81 research outputs found
Controlling quantum interference in phase space with amplitude
We experimentally show a quantum interference in phase space by interrogating photon number probabilities (n = 2, 3, and 4) of a displaced squeezed state, which is generated by an optical parametric amplifier and whose displacement is controlled by amplitude of injected coherent light. It is found that the probabilities exhibit oscillations of interference effect depending upon the amplitude of the controlling light field. This phenomenon is attributed to quantum interference in phase space and indicates the capability of controlling quantum interference using amplitude. This remarkably contrasts with the oscillations of interference effects being usually controlled by relative phase in classical optics.journal articl
Proteomic analysis of rat serum revealed the effects of chronic sleep deprivation on metabolic, cardiovascular and nervous system
Sleep is an essential and fundamental physiological process that plays crucial roles in the balance of psychological and physical health. Sleep disorder may lead to adverse health outcomes. The effects of sleep deprivation were extensively studied, but its mechanism is still not fully understood. The present study aimed to identify the alterations of serum proteins associated with chronic sleep deprivation, and to seek for potential biomarkers of sleep disorder mediated diseases. A label-free quantitative proteomics technology was used to survey the global changes of serum proteins between normal rats and chronic sleep deprivation rats. A total of 309 proteins were detected in the serum samples and among them, 117 proteins showed more than 1.8-folds abundance alterations between the two groups. Functional enrichment and network analyses of the differential proteins revealed a close relationship between chronic sleep deprivation and several biological processes including energy metabolism, cardiovascular function and nervous function. And four proteins including pyruvate kinase M1, clusterin, kininogen1 and profilin-1were identified as potential biomarkers for chronic sleep deprivation. The four candidates were validated via parallel reaction monitoring (PRM) based targeted proteomics. In addition, protein expression alteration of the four proteins was confirmed in myocardium and brain of rat model. In summary, the comprehensive proteomic study revealed the biological impacts of chronic sleep deprivation and discovered several potential biomarkers. This study provides further insight into the pathological and molecular mechanisms underlying sleep disorders at protein level
Molecular Characterization and Expression of a Heat Shock Protein Gene (HSP90) from the Carmine Spider Mite, Tetranychus cinnabarinus (Boisduval)
In this study, the cDNA of Tetranychus cinnabarinus (Boisduval) (Acarina: Tetranychidae) HSP90 (designated TcHSP90) was cloned using a combination of the homology cloning and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of TcHSP90 is 2595 bp, including a 5′-untranslated region (UTR) of 177 bp, 3′-UTR of 249 bp, and an open reading frame (ORF) of 2169 bp. The ORF encodes a polypeptide of 722 amino acids with a predicted molecular weight of 83.45 kDa and a theoretical isoelectric point of 4.81. There is an mRNA polyadenylation signal of ATTAAA at the positions 2558–2564. In addition, the expression pattern of TcHSP90 mRNA relative to that of β-actin gene in the three stains of T. cinnabarinus (AbR, abamectin-resistant strain; HR, heat-resistant strain; SS, the susceptible strain) were examined by using fluorescent real time quantitative PCR after the impact of abamectin, high and low temperature, respectively. The results showed that under the normal condition, the mRNA level of TcHSP90 was 1.64 and 1.29-fold higher in the AbR and HR than in SS, respectively. After 8 h treatment with abamectin, the TcHSP90 mRNA levels of SS, AbR, and HR were 1.25, 1.87, and 2.05-fold higher than those of their untreated controls, respectively. The TcHSP90 mRNA levels of SS, AbR, and HR were also significantly increased after being induced at 40° C for 1 h, and they were 3.76, 3.42, and 3.79-fold higher than those of their untreated controls, respectively. The mRNA level of TcHSP90 was also significantly increased after being induced at 4° C for 1 h. These results suggest that TcHSP90 might be involved in the abamectin and extreme temperature resistance or tolerance
Recombinant Rabbit Leukemia Inhibitory Factor and Rabbit Embryonic Fibroblasts Support the Derivation and Maintenance of Rabbit Embryonic Stem Cells
Abstract The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2?3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98439/1/cell%2E2012%2E0001.pd
Determining the Balance Between Drug Efficacy and Safety by the Network and Biological System Profile of Its Therapeutic Target
One of the most challenging puzzles in drug discovery is the identification and characterization of candidate drug of well-balanced profile between efficacy and safety. So far, extensive efforts have been made to evaluate this balance by estimating the quantitative structure–therapeutic relationship and exploring target profile of adverse drug reaction. Particularly, the therapeutic index (TI) has emerged as a key indicator illustrating this delicate balance, and a clinically successful agent requires a sufficient TI suitable for it corresponding indication. However, the TI information are largely unknown for most drugs, and the mechanism underlying the drugs with narrow TI (NTI drugs) is still elusive. In this study, the collective effects of human protein–protein interaction (PPI) network and biological system profile on the drugs' efficacy–safety balance were systematically evaluated. First, a comprehensive literature review of the FDA approved drugs confirmed their NTI status. Second, a popular feature selection algorithm based on artificial intelligence (AI) was adopted to identify key factors differencing the target mechanism between NTI and non-NTI drugs. Finally, this work revealed that the targets of NTI drugs were highly centralized and connected in human PPI network, and the number of similarity proteins and affiliated signaling pathways of the corresponding targets was much higher than those of non-NTI drugs. These findings together with the newly discovered features or feature groups clarified the key factors indicating drug's narrow TI, and could thus provide a novel direction for determining the delicate drug efficacy-safety balance
A prospective controlled study: Minimally invasive stereotactic puncture therapy versus conventional craniotomy in the treatment of acute intracerebral hemorrhage
Polarization-based entanglement swapping at the telecommunication wavelength using spontaneous parametric down-conversion photon-pair sources
External Modulation Optical Coherent Domain Reflectometry with Long Measurement Range
Optical coherent domain reflectometry (OCDR) can achieve a high spatial resolution that is independent of the bandwidth of the receiver, but the measurement range is usually very limited. Here we propose an external modulation OCDR system, in which a pair of linear frequency-modulated pulses generated by one modulator are employed as the probe pulse and the reference, respectively. The spatial resolution is determined by the frequency modulation range of the pulse, and the measurement speed is boosted by orders because the proposed technology can simultaneously diagnose a section of fiber with each pair of pulses, while only a single point can be accessed at a time in typical OCDR. In the demonstrational experiment, a measurement range of up to 50 km is achieved with a spatial resolution of 1.4 m and a measuring time of less than 30 s
Quantum Interference Measurement for Realizing a Polarization-Based Quantum Relay at 1550 nm
- …
