditioner that can optimally modify the eigenvalue clustering by adjusting the complex shift(ฯต) of the preconditioner matrix. To apply this preconditioner, incomplete factorization method is generally used. In this study, we suggest incomplete Cholesky decomposition, especially ICT(p) method, that leaves only p largest values of the factorized matrix. Optimal pairs of ฯต and p for given kh condition are also suggested, which is validated by numerical examples using the synthetic velocity models. It is shown that only few minutes are taken to solve the problem to yield the wavefield that has negligibly small error compared to that obtained by the direct method, the error is negligibly small. Especially, in the case of a 3D problem with a size of 169X169X50, it is shown that it is about 5\% of the computation time of UMFPACK, a highly optimized directive multifrontal solver.Abstract i Chapter 1 Introduction 1 1.1 Background and Importance . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Helmholtz equation . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Krylov subspace methods . . . . . . . . . . . . . . . . . . 3 1.1.3 Preconditioners . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . 14 Chapter 2 The Helmholtz equation 15 2.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Chapter 3 Krylov subspace method and preconditioner 30 3.1 Krylov subspace methods . . . . . . . . . . . . . . . . . . . . . . 32 3.1.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2 Preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2.1 Shifted Laplace preconditioner . . . . . . . . . . . . . . . 48 3.2.2 Incomplete factorization . . . . . . . . . . . . . . . . . . . 61 3.2.3 Fill-in comparison between ICT(p) and IC(k) . . . . . . . 67 3.2.4 Spectrum of preconditioned system . . . . . . . . . . . . . 69 3.3 Comparison between IC(k) and ICT(p) with Shifted Laplace preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Chapter 4 Numerical Examples 83 4.1 Parameter selection of preconditioner . . . . . . . . . . . . . . . . 83 4.1.1 Numerical domain size dependeny . . . . . . . . . . . . . 83 4.1.2 kh dependency . . . . . . . . . . . . . . . . . . . . . . . . 94 4.1.3 Computational time . . . . . . . . . . . . . . . . . . . . . 98 4.2 Heterogeneous model . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2.1 2D : Marmousi . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2.2 2D : Pluto . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.2.3 3D : SEG/EAGE 3D . . . . . . . . . . . . . . . . . . . . . 118 Chapter 5 Conclusion 124 Bibliography 127 ์ดˆ๋ก 138Docto
    corecore