18 research outputs found

    (A) Study on the Longitudinal Relationship Between Depressive Symptoms and Alcohol Use

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์‚ฌํšŒ๋ณต์ง€ํ•™๊ณผ,2010.2.Docto

    Studies on the Synthesis and Electrical Properties of Stable Organic Radical Crystals

    No full text
    Doctor์ตœ๊ทผ ์œ ๊ธฐ ๊ฒฐ์ •์€ ์œ ๊ธฐ ์ „๊ณ„ ํŠธ๋žœ์ง€์Šคํ„ฐ, ์œ ๊ธฐ๋ฐœ๊ด‘๋‹ค์ด์˜ค๋“œ, ๊ด‘์ „์ง€, ์„ผ์„œ ๋“ฑ ์—ฌ๋Ÿฌ ๋ถ„์•ผ์— ์ „์ž ์žฌ๋ฃŒ๋กœ์จ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋“ค์€ ๋ฌด๊ธฐ ๋ฐ˜๋„์ฒด์—์„œ ๋ณผ ์ˆ˜ ์—†์—ˆ๋˜ ์œ ์—ฐ์„ฑ, ๊ฒฝ๋Ÿ‰์„ฑ, ํˆฌ๋ช…์„ฑ, ๊ฒฝ์ œ์„ฑ, ๋‹ค์–‘์„ฑ ๋“ฑ ์—ฌ๋Ÿฌ ์žฅ์ ์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์ด์ œ๊ป ์ „๋ก€ ์—†๋˜ ํˆฌ๋ช…ํ•˜๋ฉด์„œ ํœ˜์–ด์ง€๋Š” ์—ฌ๋Ÿฌ ์ „์ž ์žฌ๋ฃŒ๋กœ ํ™œ์šฉ๋œ๋‹ค. ํ•˜์ง€๋งŒ ์œ ๊ธฐ ๊ฒฐ์ •์ด ๋ฌด๊ธฐ๋ฌผ ๋ฐ˜๋„์ฒด๋ฅผ ๋Œ€์ฒดํ•˜๊ธฐ์—๋Š” ์œ ๊ธฐ๋ฌผ ๊ทผ๋ณธ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์—ฌ๋Ÿฌ ํ•œ๊ณ„์ ์ด ์žˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ, ์œ ๊ธฐ๋ฌผ ์ „์ž ์žฌ๋ฃŒ๋Š” ์ „ํ•˜ ์šด๋ฐ˜์ฒด๋กœ์จ ฯ€ ์ „์ž๊ฐ€ ์‚ฌ์šฉ๋˜๋ฉฐ, ์ด๋“ค์˜ ์ด๋™์ด ์ „๋ฅ˜๋ฅผ ์ƒ์„ฑํ•˜๊ฒŒ ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ์›ํ™œํ•œ ์ „ํ•˜ ์šด๋ฐ˜์ฒด ์ „๋‹ฌ์„ ์œ„ํ•ด์„œ p-์˜ค๋น„ํƒˆ์˜ ๋ฐ€์ง‘๋œ ์ค‘์ฒฉ์ด ํ•„์š”ํ•˜๋‹ค. ํ•˜์ง€๋งŒ ์œ ๊ธฐ ๋ถ„์ž๊ฐ€ ๊ฒฐ์ •ํ™”๋  ๋•Œ ๋ถ„์ž ๊ฐ„ van der Waals์˜ ์•ฝํ•œ ๊ฒฐํ•ฉ์œผ๋กœ ์ด๋ฃจ์–ด์ง€๊ธฐ ๋•Œ๋ฌธ์— ์ž‘์€ ๋Œ€ํญ์—ญ์„ ๊ฐ€์ ธ ๋ฌด๊ธฐ ๊ฒฐ์ •๋ณด๋‹ค ์ „ํ•˜ ์ˆ˜์†ก์„ ํ•˜๊ธฐ ์–ด๋ ต๋‹ค. ๋˜ํ•œ, ๋Œ€๋ถ€๋ถ„์˜ ์œ ๊ธฐ ๊ฒฐ์ •์˜ ๋ฐด๋“œ๊ฐญ์ด ๋ฌด๊ธฐ ๊ฒฐ์ •์˜ ๋ฐด๋“œ๊ฐญ๋ณด๋‹ค ํฌ๊ธฐ ๋•Œ๋ฌธ์— ๊ฐ€์ „์ž๋Œ€์—์„œ ์ „๋„๋Œ€๋กœ ์ „์ž๊ฐ€ ์—ฌ๊ธฐ ๋˜๊ธฐ ์œ„ํ•ด์„œ ๋†’์€ ์—๋„ˆ์ง€๊ฐ€ ์š”๊ตฌ๋œ๋‹ค. ํ˜„์žฌ๊นŒ์ง€ ์œ ๊ธฐ ์ „์ž ์žฌ๋ฃŒ์˜ ์„ฑ๋Šฅ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ์ „ํ•˜ ์šด๋ฐ˜์ฒด๋ฅผ ๋„ํ•‘ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๋‚˜ p-์˜ค๋น„ํƒˆ ์ค‘์ฒฉ์ด ์ž˜๋˜๋Š” ๊ณต์•ก๊ณ„ ๋ถ„์ž๋ฅผ ํ•ฉ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์ œ์‹œ๋˜์–ด์™”๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ๋ณต์žกํ•˜๋ฉฐ ์˜ˆ์ƒํ•  ์ˆ˜ ์—†๊ณ  ๊ฑฐ์นœ ํ™˜๊ฒฝ์—์„œ ์ผ์–ด๋‚˜๋Š” ์ ์—์„œ ๋‹จ์ ์„ ๊ฐ€์ง„๋‹ค. ๋”ฐ๋ผ์„œ ๊ณ ์„ฑ๋Šฅ ์œ ๊ธฐ ์ „์ž ์žฌ๋ฃŒ๋ฅผ ์œ„ํ•ด ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ๋ฒ•์ด ํ•„์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณ ์ „๋„์„ฑ ๋ฌผ์งˆ ๊ฐœ๋ฐœ์„ ์œ„ํ•ด ์œ ๊ธฐ ๋ผ๋””์นผ ๋ถ„์ž ๊ฒฐ์ •์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” โ€˜๋ผ๋””์นผ์ด ์ „ํ•˜ ์šด๋ฐ˜์ฒด๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋‹คโ€™๋Š” ๊ฐ€์ •์—์„œ ์‹œ์ž‘๋œ๋‹ค. ๋ผ๋””์นผ์€ ์ผ๋ฐ˜์ ์œผ๋กœ ๋ฐ˜์‘์„ฑ์ด ๋†’์€ ์ค‘๊ฐ„์ฒด๋กœ์„œ ์•Œ๋ ค์ ธ ์žˆ์ง€๋งŒ, ๊ทธ๋“ค์˜ ๋ณธ์งˆ์€ ์ „๋ฅ˜๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋Š” ์ „์ž์ด๋‹ค. ์‹ค์ œ๋กœ ํŽœํƒ€์‹ ๊ณผ ๊ฐ™์€ ๊ธฐ์กด์˜ ์œ ๊ธฐ ๋ฐ˜๋„์ฒด ๋ฌผ์งˆ์—์„œ ์ „์ž์˜ ํ๋ฆ„์ด ์ „์ž ์ƒ์ž์„ฑ ๊ณต๋ช… (EPR; electron paramagnetic resonance)์— ์˜ํ•ด ๊ฒ€์ถœ๋˜์—ˆ์œผ๋ฉฐ, ์ด๋Š” ๋ผ๋””์นผ์ด ์ „ํ•˜ ์šด๋ฐ˜์ฒด๋กœ์„œ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค. ๋˜ํ•œ, ์œ ๊ธฐ ๋ผ๋””์นผ ๊ฒฐ์ •์ด ์ค‘์„ฑ(neutral)์œผ๋กœ ์ด๋ฃจ์–ด์ง„ ๊ฒฐ์ •๋ณด๋‹ค ์ž‘์€ ๋ฐด๋“œ๊ฐญ์„ ๊ฐ€์ง€๋ฏ€๋กœ, ๊ณ ์„ฑ๋Šฅ ์œ ๊ธฐ ๋ฐ˜๋„์ฒด๋ฅผ ๋งŒ๋“œ๋Š”๋ฐ ํฌ๊ฒŒ ์ด๋ฐ”์ง€ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์œ ๊ธฐ ๋ฌผ์งˆ์˜ ์žฅ์  ์ค‘ ํ•˜๋‚˜์ธ ๋†’์€ ์œ ์—ฐ์„ฑ์„ ๊ฐ€์ง€๋ฉฐ ๋†’์€ ์ „๊ธฐ์ „๋„์„ฑ์„ ๊ฐ–๋Š” ์•ˆ์ •ํ•œ ์œ ๊ธฐ ๋ผ๋””์นผ ๊ฒฐ์ •์˜ ํ•ฉ์„ฑ์— ๋Œ€ํ•ด ๋…ผ์˜ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๋†’์€ ์ „๊ธฐ ์ „๋„์„ฑ์„ ๋ฐฉํ•ดํ•˜๋Š” ์š”์†Œ์„ ์ œ์‹œํ•˜๊ณ  ๊ทธ๋“ค์˜ ํ•ด๊ฒฐ๋ฐฉ์•ˆ์— ๊ด€ํ•ด ๊ธฐ์ˆ ํ•˜์˜€๋‹ค. 1๋ถ€์—๋Š” ๊ธฐ๋ณธ ์ง€์‹์— ๋Œ€ํ•œ ๋‘ ๋ถ€๋ถ„์ด ์žˆ๋‹ค. 1.1 ์ ˆ์€ ์œ ๊ธฐ ๊ฒฐ์ • ๋ฐ˜๋„์ฒด ๋ฐ ์ „๊ธฐ์  ํŠน์„ฑ์— ๊ด€ํ•œ ์—ฐ๊ตฌ ๊ธฐ๋ณธ ๋ฐฐ๊ฒฝ์„ ์ œ๊ณตํ•˜์˜€๋‹ค. ์œ ๊ธฐ ๋ผ๋””์นผ ๋ฐ˜๋„์ฒด๋Š” ์œ ๊ธฐ ๋ฐ˜๋„์ฒด์˜ ๋ฒ”์ฃผ์— ์†ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์œ ๊ธฐ ๋ฐ˜๋„์ฒด์˜ ๊ธฐ๋ณธ ์›๋ฆฌ๋ฅผ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์ด ์ด ๋…ผ๋ฌธ์—์„œ ์ค‘์ ์ ์œผ๋กœ ๋‹ค๋ฃฐ ์œ ๊ธฐ ๋ผ๋””์นผ ๋ฐ˜๋„์ฒด๋ฅผ ์ดํ•ดํ•˜๋Š” ๋ฐ ๋„์›€๋œ๋‹ค. ๋ฌด๊ธฐ๋ฌผ ๋ฐ˜๋„์ฒด๋ณด๋‹ค ๊ฐ€์ง€๋Š” ์žฅ๋‹จ์  ๋น„๊ต์™€ ๋”๋ถˆ์–ด ์œ ๊ธฐ๋ฌผ ๋ฐ˜๋„์ฒด์—์„œ ์ „ํ•˜ ์ˆ˜์†ก ๋ฉ”์ปค๋‹ˆ์ฆ˜, ๊ฒฐ์ • ๊ตฌ์กฐ์™€ ์ „๊ธฐ์  ํŠน์„ฑ์„ ๋…ผ์˜ํ•˜์˜€๋‹ค. 1.2 ์ ˆ์€ ์œ ๊ธฐ ๋ผ๋””์นผ ๊ฒฐ์ •์˜ ์ „์ž์žฌ๋ฃŒ๋กœ์จ ํ™œ์šฉ์— ๊ด€ํ•˜์—ฌ ์„œ์ˆ ํ•˜์˜€๋‹ค. ์œ ๊ธฐ ๋ผ๋””์นผ ๊ฒฐ์ •์ด ์ „์ž์žฌ๋ฃŒ๋กœ ๊ด€์‹ฌ์„ ๋ฐ›๊ฒŒ ๋œ ๊ฐ„๋‹จํ•œ ์—ญ์‚ฌ์™€ ํ™œ์šฉ์„ ์œ„ํ•ด ํ•„์š”ํ•œ ์•ˆ์ •ํ•œ ์œ ๊ธฐ ๋ผ๋””์นผ ๊ฒฐ์ •์˜ ํ•ฉ์„ฑ ์กฐ๊ฑด๊ณผ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•˜์—ฌ ์„ค๋ช…ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ด๋“ค์ด ๊ฐ€์ง€๋Š” ๊ณ ์„ฑ๋Šฅ ์ „์ž ์žฌ๋ฃŒ๋ฅผ ์œ„ํ•˜์—ฌ ํ•ด๊ฒฐํ•ด์•ผ ํ•˜๋Š” ๋ฌธ์ œ์ ๊ณผ ํ•ด๊ฒฐ์ฑ…์— ๋Œ€ํ•ด ์งš์–ด๋ณด์•˜๋‹ค. 2๋ถ€์—๋Š” ๊ธฐ์กด ์œ ๊ธฐ ๊ฒฐ์ • ๋ฐ˜๋„์ฒด๊ฐ€ ๊ฐ€์ง€๋Š” ํ•œ๊ณ„์ ์ธ ๋‚ฎ์€ ์ „๊ธฐ์ „๋„๋„๋ฅผ ๊ทน๋ณตํ•จ๊ณผ ๋™์‹œ์— ์œ ์—ฐ์„ฑ์„ ๋ณด์ด๋Š” 9,10-bis(phenlyethynyl)anthracene ๋ผ๋””์นผ ๊ฒฐ์ • ํ•ฉ์„ฑ์— ๊ด€ํ•ด ๊ธฐ์ˆ ํ•˜์˜€๋‹ค. ์œ„ ๊ฒฐ์ •์„ ์–ป๊ธฐ ์œ„ํ•ด ์ „ํ•ด ๊ฒฐ์ •ํ™” ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ์–ป์–ด์ง„ ๊ฒฐ์ •์€ ์„ ํ˜•๊ณผ ๊ตฝ์€ ํ˜•ํƒœ ๊ฒฐ์ • ๋ชจ๋‘์—์„œ ๋†’์€ ์ „๊ธฐ์ „๋„๋„๋ฅผ ๋ณด์˜€๋‹ค. ํ™”ํ•™์  ๋ถ„์„๊ณผ ๊ตฌ์กฐ์  ๋ถ„์„์„ ํ†ตํ•ด ๊ฒฐ์ •์— ์ „ํ•˜ ๊ท ํ˜•์„ ๋งž์ถ”๊ธฐ ์œ„ํ•ด ๋“ค์–ด์žˆ๋Š” ํŒ”๋ฉด์ฒด ์Œ์ด์˜จ์˜ โ€˜๋ณผ ๋ฒ ์–ด๋งโ€™ ์—ญํ• ๋กœ ์ธํ•ด ๊ฒฐ์ •์ด ์œ ์—ฐ์„ฑ์„ ๊ฐ€์ง์„ ๋ฐํ˜€๋‚ด์—ˆ๋‹ค. ๋˜ํ•œ, ๋ถ„์ž ๊ฐ„ ๊ฐ•ํ•œ ฯ€-ฯ€ ์ƒํ˜ธ์ž‘์šฉ์ด ๋†’์€ ์ „๊ธฐ์ „๋„๋„์˜ ์›์ธ์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. 3๋ถ€์—์„œ๋Š” ์œ ๊ธฐ ๋ผ๋””์นผ ๊ฒฐ์ •์˜ ์ „๊ธฐ์  ํŠน์„ฑ๊ณผ ๊ฒฐ์ • ๊ตฌ์กฐ์˜ ์ƒ๊ด€๊ด€๊ณ„์— ๊ด€ํ•ด ์„ค๋ช…ํ•˜์˜€๋‹ค. ์šฐ๋ฆฌ๋Š” ์•ˆ์ •ํ•œ dihydrophenazinium radical cation ๊ฒฐ์ •์„ ์–ป๊ธฐ ์œ„ํ•ด ์‰ฝ๊ณ  ๋น ๋ฅธ ๊ด‘ ํ™˜์›๋ฐ˜์‘์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋” ๋‚˜์•„๊ฐ€, ๊ฐ™์€ dihydrophenazinium radical cation์„ ๊ฐ€์ง€์ง€๋งŒ ๋‹ค๋ฅธ ๊ฒฐ์ • ๊ตฌ์กฐ๋ฅผ ๊ฐ€์ง€๋Š” ๊ฒฐ์ •์„ ์–ป๊ธฐ ์œ„ํ•ด ํ›„์ฒ˜๋ฆฌ ๊ณผ์ •์ธ ํ‘œ๋ฉด ์žฌ๊ฒฐ์ • ๋ฐฉ๋ฒ•์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ „๊ธฐ์  ํŠน์„ฑ์„ ๋ถ„์„ํ•ด ๋ณธ ๊ฒฐ๊ณผ ๋‹ค๋ฅธ ๊ตฌ์กฐ์˜ ๋ผ๋””์นผ ๊ฒฐ์ •์€ ์„œ๋กœ ๋‹ค๋ฅธ ์ „๊ธฐ์ „๋„๋„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, ๋‹จ๊ฒฐ์ • X-ray ํšŒ์ ˆ ๋ถ„์„์„ ํ†ตํ•ด ๋ถ„์ž๊ฐ€ ๋ฐฐ์—ด๋œ ๊ธฐ๋‘ฅ ๊ฐ„ ๊ฑฐ๋ฆฌ๊ฐ€ ์ „๊ธฐ์  ํŠน์„ฑ์— ์˜ํ–ฅ์„ ๋ผ์นจ์„ ๋ฐํ˜”๋‹ค. 4๋ถ€์—์„œ๋Š” ๋ผ๋””์นผ ์ˆ˜์™€ ์ „๊ธฐ์  ํŠน์„ฑ์— ๊ด€ํ•ด ๊ธฐ์ˆ ํ•˜์˜€๋‹ค. ์œ ๊ธฐ ๋ผ๋””์นผ ๊ฒฐ์ •์ด ๊ณ ์ „๋„์„ฑ ์ „์ž ์žฌ๋ฃŒ๋กœ์„œ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ์ง€๋งŒ ์ข‹์ง€ ์•Š์€ ์ „๊ธฐ์  ํŠน์„ฑ์„ ๊ฐ€์ง„ ๊ฒฐ์ •์€ ๋”๋Š” ์ „์ž ์žฌ๋ฃŒ๋กœ์จ ํ™œ์šฉํ•  ์ˆ˜ ์—†๋‹ค. ์•„์ด๋Ÿฌ๋‹ˆํ•˜๊ฒŒ๋„ ์ „๊ธฐ์ „๋„๋„๊ฐ€ ๋‚ฎ์€ ์œ ๊ธฐ ๋ผ๋””์นผ ๊ฒฐ์ •์ด ๋งŽ์ด ์กด์žฌํ•˜๋Š”๋ฐ ๊ทธ ์ด์œ ๋Š” ๋Œ€๋ถ€๋ถ„ ๋ผ๋””์นผ ๋ถ„์ž๊ฐ€ ์‰ฝ๊ฒŒ ์ดํ•ฉ์ฒด๋˜๋ฉด์„œ ๋ผ๋””์นผ์„ ์žƒ๊ฒŒ ๋˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด ์žฅ์—์„œ๋Š” ์ „๊ธฐ์ „๋„๋„๋ฅผ ๋†’์ด๊ธฐ ์œ„ํ•ด ์™ธ๋ถ€์—์„œ doping ๋˜๋Š” ๋ฐฉ๋ฒ•์ด ์•„๋‹Œ ์ž๊ฐ€์ ์œผ๋กœ ์šด๋ฐ˜์ฒด์˜ ์ˆ˜ (๋ผ๋””์นผ ์ˆ˜)๋ฅผ ๋Š˜๋ฆฌ๋Š” ์˜จํ™”ํ•œ ๊ฐ€์—ด ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๋…ผ์˜ํ–ˆ๋‹ค. ๋‹จ๊ฒฐ์ • ๋ถ„์„์„ ํ†ตํ•ด ์˜จํ™”ํ•œ ๊ฐ€์—ด๋กœ ๊ตฌ์กฐ์˜ ์œ„์ƒ ์ „์ด๊ฐ€ ์ผ์–ด๋‚˜๋ฉฐ, ์ด๋กœ ์ธํ•˜์—ฌ ๋ผ๋””์นผ ์ˆ˜๊ฐ€ ๋Š˜์–ด๋‚จ์„ ๋ฐํ˜”๋‹ค. ์ด ๋•Œ, ์ƒ์˜จ์—์„œ ์ดํ•ฉ์ฒด์™€ ๋น„์Šทํ•œ ๊ฒฐ์ • ๊ตฌ์กฐ ๋•Œ๋ฌธ์— ์–ฝ๋งค์–ด ์žˆ๋˜ ๋ผ๋””์นผ๋“ค์ด ์˜จํ™”ํ•œ ๊ฐ€์—ด๋กœ ๋‹จ๋Ÿ‰์ฒด ๊ตฌ์กฐ์—์„œ ๋…๋ฆฝ๋œ ๋ผ๋””์นผ๋กœ ๋˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ „๊ธฐ์  ํŠน์„ฑ์„ ์ธก์ •ํ•œ ๊ฒฐ๊ณผ ์ „๊ธฐ์ „๋„๋„๋Š” ๋ผ๋””์นผ ์ˆ˜์™€ ๋น„๋ก€๊ด€๊ณ„์ž„์„ ๋ณด์˜€๋‹ค.Organic crystals are widely used for electronic components in organic field effect transistors (OFETs), organic light emitting diodes (OLEDs), photovoltaics and sensors. These crystals are flexible, lightweight, transparent, inexpensive and diverse; all of these traits are advantages over inorganic semiconductors. Therefore, use of organic crystal electronic materials may provide an alternative to inorganic electronic materials in transparent and flexible applications. Despite these benefits, the properties of organic materials pose several challenges. In general, current flow in organic electronic materials is a result of movement of ฯ€ electrons as carriers; therefore, smooth carrier transport requires dense overlap of ฯ€-orbitals. However, when the organic molecules crystallize, they have small bandwidths due to the weak van der Waals interaction, so the carrier transport is more difficult than in inorganic material. In addition, bandgaps are commonly larger in organic crystals than in inorganic crystals, so organic crystals require a large energy to excite electrons from the valence band to the conduction band. Efforts to improve the electrical characteristics of organic electronic materials have used charge-carrier doping method or various synthesis methods of highly conjugated molecules. However, these methods are quite complicated and require harsh condition. Therefore, to achieve organic electronic materials that have good electrical parameters, a new approach is necessary. This thesis evaluates the use of organic radical molecular crystals as highly-conductive materials. This work begins with the assumption that radicals can be used as charge carriers. A radical is generally a highly-reactive intermediate, but its essence that it bears an electron that is capable of travelling and thereby generating an electrical current. Indeed, electron transport in conventional organic semiconductor materials is detected by electron paramagnetic resonance (EPR); this observation suggests that radicals can be used as charge carriers. In addition, organic radical crystals generally have a lower band gap than neutral, so they can greatly contribute to increase the electrical conductivity of organic semiconductors. In this dissertation, I will discuss the synthesis of stable organic radical crystals that have both high electrical conductivity (ฯƒ) and high flexibility. I will also present factors that hinder high electrical conductivity and discuss how to solve them. Part 1 presents basic information in two parts. Section 1.1 provides the fundamental background of research into organic crystal semiconductors and their electrical properties. Organic radical semiconductors belong to the category of organic semiconductors, so understanding of the basic principles of organic semiconductors helps to clarify the basis of organic radical semiconductors. After comparison of the advantages and disadvantages of organic semiconductors over inorganic semiconductors, the mechanisms of charge carriers are transported in organic semiconductors are discussed. In addition, the relationship between crystal structure and electrical properties the organic crystal semiconductors are presented. Section 1.2 shows organic radical crystals that can be used as electronic materials that surpass the electrical characteristics of conventional organic semiconductors. Starting with a brief history, methods to isolate stable radical crystals for use as electronic materials are explained. The conditions and methods to ensure stable radical crystals are introduced, then remaining problems to be solved to achieve electronic components are discussed. Part 2 provides the synthesis of 9,10-bis(phenylethynyl)anthracene radical crystals that overcome the low ฯƒ of organic semiconductors, and are also flexible. To obtain flexible and highly-conductive stable organic radical crystals, the electrocrystallization method was used. Results of chemical analysis of crystals are presented, and the importance of using the appropriate solvent ratio and electrolyte conditions are explained. An octahedral anion that can provide a good โ€˜ball bearing effectโ€™ was introduced to provide flexibility in crystals, and single crystal analysis demonstrated that various hydrogen bonds between molecule and anion were the origin of flexibility. As a result, linear and bent crystals both showed high ฯƒ. Part 3 presents an experiment on the relationship between electrical properties and crystal structure in organic radical crystals. We developed an easy and fast one-pot method to synthesize stable dihydrophenazinium radical cation crystals. In addition, secondary crystals that include the same dihydrophenazinium radical cation species but have different crystal structures were obtained using a surface-mediated recrystallization method as post-treatment of the obtained crystals. Analysis of electrical properties demonstrated that radical crystals of different structures showed different electrical conductivities. Single crystal X-ray analysis showed that the difference of intercolumnar distances affected ฯƒ. Part 4 presents a study of radical population and electrical properties. Organic radical crystals have been evaluated as high-ฯƒ electronic materials, but they cannot be used as electronic materials unless their electrical properties are good. Ironically, many organic radical crystals have low ฯƒ because most of the radical molecules easily dimerize, so the radicals become paired and thus quenched. This part presents a mild heating method that increases the number of carriers (radical population) by itself, rather than by using external doping to increase ฯƒ. The radical population increased by phase transition of crystal upon mild heating. Single crystal X-ray analysis revealed that the radicals were slightly bound in the original dimer-like structure at room temperature, but separated to become independent in monomeric structure upon heating. Finally, in-situ measurements of electrical properties and EPR showed that the ฯƒ was proportional to the radical population

    Single Molecule Studies by Low Temperature Scanning Tunneling Microscopes

    No full text
    2
    corecore