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One of the most challenging puzzles in drug discovery is the identification and

characterization of candidate drug of well-balanced profile between efficacy and safety.

So far, extensive efforts have been made to evaluate this balance by estimating the

quantitative structure–therapeutic relationship and exploring target profile of adverse

drug reaction. Particularly, the therapeutic index (TI) has emerged as a key indicator

illustrating this delicate balance, and a clinically successful agent requires a sufficient TI

suitable for it corresponding indication. However, the TI information are largely unknown

for most drugs, and the mechanism underlying the drugs with narrow TI (NTI drugs)

is still elusive. In this study, the collective effects of human protein–protein interaction

(PPI) network and biological system profile on the drugs’ efficacy–safety balance were

systematically evaluated. First, a comprehensive literature review of the FDA approved

drugs confirmed their NTI status. Second, a popular feature selection algorithm based

on artificial intelligence (AI) was adopted to identify key factors differencing the target

mechanism between NTI and non-NTI drugs. Finally, this work revealed that the targets of

NTI drugs were highly centralized and connected in human PPI network, and the number

of similarity proteins and affiliated signaling pathways of the corresponding targets was

much higher than those of non-NTI drugs. These findings together with the newly

discovered features or feature groups clarified the key factors indicating drug’s narrow TI,

and could thus provide a novel direction for determining the delicate drug efficacy-safety

balance.

Keywords: drug efficacy-safety balance, therapeutic index, artificial intelligence, protein-protein interaction

network, biological system profile

INTRODUCTION

One of the most challenging puzzles in drug discovery is the identification and characterization
of candidate drugs of well-balanced profile between efficacy and safety (Muller and Milton, 2012;
Li et al., 2018; Xue et al., 2018b). In other words, apart from extensive effort made to optimize
drug affinity and selectivity (Wang et al., 2017a; Zheng et al., 2017), considerable investments
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should be devoted to detect adverse drug reactions (Huang
et al., 2018) and reveal drug likeness (Benet et al., 2016; Yang
et al., 2018). So far, the identification of drug toxicities in
preclinical or clinical developments has been accelerated by a
variety of technological advances (Badders et al., 2018) including
biomarker-guided safety assessment (Muller and Dieterle, 2009;
Rzepecki et al., 2018), OMICs techniques (Iloro et al., 2013;
Fu J. et al., 2018), breakthrough in computing capacity and
bioinformatics method (Zhu et al., 2011; Tao et al., 2015; Chen
et al., 2016), and so on. To measure the level of correlation
between drug maximum efficacy and confined safety in given
disorder, the therapeutic index (TI typically considered as the
ratio of the highest non-toxic drug exposure to the exposure
producing the desired efficacy) has emerged as a key indicator
illustrating that delicate balance (Zaykov et al., 2016). The TI
is essential for life-threatening diseases (such as cardiovascular
and oncological disease) with limited treatment options (Zhu
et al., 2008b; Kimmelman and Federico, 2017). Particularly, tiny
variation in the dosage of drugs with narrow TI (NTI drugs, TI
≤3) may result in therapeutic failure or serious adverse drug
reactions (Tao et al., 2014; Ewer and Ewer, 2015; Zheng et al.,
2016), and is only acceptable for the treatment of life-threatening
diseases (Yu et al., 2015). Therefore, successful therapeutic
agents require sufficient TI (NNTI drugs, TI >3) suitable for it
corresponding indication (Abernethy et al., 2011).

However, TI characterization is too complicated to be
achieved for many drugs (Yu et al., 2015), and TI is highly
susceptible to the subject variations of drug responses (Jiang
et al., 2015; Yang et al., 2017). To enhance the determination
and interpretation of TI, a variety of in-silico studies have
been performed to reveal the mechanism underlying NTI drugs
(Muller and Milton, 2012). In particular, the prediction models
based on quantitative structure–activity (QSAR), structure–
toxicity (QSTR), and structure–index (QSIR) relationship have
been constructed to enable early assessment of TI (Zhu H. et al.,
2008; Rodgers et al., 2010; Zhu et al., 2012a; Chen et al., 2016;
Fu T. et al., 2018). These models are primarily constructed and
exert their prediction capacity based on structures of the studied
drugs, which thus demonstrate great limitations in coping with
TI’s vulnerability to the subject variation of drug responses
(Jiang et al., 2015). Compared with the approaches based on
drug structure, target-based approach turns out to be the one
of enhanced effectiveness for characterizing confined toxicity
behind the drug efficacy (Muller and Milton, 2012; Huang et al.,
2018), since the population variation of drug target is capable of
reflecting, to some extent, the subject variations of drug responses
(Fujimoto et al., 2014; Jiang et al., 2015). But target-basedmethod
is sophisticated due to the involvement of target in complex
protein–protein interaction (PPI) network (Rao et al., 2011; Li
et al., 2016b; Xu et al., 2016; Wang et al., 2017b) and the necessity
of considering target biological system profiles (Zhu F. et al.,
2009; Xue et al., 2016).

So far, the PPI network properties (Ragusa et al., 2010; Guo
et al., 2018) and biological system profiles (Zheng et al., 2006)
have been adopted to analyze the drug likeness of candidate
agents. On one hand, the target–protein interaction network has
been constructed and the corresponding network features can be

calculated for discovering the differential properties indicating
disease status (Ragusa et al., 2010) and identifying candidate drug
targets for a given indication (Guo et al., 2018; Xue et al., 2018a).
On the other hand, the druggability of candidate target is found
significantly determined by a variety of biological system profiles,
which include the number of target affiliated signaling pathways
(Yang et al., 2016), the number of similarity proteins outside
target’s protein family (Zheng et al., 2006), the number of human
tissues distributed by the studied target (Zhu F. et al., 2009),
and the differential level of target expression between patient
and healthy individual (Ernst et al., 2017; Li et al., 2018). Since
the underlying theories of network- and biological system-based
approaches are distinct from each other (Guo et al., 2018; Li et al.,
2018), it is essential to simultaneously consider these two types
of properties for understanding drug likeness. However, these
properties have not yet been collectively considered in TI-related
studies, and the mechanism underlying drugs’ narrow TI is still
elusive.

In this study, a comprehensive analysis on the network
features and biological system profiles of the primary therapeutic
targets of all FDA approved drugs was conducted, and various
features differentiating drugs of narrow TI (NTI drugs) from
those of sufficient TI (NNTI drugs) were identified. First, due
to the limited information of both NTI and NNTI drugs, a
systematic literature review was conducted to collect the TI data
for all approved drugs. Then, the primary therapeutic targets of
these drugs were classified into four groups based on collected TI
data. These four target groups include (a) targets of NTI drugs,
(b) targets of both NTI and NNTI drugs, (c) targets of drugs
without reported TI, and (d) targets of NNTI drugs. Third, a
comparative analysis between target group (a) and (d) identified
several key features able to differentiate two groups, and further
study revealed three feature groups indicating the mechanisms
underlying NTI drugs. In summary, these findings together with
the newly discovered features or feature groups clarified key
factors indicating drug’s narrow TI, which gave a new direction
for determining the delicate balance between drugs’ maximum
efficacy and confined safety.

MATERIALS AND METHODS

Systematic Collection of Drugs and Their
Corresponding Targets and TI Data
The TI data of FDA approved drugs were obtained by four
steps. First, FDA approved drugs were collected from the official
website of FDA (Drugs@FDA), and their corresponding diseases
were carefully confirmed. In total, 1,762 drugs were collected.
Second, the primary therapeutic targets of these drugs were
identified from the TTD database (https://db.idrblab.org/ttd/;
Li et al., 2018), and 418 primary therapeutic targets of these
1,762 drugs were discovered (detail information was provided
in the following paragraphs). Third, TI data of these drugs were
systematically collected by a comprehensive literature review.
Particularly, various keyword combinations were searched in
PubMed and other academic resources, which included “drug
name + therapeutic index,” “drug name + therapeutic window,”
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“drug name + critical dose,” “drug name + therapeutic ranges,”
and “drug name + therapeutic ratio.” As a result, 161 NTI
and 29 NNTI drugs confirmed by the clinical evaluations
or experiments were identified, which aimed at 60 and 28
human targets, respectively. Supplementary Table S1 provided
a full list of 161 NTI and 29 NNTI drugs together with
their approved disease indication and corresponding targets.
To the best of our knowledge, it is the first comprehensive
literature review on the TI data of all drugs approved by
FDA and Supplementary Table S1 provided the most completed
information of the FDA approved drugs with available TI data.
Moreover, the primary therapeutic targets of all FDA approved
drugs were classified into four groups based on their TI: (a)
20 targets of NTI drugs, (b) 40 targets of both NTI and
NNTI drugs, (c) 339 targets of drugs without reported TI,
and (d) 19 targets of NNTI drugs. Moreover, among those
drugs listed in Supplementary Table S1, four multi-target drugs
were found with NTI data available, which included regorafenib
(hepatocellular and colorectal cancer), sorafenib (renal cell and
hepatocellular carcinoma), sunitinib (gastrointestinal cancer),
and vandetanib (medullary thyroid cancer). All these drugs are
multi-kinases inhibitors for the treatment of cancer.

Identification of the Primary Therapeutic
Target(S) of FDA Approved Drugs
The primary therapeutic target of each FDA approved drug
was strictly determined by considering (1) the experimentally
determined potency of drugs against their primary target or
targets (Zhu et al., 2010), (2) the observed potency or effects of
drugs against disease models (cell lines, ex-vivo, in-vivo models)
linking to their primary drug targets (Zhu et al., 2012b), and (3)
the observed effect of target knockout, knockdown, transgenetic,
RNA interference, antibody or antisense-treated in vivo models
(Zhu et al., 2012b). Taking the confirmation of CDK4 as the
primary therapeutic target of FDA approved Palbociclib as an
example, it was determined by considering: (1) experimentally
defined high potency (IC50 = 11 nM) of Palbociclib against
CDK4 (Fry et al., 2004), (2) the clearly observed development
of multiple tumors by a point mutation (R24C) in the first
coding exon of locus encoding CDK4 in the mice models (Sotillo
et al., 2001), and (3) Palbociclib-induced G1-G2 arrest and
apoptosis in breast tumor cell lines (IC50 <400 nM) and tumor
growth reduction in human breast tumor xenograft (Lapenna
and Giordano, 2009). In conclusion, only the targets with
complete target determination data (including all three types
of information above) were defined as the primary therapeutic
targets of the corresponding FDA approved drugs.

Deriving the Human PPI Network
Properties for Each Studied Target
The human protein–protein interaction (PPI) network analyzed
here included 15,554 proteins and 642,304 PPIs, which was
constructed using the data provided in STRING (Szklarczyk et al.,
2015). In order to ensure the reliability of the analyzed data, only
those PPIs with high confidence score (>0.95) were collected for
the subsequent analyses (Ghosh et al., 2015; Wang S. et al., 2015).

As a result, a sub-network with 8,509 proteins and 40,468 PPIs
were generated and adopted for further analyses in this study.
Moreover, the network properties for each studied target were
generated by the PROFEAT (Zhang et al., 2017a) and the tool
NetworkAnalyzer of Cytoscape (Shannon et al., 2003; Thomas
and Bonchev, 2010).

In total, 32 network properties were calculated and adopted in
subsequent analysis. These properties were popular for analyzing
a complex biological network, which included: (1) Average
Closeness Centrality: the average number of steps required to
reach the studied node from any node in a network (Ma et al.,
2016); (2) Average Shortest Path Length: the average length of
shortest paths between the studied node and all other ones
(Zhang et al., 2014); (3) Betweenness Centrality: the number
of times the studied node serving as a linking bridge along
shortest path between any two nodes (Zeidán-Chuliá et al., 2015);
(4) Bridging Centrality: the product of the bridging coefficient
and betweenness centrality (Hwang et al., 2008); (5) Bridging
Coefficient: the extent of the studied node lying between any
other densely connected nodes in the network (Paladugu et al.,
2008); (6) Closeness Centrality Sum: the reciprocal of the sum
of the shortest paths between the studied node and all other
nodes in the network (Costenbader and ValenteFontanesi, 2003);
(7) Clustering Coefficient: the number of the connected pairs
between all neighbors of node (Watts and Strogatz, 1998); (8)
Current Flow Betweenness: a centrality index measuring the level
of information travels along all possible paths within network
(Paladugu et al., 2008); (9) Current Flow Closeness: the variant
of current flow betweenness (Zhang et al., 2017b); (10) Degree:
the number of edges linked to a node (Braeuning, 2013); (11)
Degree Centrality: the number of links incident upon a studied
node (Batool and Niazi, 2014); (12) Deviation: the variation
between sum of node distances and network unipolarity (Zhang
et al., 2017a); (13) Distance Deviation: the absolute difference
between nodes’ distance sum and network’s average distance
(Rogelj et al., 2013); (14) Distance Sum: the sum of all shortest
paths starting from the studied node (Bolser et al., 2003); (15)
Eccentric: the absolute difference between nodes’ eccentricities
and network’s average eccentricity (Zhang et al., 2017a); (16)
Eccentricity: the maximum non-infinite shortest path length
between the studied node and all other nodes in the network
(Bolser et al., 2003); (17) Eccentricity Centrality: the largest
geodesic distance between the node and any other node (Batool
and Niazi, 2014); (18) Eigenvector Centrality: the sum of its
neighbors’ centrality values (Solá et al., 2013); (19) Harmonic
Closeness Centrality: the sum of the reciprocals of the average
shortest path lengths of each node in network (Zhang et al.,
2017b); (20) Interconnectivity: a connectivity index indicating
the quality of the studied nodes being connected together (Emig
et al., 2013); (21) Load Centrality: the fraction of all the shortest
paths that pass through the studied node (Kivimäki et al., 2016);
(22) Neighborhood Connectivity: the average connectivity of all
neighbors (Carson and Lu, 2015); (23) Normalized Betweenness:
the fraction of network shortest paths that a given protein lies on
(Paladugu et al., 2008); (24) Number of Self Loops: the number
of edges starting and ending at the same node (Garlaschelli
and Loffredo, 2004); (25) Number of Triangles: the number of
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triangles that include the studied node as a vertex (Rubinov and
Sporns, 2010); (26) Page Rank Centrality: an adjustment of Katz
by considering the diluted issue (Li et al., 2013); (27) Radiality:
the level of reachability of a studied node via various shortest
paths within the entire network (Koschützki and Schreiber,
2008); (28) Residual Closeness Centrality: the closeness measured
by removing the studied node (Dangalchev, 2006); (29) Scaled
Degree: the degree of a studied node relative to the most
connected node within the same module (Sormani, 2012); (30)
Stress: the number of shortest paths passing through a given node
(Shannon et al., 2003); (31) Topological Coefficient: the extent to
which a node in network shares interaction partners with other
nodes (Zhu M. et al., 2009); (32) Z Score: a connectivity index
based on degree distribution of a network (Rubinov and Sporns,
2010).

Assessing the Biological System Profile for
Each Studied Target
The biological system profile for each studied target included: (1)
the number of target-affiliated and target immediate-downstream
signaling pathways in KEGG database (Kanehisa et al., 2017).
The target-affiliated pathways were determined by considering
that (a) the pathways of the studied target should be life-
essential in both patients and healthy people and (b) the studied
target should be in the pathway upstream with the capacity
of regulating the biological function of the pathways. (2) The
number of human tissues each target distributed in, assessed by
the TissueDistributionDBs (Kogenaru et al., 2010) and Uniprot
(UniProt Consortium, 2018) databases. A target was assumed
to distribute in a given tissue if >5% of the total proteins are
distributed in that tissue or the target concentration is higher
than the average concentration of proteins in that tissue. (3)
The number of human similarity proteins of a target outside
the corresponding target family for probing off-target collateral
effect (Zheng et al., 2006; Zhu F. et al., 2009). This was
determined by BLAST similarity screening of human proteome
in Uniprot database (UniProt Consortium, 2018) with a cutoff
(E-value < 0.005; Song et al., 2006; Singh et al., 2007). (4)
The differential expressions of the studied target in the disease-
specific tissue between patients and healthy individuals (Li
et al., 2018). The relevant data were collected directly from
TTD (Li et al., 2018) and calculated based on the human gene
expression raw data of Affymetrix U133 Plus 2.0 platform in GEO
(Barrett et al., 2013).

Selecting the Differential Features
Indicating NTI Drugs by Artificial
Intelligence
The artificial intelligence (AI) has been recently proposed
as a powerful technique for drug target discovery (Xu and
Wang, 2014; Zhu et al., 2018), protein function prediction (Li
et al., 2016a; Seo et al., 2018; Yu et al., 2018) and biomarker
identification (Li B. et al., 2016; Li et al., 2017) through
mimicking the human thinking procedures, learning processes
and information extractions, which included the machine
learning algorithm (Zhu et al., 2008a; Wang P. et al., 2015), the

deep learningmethod (van der Burgh et al., 2017; Seo et al., 2018),
and the cognitive-computing (Krittanawong et al., 2017). As one
of the most popular machine learning algorithms, the Boruta
algorithm based on wrapper method built around a random
forest classifier (Kursa, 2014) was selected and adopted in this
study. It is an extension to determine the relevance via comparing
the relevance of the real features to that of the random probes
(Pan et al., 2018). Since Boruta was constructed by an AI-based
technique (machine learning), it was considered to be the most
powerful approach with the stability in the variable selection,
especially suitable for the low-dimensional dataset among other
available strategies (Degenhardt et al., 2017). In this study, the
differential features between NTI and NNTI drugs were therefore
identified by R package Boruta (Shang et al., 2017). Particularly,
human PPI network properties and biological system features
of each target were first calculated, and the results of feature
selection were then acquired using R package Boruta by setting
the p-value < 0.05, maxRuns = 100, and doTrace = 2. In the
meantime, the getImpwas set to “getImpRfZ,” and themcAdj and
holdHistory were set to “TRUE.”

RESULTS AND DISCUSSION

Network Properties and Biological System
Profile of NTI and NNTI Drugs
As reported, the human PPI network properties and biological
system profile were key factors determining efficacy-safety
balance (Zheng et al., 2006; Ragusa et al., 2010; Guo et al.,
2018). Network properties were inherent feature of a target
in the human PPI network, while biological system profile
could reflect both the on-target and off-target pharmacology
(Bender et al., 2007; Han et al., 2018; Zhu et al., 2018). Herein,
32 features of human PPI network together with 4 biological
system properties were therefore adopted and calculated for
further analyses. To the best of our knowledge, these were the
most comprehensive sets of features ever applied for TI-related
analysis. Table 1 listed the calculated values of ten properties
based on the connectivity and adjacency in human PPI network.
These connectivity/adjacency-based network properties were
designed to describe the level of connectivity among human
proteins or the neighborhood features of the studied proteins
(Chen et al., 2016). The properties included bridging coefficient,
clustering coefficient, degree, degree centrality, interconnectivity,
neighbor connectivity, number of triangles, scaled degree,
topological coefficient, and Z-score (corresponding definitions
were provided in section Materials and Methods). As shown in
Table 1, 8 (80.0%) out of 10 properties were significantly different
(p-value < 0.05, highlighted by bold font) between the targets of
NTI and NNTI drugs, and half of those 10 properties were with
the most significant differences (p-value < 0.01, highlighted by
bold-underline).

Similar to the connectivity/adjacency-based network
property, the calculated values of 16 properties based on the
shortest path length in the human PPI network were provided
in Table 2 (corresponding definitions of these properties were
provided in section Materials and Methods). As shown in
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TABLE 1 | The calculated values of 10 properties based on the connectivity and adjacency in the human PPI network.

Connectivity/Adjacency based properties Targets of the NTI drugs Targets of the NNTI drugs p-values

Mean ± SD Median Mean ± SD Median

Bridging coefficient 5.62E−01 ± 1.44E+00 7.10E-02 3.72E+00 ± 9.02E+00 7.47E-01 2.15E-01

Clustering coefficient 1.07E−01 ± 1.67E−01 1.82E-02 4.06E−01 ± 4.06E−01 3.33E-01 1.40E-02

Degree 1.04E+01 ± 4.14E+00 1.10E+01 4.53E+00 ± 3.89E+00 3.00E+00 3.56E-05

Degree centrality 1.09E−03 ± 5.70E−04 1.00E-03 5.71E−04 ± 7.56E−04 0.00E+00 2.90E-02

Interconnectivity 2.59E−01 ± 1.04E−01 1.86E-01 5.89E−01 ± 1.44E−01 6.18E-01 3.21E-07

Neighbor connectivity 3.33E+01 ± 2.50E+01 2.79E+01 1.25E+01 ± 8.45E+00 1.13E+01 1.57E-05

Number of triangles 5.28E+00 ± 8.06E+00 1.00E+00 5.29E+00 ± 7.47E+00 3.00E+00 9.98E-01

Scaled degree 1.41E−02 ± 5.44E−03 1.50E-02 6.36E−03 ± 5.17E−03 4.00E-03 7.01E-05

Topological coefficient 1.67E−01 ± 1.53E−01 1.07E-01 3.41E−01 ± 2.42E−01 3.60E-01 1.76E-02

Z score 1.23E−03 ± 1.27E−02 3.00E-03 −1.63E−02 ± 1.22E−02 −2.20E-02 1.17E-04

The mean values (together with standard deviation) and median values of these properties between the targets of NTI and NNTI drugs were provided, and the statistical difference

(p-value) for each property between targets of NTI and NNTI drugs were also calculated (p-values <0.05 and <0.01 were highlighted by bold and bold-underline, respectively).

TABLE 2 | The calculated values of 16 properties based on the shortest path length in human PPI network.

Shortest path length-based properties Targets of the NTI drugs Targets of the NNTI drugs p-values

Mean ± SD Median Mean ± SD Median

Average shortest path length 4.06E+00 ± 2.90E−01 3.95E+00 4.88E+00 ± 1.08E+00 5.09E+00 1.06E-02

Betweenness centrality 1.26E−03 ± 6.77E−04 1.77E-03 2.54E−04 ± 3.94E−04 1.09E-05 1.59E-08

Average closeness centrality 2.47E−01 ± 1.63E−02 2.53E-01 1.97E−01 ± 2.26E−02 1.92E-01 5.31E-07

Current flow betweenness 3.07E−03 ± 1.35E−03 4.00E-03 8.57E−04 ± 1.17E−03 5.00E-04 3.38E-06

Deviation 1.11E+04 ± 2.31E+03 1.03E+04 1.96E+04 ± 4.39E+03 2.03E+04 4.24E-06

Distance deviation 6.17E+03 ± 2.02E+03 6.93E+03 4.30E+03 ± 2.37E+03 4.16E+03 1.57E-02

Distance sum 3.23E+04 ± 2.31E+03 3.14E+04 4.08E+04 ± 4.39E+03 4.15E+04 4.24E-06

Eccentric 1.11E+00 ± 4.27E−01 1.34E+00 5.97E−01 ± 4.14E−01 3.40E-01 6.09E-04

Eccentricity 1.02E+01 ± 4.27E−01 1.00E+01 1.14E+01 ± 7.45E−01 1.10E+01 6.44E-05

Eccentricity centrality 9.79E−02 ± 3.85E−03 1.00E-01 8.84E−02 ± 5.79E−03 9.10E-02 2.30E-05

Harmonic closeness centrality 2.10E+03 ± 1.53E+02 2.14E+03 1.64E+03 ± 2.03E+04 1.59E+03 3.95E-07

Load centrality 1.35E−03 ± 7.83E−04 2.00E-03 2.86E−04 ± 4.69E−04 0.00E+00 3.75E-07

Normalized betweenness 2.81E−03 ± 1.53E−03 4.00E-03 5.71E−04 ± 8.52E−04 0.00E+00 2.53E-08

Residual closeness centrality 6.00E+02 ± 1.05E+02 6.29E+02 3.07E+ 02 ± 1.23E+02 2.74E+02 1.32E-07

Radiality 8.09E−01 ± 1.81E−02 8.16E-01 7.43E−01 ± 3.33E−02 7.44E-01 1.21E-06

Stress 1.56E+06 ± 9.11E+05 2.24E+06 3.04E+05 ± 4.82E+05 4.69E+03 2.13E-08

Mean values (together with standard deviation) and median values of these properties between the targets of NTI and NNTI drugs were provided, and the statistical difference (p-value)

for each property between targets of NTI and NNTI drugs were also calculated (p-values <0.05 and <0.01 were highlighted by bold and bold-underline, respectively).

Table 2, all properties were found to be significantly different
(p-values < 0.05, in bold font) between the targets of NTI and
NNTI drug, and 14 (87.5%) of the 16 properties were with the
most significant difference (p-value < 0.01, bold-underline).
Moreover, the calculated values of 4 human biological system
properties were shown in Table 3 (definition of these properties
was given in section Materials and Methods). As reported, these
properties were frequently adopted to analyze the druggability of
therapeutic targets for not only approved drugs but also the drugs
in clinical trial development or withdrawn from market (Li et al.,
2018). Herein, two properties were identified as significantly
different (p-value < 0.01, bold-underline) between targets of
NTI and NNTI drugs, which included the number of pathways

affiliated by the targets of the studied drugs and the number of
similarity proteins outside target’s functional family. One thing
needed to be emphasized was that the standard deviation of
many properties was even larger than their mean value (such as
bridging coefficient, clustering coefficient, and Z-score). These
deviations indicated that the corresponding p-value may not be
enough to measure the difference between the targets of NTI
and NNTI drug. Moreover, any of the individual feature (p-value
< 0.05 shown in Tables 1–3) could not be used to satisfactorily
differentiate the targets of NTI drugs from that of the NNTI ones.
Thus, this finding inspired us to discover the differential features
using more advanced computational algorithm and collectively
considering multiple properties.
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TABLE 3 | The calculated values of four human biological system properties.

Human biological system properties Targets of the NTI drugs Targets of the NNTI drugs p-values

Mean ± SD Median Mean ± SD Median

No. of pathways affiliated by the primary therapeutic target 6.10 ± 1.80 7.00 1.14 ± 0.38 1.00 2.50E-15

No. of similarity proteins outside the target family 24.4 ± 15.22 29.00 11.79 ± 6.21 11.00 1.46E-05

Differential expression levels between patients and healthy individuals 0.42 ± 0.35 0.56 0.33 ± 0.32 0.20 3.86E-01

No. of tissues distributed by the primary therapeutic target 3.38 ± 0.81 3.00 3.61 ± 1.82 3.00 6.06E-01

The mean values (together with standard deviation) and median values of these properties between the targets of NTI and NNTI drugs were provided, and the statistical difference

(p-value) for each property between targets of NTI and NNTI drugs were also calculated (p-values <0.05 and <0.01 were highlighted by bold and bold-underline, respectively).

TABLE 4 | 19 substantially overlapped network properties grouped into 5 property groups based on their innate mutual dependence.

Property group Original property Equation of the property Description of the property

Average closeness centrality Average closeness centrality 1/( 1
N

∑N
j=1 Dij ) The average number of steps required to reach the studied node

from any node in the network

Harmonic closeness centrality
∑N

j=1
1
Dij

The sum of the reciprocals of the average shortest path lengths of

each node in the network

Residual closeness centrality
∑N

j=1
1

2
Dij

The closeness measured by removing the studied node

Sum closeness centrality 1/
∑N

j=1 Dij The reciprocal of the sum of the shortest paths between the

studied node and all other nodes in the network

Average shortest path length Average shortest path length 1
N−1

∑N
j=1 Dij The average length of the shortest paths between the studied

node and all other nodes in network

Deviation distSumi − unipolarityi The variation between the total sum of node distances and the

network unipolarity

Distance sum
∑N

j=1 Dij The sum of all shortest paths starting from the studied node

Betweenness centrality Betweenness centrality
∑

s6=i 6=t
σst (i)
σst

The number of times the studied node serving as a linking bridge

along the shortest paths between any two nodes

Current flow betweenness 1
Nb

∑
s,t∈V τst (i) A centrality index measuring the level of information travels along

all possible paths within the network

Current flow closeness
NC∑

s6=t pst(s)−pst(t)
The variant of current flow betweenness

Load centrality
∑

s6=i 6=t σst (i) The fraction of all the shortest paths that pass through the studied

node

Normalized betweenness centrality
cenBtwi−min(cenBtwG )

max(cenBtwG )−min(cenBtwG )
The fraction of network shortest paths that the studied protein lies

on

Degree Degree Degreei The total number of edges linked to a node

Degree centrality
degi
N−1 The number of links incident upon the studied node

Number of self-loops Selfloopi The number of edges starting and ending at the same node

Scaled degree
degi

max(degG )
The degree of the studied node relative to the most connected

node within the same module

Z score [degi − avg(degG)]/dev(degG) A connectivity index based on the degree distribution of network

Eccentricity Eccentricity max(Dij ) The maximum non-infinite shortest path length between the

studied node and all other nodes in the network

Eccentricity centrality 1/max(Dij ) The largest geodesic distance between the node and any other

nodes

Discovering the Key Features of NTI Drug
Targets by Artificial Intelligence
Based on the in-depth investigation of 36 properties in
Tables 1–3, several properties were found to be not fully
independent or even duplicate in their descriptions (like
degree vs. scaled degree). In this study, all 36 properties were

systematically reviewed, and 19 of these 36 were identified to be
substantially overlapped with some other properties (Table 4).
Since there was significant dependence among the 19 properties,
the use of all 36 properties for statistical feature selection may
introduce strong biases. Thus, the 19 properties were grouped
based on their innate mutual dependence. As shown in Table 4,
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FIGURE 1 | Boxplots of eight key features identified in this study. For each feature, there were four plots colored in red, orange, light blue and green which indicated

the targets of NTI drugs, both NTI and NNTI drugs, drugs with no NTI data reported and NNTI drugs, respectively.

five property groups were generated by considering equation and
description of these 19 properties, and each group was named by
the first property (ordered alphabetically) in the corresponding
group. As a result, these five groups included: the average
closeness centrality, average shortest path length, betweenness
centrality, degree, eccentricity. To minimize the possible bias
induced by the innate mutual dependence among properties,
only these five properties were considered in subsequent feature
selection analysis, instead of investigating all 19 properties.
Taking the remaining 17 relatively independent properties into
consideration, 22 properties in total of each target were selected
for subsequent feature selection.

As one of the most popular feature selection strategies based
on AI, the Boruta algorithm based on a wrapper method built
around a random forest classifier (Kursa, 2014) was adopted in
this study. Boruta was considered the most powerful method
with the stability in variable selection, especially suitable for
the low-dimensional dataset among other reported strategies
(Degenhardt et al., 2017). In this study, the key differential

features were thus selected from 22 properties using R package
Boruta by setting the p-value < 0.05. As a result, eight properties
were selected as able to collectively reflect the target’s mechanism
underlying NTI drugs. As illustrated in Figure 1, the boxplots
colored in red and green referred to the targets of NTI and
NNTI drugs, respectively. Some key features increased from
the targets of NTI drug to that of NNTI one (such as average
shortest path length), while others demonstrated a decrease (such
as average closeness centrality). Based on the comprehensive
literature review, some of those 8 key features had been reported
to be indirectly relevant to drugs’ efficacy-safety balances. For
example, the lower value of average closeness centrality of target
was reported to demonstrate a less lethality risk (Chen et al.,
2011), which was consistent with the findings of this study
(a much higher average closeness centrality of the targets of
NTI drugs was observed compared with that of NNTI ones,
shown in Figure 1). Moreover, the higher level (lower value) of
interconnectivity was frequently observed in lethal diseases such
as cardiovascular disorder and cancer (Muhammd et al., 2018).
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FIGURE 2 | Classification of eight key features identified in this study into three feature groups.

Oncological and cardiovascular disorder had been recognized
as life-threatening diseases, and the majority of their drugs
were reported to be NTI ones (Muller and Milton, 2012; Yu
et al., 2015). Thus, the result of interconnectivity in Figure 1 was
consistent with these previous reports, which further validated
the effectiveness of applied algorithm in identifying key target
features underlying NTI drugs.

Moreover, there were four groups of targets as defined in
section Materials and Methods: (a) targets of NTI drugs, (b)
targets of both NTI and NNTI drugs, (c) targets of drugs without
reported TI, and (d) targets of NNTI drugs. Apart from the
target groups (a) and (d), the remaining groups provided more
complicated and informative data for illustrating the mechanism
underlying NTI drugs. On one hand, the targets in group (b)
were affected by both NTI and NNTI drugs, which might reflect
properties from both sides, butmight also be significantly affected
by the properties of confirmed NTI drugs. On the other hand, no
TI data of the group (c) targets was reported based on literature
review. It was possible that some NTI drugs were not discovered
for those targets. But considering the large number of group (c)
targets (339 in total), it was highly possible that most of those
group (c) targets were only aimed by NNTI drugs, and just a
small fraction of which could find new NTI drug in the future.
The value of 8 properties of those 4 target groups were illustrated
in Figure 1. It was interesting that all properties followed a clear
descending/ascending trend from the targets of group (a) to (d),
which was in accordance with the analyses provided above. Thus,

these findings could be another line of evidence that validated the
effectiveness of the feature identification algorithm applied in this
study.

Target Mechanism Underlying NTI Drugs
Collectively Determined by Multiple
Profiles
By collectively considering Figure 1 and Tables 1–3, seven
out of those eight selected key features showed significant
difference (p-value < 0.05), but it was clear that these significant
differences did not guarantee the corresponding feature as the key
differential one (57.7% of the features with significant difference
(p-value < 0.05) were not selected as key differential ones).
Moreover, significant difference was not observed for the selected
key feature bridging coefficient (p-value = 0.22). This finding
indicated that those eight features collectively determined the
target mechanism of NTI drugs, and the TI-related mechanism
might be the result of the synergistical effects among those
features. Moreover, the majority of these eight key features were
identified for the first time by this study, and this work was also
the first analysis on the collective effects of both PPI network
properties and biological system profile on the drug efficacy-
safety balance.

Further analysis on these eight identified key features
(shown in Figure 1) revealed that these key features were
found to belong to three feature groups. These feature groups
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were connectivity and centrality of targets in human PPI
network together with human biological system features. By
combining the data in Figure 1, the key features within the
same feature group (illustrated in Figure 2) followed the same
ascending/descending trends, which were colored by the same
background. As shown in Figure 2, the targets of NTI drugs
were highly centralized and connected, and the number of
similarity proteins and the number of affiliated pathways
were substantially higher than those of NNTI drug. Since
the number of similarity proteins and affiliated pathways was
reported to be good indicator of target druggability (Zhu F.
et al., 2009; Li et al., 2018), the NTI profile identified in
this study was in accordance with that of reported target
druggability.

CONCLUSION

This work is the first study conducting comprehensive review on
the TI data of all FDA approved drugs (Supplementary Table S1)
and revealing the collective effects of both human PPI network
properties and biological system profiles on drug efficacy-safety
balance. Eight key features were identified here as collectively
differentiating the target mechanisms between NTI and NNTI
drugs. These features revealed that the targets of NTI drugs were
highly centralized and connected in human PPI network, and
the numbers of similarity proteins and target-affiliated pathways
were both much higher than those of NNTI drugs. These

findings together with the newly discovered features/feature
groups clarified the key factors indicating drug’s narrow TI and
could therefore provide a novel direction for determining the
delicate drug efficacy-safety balance.
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