6 research outputs found

    北疆二叠纪镁铁-超镁铁岩铜、镍矿床的构造背景、岩体类型、基本特征、相对剥蚀程度、含矿性评价标志及成矿潜力分析/The Tectonic Setting, Style, Basic Feature, Relative Erosion Deee, ore-Bearing Evaluation Sign, Potential Analysis of Mineralization of Cu-Ni-Bearing Permian Mafic-ultramafic Complexes, Northern Xinjiang[J]

    No full text
    北疆地区不同构造单元内分布大量的镁铁-超镁铁质岩体,含铜镍硫化物矿化的岩体集中于早二叠世.含铜镍岩体顶与底的识别是一世界性难题,而对深部矿与隐伏矿的勘查十分重要.根据这些镁铁-超镁铁岩体地表出露面积大小和岩相期次,可分为大岩体(大于5~40 km2)、小复式岩体(1~3 km2)和单式岩体(小于0.1 km2)三类.三类岩体在岩体形态、产状、岩相构成、超镁铁质岩相所占比例、赋矿岩相、矿体空间分布以及矿石中Cu/Ni值等方面都有所不同.根据岩体和矿化的基本特征,结合矿物粒度、蚀变强弱、有无同期玄武岩、辉绿岩等,可以综合判定岩体的相对剥蚀程度与埋深.相对剥蚀程度结合区域上元素化探异常和地球物理异常的细微差别,可作为评价镁铁-超镁铁岩体的铜、镍成矿潜力的有力工具.镁铁质岩墙、小岩体、小岩体群、产于大辉长岩体中的小的超镁铁岩露头,强烈蚀变的镁铁-超镁铁岩区,重磁异常区,物化探异常叠加区等均是今后北疆寻找小岩体大矿床的重点靶区

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text
    corecore