6 research outputs found

    Flame Characteristics and Burning Rate of Typical Solid Fuel Under Reduced Gravity

    Get PDF
    利用实验时间为2.2 s,低重力水平为l0-2 90简易实验系统,对易升华典型固体燃料试样从常重力到低重力环境过渡的瞬态燃烧过程进行了实验研究,考察了火焰形态、火焰亮度和温度以及燃料试样燃烧速率受重力水平影响的变化趋势,结果表明,随着重力水平的变化,火焰从常重力环境中的湍流扩散火焰,过渡为低重力环境中的层流火焰,火焰高度、亮度和温度以及燃烧速率都随重力水平的下降而降低.由于进入低重力状态后,常重力燃烧诱导的空气流动并没有完全消失,观察到了逆风侧火焰温度、火焰平均亮度,以及燃烧速率因气流作用而回升的现象,这种现象会使低重力环境中的火灾复杂性和危害性增强

    低重力下典型固体燃料的火焰特征及燃烧速率

    No full text
    利用实验时间为2.2,s,低重力水平为10-2,g0简易实验系统,对易升华典型固体燃料试样从常重力到低重力环境过渡的瞬态燃烧过程进行了实验研究,考察了火焰形态、火焰亮度和温度以及燃料试样燃烧速率受重力水平影响的变化趋势.结果表明,随着重力水平的变化,火焰从常重力环境中的湍流扩散火焰,过渡为低重力环境中的层流火焰,火焰高度、亮度和温度以及燃烧速率都随重力水平的下降而降低.由于进入低重力状态后,常重力燃烧诱导的空气流动并没有完全消失,观察到了逆风侧火焰温度、火焰平均亮度,以及燃烧速率因气流作用而回升的现象,这种现象会使低重力环境中的火灾复杂性和危害性增强

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore